Solving Beautiful Puzzles

K. Keri Vos
Maastricht University & Nikhef
Testing the Standard Model

Passed all tests up to 100 GeV
Testing the Standard Model

Energy/Direct

Precision/Indirect

Precision frontier

Tiny deviations from SM predictions constrain effects of New Physics
The Flavour Puzzle

- Flavour symmetry broken by Yukawa couplings to the Higgs field
- Origin of mixing between families described by unitary CKM matrix
- Visualized by unitary triangles
- Dominant source of CP violation (antiparticle-particle asymmetry)

\[
\begin{pmatrix}
V_{ud} & V_{us} & V_{ub} \\
V_{cd} & V_{cs} & V_{cb} \\
V_{td} & V_{ts} & V_{tb}
\end{pmatrix}
\]
The Flavour Puzzle

- Flavour symmetry broken by Yukawa couplings to the Higgs field
- Origin of mixing between families described by unitary CKM matrix
- Visualized by unitary triangles
- Dominant source of CP violation (antiparticle-particle asymmetry)

\[
\begin{pmatrix}
V_{ud} & V_{us} & V_{ub} \\
V_{cd} & V_{cs} & V_{cb} \\
V_{td} & V_{ts} & V_{tb}
\end{pmatrix}
\]

Our understanding of Flavour is unsatisfactory
\[\bar{\rho} + i \bar{\eta} = -\frac{V_{ud} V_{ub}^*}{V_{cd} V_{cb}^*} \]
The Flavour Puzzle

\[\bar{\rho} + i \bar{\eta} = - \frac{V_{ud} V_{ub}^*}{V_{cd} V_{cb}^*} \]

Huge amounts of data + theory advances = Precision frontier
Tiny deviations from SM predictions constrain effects of New Physics
SM or beyond?

Challenge:
Disentangle SM long-distances effects from the effects of new interactions
Challenge:
Disentangle SM long-distances effects from the effects of new interactions

- Some anomalies already spotted
SM or beyond?

Challenge:
Disentangle SM long-distances effects from the effects of new interactions

- Some anomalies already spotted
- Revise previous assumptions: reliable theory uncertainties
- Look for the cleanest observables/methods
Challenge:
Disentangle SM long-distance effects from the effects of new interactions

Puzzles in semileptonic decays
- Inclusive versus Exclusive
- V_{cb} and V_{ub}
- LFUV in R_D and R_{D^*}

Puzzles in nonleptonic decays
- Missing CP violation
- $B \to \pi K$ puzzle
- $B \to D\pi$ puzzle

Puzzles in rare decays
- Anomalies in $b \to s\ell\ell$

V_{cb}

V_{ub}

$b \to s$

$R_{D(*)}$

CDV
Puzzles in semileptonic decays: V_{ub} and V_{cb}

Inclusive versus Exclusive decays

V_{ub}

V_{cb}
exclusive versus Inclusive Theory

- Theory (Weak interaction): Transitions between quarks/partons

\[W \rightarrow \ell^- + \bar{\nu}_\ell \]

\[b \rightarrow c \]
Exclusive versus Inclusive Theory

- Theory (Weak interaction): Transitions between quarks/partons
- Observation: Transitions between hadrons

Challenge:
- Dealing with QCD at large distances/small scales
- Parametrize fundamental mismatch in non-perturbative objects
 - Calculable: Lattice or Light-cone sumrules
 - Measurable: from data
Inclusive $B \rightarrow X_c \ell \nu$: Heavy Quark Expansion (HQE)

- b quark mass is large compared to Λ_{QCD}
- Setting up the HQE: momentum of b quark: $p_b = m_b v + k$, expand in $k \sim iD$
- Optical Theorem \rightarrow (local) Operator Product Expansion (OPE)

\[
d\Gamma = d\Gamma_0 + \frac{d\Gamma_1}{m_b} + \frac{d\Gamma_2}{m_b^2} + \ldots \quad d\Gamma_i = \sum_k C_i^{(k)} \langle B | O_i^{(k)} | B \rangle
\]

- $C_i^{(k)}$ perturbative Wilson coefficients
- $\langle B | \ldots | B \rangle$ non-perturbative matrix elements \rightarrow string of iD
- Operators contain chains of covariant derivatives

\[
\langle B | O_i^{(n)} | B \rangle = \langle B | \bar{b}_v(iD_{\mu_1}) \ldots (iD_{\mu_n}) b_v | B \rangle
\]

- HQE parameters extracted from lepton energy and hadronic mass moments
Decay rate

\[\Gamma = \Gamma_0 + \frac{1}{m_b} \Gamma_1 + \frac{1}{m_b^2} \Gamma_2 + \frac{1}{m_b^3} \Gamma_3 \cdots \]

- \(\Gamma_0 \): decay of the free quark (partonic contributions), \(\Gamma_1 = 0 \)
- \(\Gamma_2 \): \(\mu_\pi^2 \) kinetic term and the \(\mu_G^2 \) chromomagnetic moment

 \[2M_B \mu_\pi^2 = - \langle B | \bar{b}_v iD_\mu iD^\mu b_v | B \rangle \]
 \[2M_B \mu_G^2 = \langle B | \bar{b}_v (-i\sigma^{\mu\nu}) iD_\mu iD_\nu b_v | B \rangle \]

- \(\Gamma_3 \): \(\rho_D^3 \) Darwin term and \(\rho_{LS}^3 \) spin-orbit term

 \[2M_B \rho_D^3 = \frac{1}{2} \langle B | \bar{b}_v [iD_\mu , [ivD , iD^\mu]] b_v | B \rangle \]
 \[2M_B \rho_{LS}^3 = \frac{1}{2} \langle B | \bar{b}_v \{ iD_\mu , [ivD , iD_\nu] \} (-i\sigma^{\mu\nu}) b_v | B \rangle \]

- \(\Gamma_4 \): 9 parameters Mannel, Turczyk, Uraltsev, JHEP 1010 (2011) 109
- \(\Gamma_5 \): 18 parameters Mannel, Turczyk, Uraltsev, JHEP 1010 (2011) 109

\(\Gamma_i \) are power series in \(O(\alpha_s) \)
Moments of the spectrum

Non-perturbative matrix elements obtained from moments of differential rate

Charged lepton energy

\[
\langle E^n \rangle_{\text{cut}} = \frac{\int_{E_\ell > E_{\text{cut}}} dE_\ell \ E^n \ \frac{d\Gamma}{dE_\ell}}{\int_{E_\ell > E_{\text{cut}}} dE_\ell \ \frac{d\Gamma}{dE_\ell}}
\]

Hadronic invariant mass

\[
\langle (M_X^2)^n \rangle_{\text{cut}} = \frac{\int_{E_\ell > E_{\text{cut}}} dM_X^2 \ (M_X^2)^n \ \frac{d\Gamma}{dM_X^2}}{\int_{E_\ell > E_{\text{cut}}} dM_X^2 \ \frac{d\Gamma}{dM_X^2}}
\]

\[
R^* (E_{\text{cut}}) = \frac{\int_{E_\ell > E_{\text{cut}}} dE_\ell \ \frac{d\Gamma}{dE_\ell}}{\int_0 dE_\ell \ \frac{d\Gamma}{dE_\ell}}
\]

- Moments up to \(n = 3, 4 \) and with several energy cuts available
- Experimentally necessary to use lepton energy cut
State-of-the-art in inclusive $b \rightarrow c$

\[
\Gamma \propto |V_{cb}|^2 m_b^5 \left[\Gamma_0 + \Gamma_0^{(1)} \frac{\alpha_s}{\pi} + \Gamma_0^{(2)} \left(\frac{\alpha_s}{\pi} \right)^2 + \Gamma_0^{(3)} \left(\frac{\alpha_s}{\pi} \right)^3 + \frac{\mu_\pi^2}{m_b^2} \left(\Gamma(\pi,0) + \frac{\alpha_s}{\pi} \Gamma(\pi,1) \right) \\
+ \frac{\mu_G^2}{m_b^2} \left(\Gamma(G,0) + \frac{\alpha_s}{\pi} \Gamma(G,1) \right) + \frac{\rho_3^3}{m_b^3} \left(\Gamma(D,0) + \Gamma_0^{(1)} \left(\frac{\alpha_s}{\pi} \right) \right) + \mathcal{O} \left(\frac{1}{m_b^4} \right) + \cdots \right)
\]

- Include terms up to $1/m_b^3$ see also Gambino, Healey, Turczyk [2016]
- Recent progress: α_s^3 to total rate and kinetic mass Fael, Schonwald, Steinhauser [2020, 2021]
- Recent progress: $\alpha_s \rho_D^3$ for total rate Mannel, Pivovarov [2020]
- Includes all known α_s, α_s^2 and α_s^3 corrections!

Recent update:

\[
|V_{cb}|^{incl} = (42.16 \pm 0.51) \times 10^{-3}
\]

Towards the ultimate precision in inclusive V_{cb}

\[
\Gamma \propto |V_{cb}|^2 m_b^5 \left[\Gamma_0 + \Gamma_0^{(1)} \frac{\alpha_s}{\pi} + \Gamma_0^{(2)} \left(\frac{\alpha_s}{\pi} \right)^2 + \Gamma_0^{(3)} \left(\frac{\alpha_s}{\pi} \right)^3 + \frac{\mu^2}{m_b^2} \left(\Gamma(\pi,0) + \frac{\alpha_s}{\pi} \Gamma(\pi,1) \right) \\
+ \frac{\mu_G^2}{m_b^2} \left(\Gamma(G,0) + \frac{\alpha_s}{\pi} \Gamma(G,1) \right) + \frac{\rho_D^3}{m_b^3} \left(\Gamma(D,0) + \Gamma_0^{(1)} \left(\frac{\alpha_s}{\pi} \right) \right) + \mathcal{O} \left(\frac{1}{m_b^4} \right) \right)
\]

Challenge:

- Include higher-order $1/m_b$ and α_s corrections
- Proliferation of non-perturbative matrix elements
 - 4 up to $1/m_b^3$
 - 13 up to $1/m_b^4$ Dassinger, Mannel, Turczyk, JHEP 0703 (2007) 087
 - 31 up to $1/m_b^5$ Mannel, Turczyk, Uraltsev, JHEP 1011 (2010) 109
Alternative V_{cb} determination

- Setting up the HQE: momentum of b quark: $p_b = m_b \nu + k$, expand in $k \sim iD$

- Choice of ν not unique: Reparametrization invariance (RPI)
 - links different orders in $1/m_b \to$ reduction of parameters
 - up to $1/m_b^4$: 8 parameters (previous 13)
 \[\delta_{RP} \nu_\mu = \delta \nu_\mu \text{ and } \delta_{RP} iD_\mu = -m_b \delta \nu_\mu \]

Caveat: standard lepton energy and hadronic mass moments are not RPI quantities

Alternative determination using only RPI q^2 moments including $1/m_b^4$
Alternative V_{cb} determination

- Setting up the HQE: momentum of b quark: $p_b = m_b v + k$, expand in $k \sim iD$
- Choice of v not unique: Reparametrization invariance (RPI)
 - links different orders in $1/m_b \rightarrow$ reduction of parameters
 - up to $1/m_b^4$: 8 parameters (previous 13)
 \[
 \delta_{RP} v_\mu = \delta v_\mu \quad \text{and} \quad \delta_{RP} iD_\mu = -m_b \delta v_\mu
 \]
- Caveat: standard lepton energy and hadronic mass moments are not RPI quantities
Setting up the HQE: momentum of b quark: $p_b = m_b v + k$, expand in $k \sim iD$

Choice of v not unique: Reparametrization invariance (RPI)
 - links different orders in $1/m_b \rightarrow$ reduction of parameters
 - up to $1/m_b^4$: 8 parameters (previous 13)
 \[
 \delta_{RP} v_\mu = \delta v_\mu \quad \text{and} \quad \delta_{RP} iD_\mu = -m_b \delta v_\mu
 \]

Caveat: standard lepton energy and hadronic mass moments are not RPI quantities

Alternative determination using only RPI q^2 moments including $1/m_b^4$

Recent progress: First measurement of q^2 moments Belle [2109.01685], Belle II [2205.06372]
q^2 moments

Centralized moments as function of q^2_{cut}
\[R^*(q^2_{\text{cut}}) \langle (q^2)^n \rangle_{\text{cut}} \]

\[\mu_3, \mu_G, \tilde{\rho}_D, r_E, r_G, S_E, S_B, S_{qB}, m_b, m_c \]

\[\text{Br}(\bar{B} \rightarrow X_c \ell \bar{\nu}) \propto \frac{|V_{cb}|^2}{\tau_B} \left[\Gamma_{\mu_3} \mu_3 + \Gamma_{\mu_G} \frac{\mu_G^2}{m_b^2} + \Gamma_{\tilde{\rho}_D} \frac{\tilde{\rho}_D^3}{m_b^3} \right. \]
\[+ \Gamma_r \frac{r_E^4}{m_b^4} + \Gamma_r \frac{r_G^4}{m_b^4} + \Gamma_{s_B} \frac{s_B^4}{m_b^4} + \Gamma_{s_E} \frac{s_E^4}{m_b^4} + \Gamma_{s_{qB}} \frac{s_{qB}^4}{m_b^4} \]

\[V_{cb} = (41.69 \pm 0.63) \cdot 10^{-3} \]

Bernlochner, Welsch, Fael, Olschewsky, Persson, van Tonder, KKV [2205.10274]
New V_{cb} determination

Bernlochner, Welsch, Fael, Olschewsky, Persson, van Tonder, KKV [2205.10274]

\[V_{cb} = (41.69 \pm 0.63) \cdot 10^{-3} \]

- Independent cross check of previous determinations
 - Agreement at $1 - 2\sigma$ level
 - Difference due to input on branching ratio → Need new measurements!
New V_{cb} determination

Bernlochner, Welsch, Fael, Olschewsky, Persson, van Tonder, KKV [2205.10274]

$$V_{cb} = (41.69 \pm 0.63) \cdot 10^{-3}$$

- Independent cross check of previous determinations
 - Agreement at $1 - 2\sigma$ level
 - Difference due to input on branching ratio → Need new measurements!
- First pure data extraction of $1/m_b^4$ terms
- Important to check convergence of the HQE

$$r_E^4 = (0.02 \pm 0.34) \cdot 10^{-1}\text{GeV}^4 \quad r_G^4 = (-0.21 \pm 0.69)\text{GeV}^4$$
New V_{cb} determination

Bernlochner, Welsch, Fael, Olschewsky, Persson, van Tonder, KKV [2205.10274]

\[V_{cb} = (41.69 \pm 0.63) \cdot 10^{-3} \]

- Independent cross check of previous determinations
 - Agreement at $1 - 2\sigma$ level
 - Difference due to input on branching ratio → Need new measurements!
- First pure data extraction of $1/m_b^4$ terms
- Important to check convergence of the HQE

\[r_E^4 = (0.02 \pm 0.34) \cdot 10^{-1}\text{GeV}^4 \quad r_G^4 = (-0.21 \pm 0.69)\text{GeV}^4 \]

- Inputs for calculations of $B \rightarrow X_u \ell \nu$, B lifetimes and $B \rightarrow X_s \ell \ell$
$B \rightarrow D$ and $B \rightarrow D^*$

- Form factors extracted from lattice, LC sumrules (+data)
- Knowledge on the q^2 dependence crucial
- BGL: Boyd, Grinstein, Lebed or CLN/HQE Caprini, Lellouch, Neubert parametrization
 - Start of many discussions Gambino, Jung, Schacht, Bordone, van Dyck, Gubernari, ...
 - BGL: model independent parametrization using analyticity
 - CLN*: uses HQE at $1/m_b +$ assumptions *justified at time of introduction
- Improved HQE treatment including $1/m_c^2$ corrections Bordone, van Dyk, Jung [1908.09398]

$$|V_{cb}|_{\text{excl}} = (40.3 \pm 0.8) \times 10^{-3}$$
Exclusive V_{cb}

$B \rightarrow D$ and $B \rightarrow D^*$

- Form factors extracted from lattice, LC sumrules (+data)
- Knowledge on the q^2 dependence crucial
- BGL Boyd, Grinstein, Lebed or CLN/HQE Caprini, Lellouch, Neubert parametrization
 - Start of many discussions Gambino, Jung, Schacht, Bordone, van Dyck, Gubernari, ...
 - BGL: model independent parametrization using analyticity
 - CLN*: uses HQE at $1/m_b$ + assumptions *justified at time of introduction
- Improved HQE treatment including $1/m_c^2$ corrections Bordone, van Dyk, Jung [1908.09398]

$$|V_{cb}|_{\text{excl}} = (40.3 \pm 0.8) \times 10^{-3}$$

- Recent progress: $B \rightarrow D^*$ form factors at nonzero recoil Fermilab/MILC [2105.14019]
 - tension between the slope of the lattice and experimental data
- Same form factors determine SM predictions for $R_{D(*)}$
- New experimental and lattice data needed!
The challenge of V_{ub}

Exclusive $B \rightarrow \pi \ell \nu$

- Only one form factor
- Combining Lattice QCD [FNAL/MILC, RBC/UKQCD] and QCD sum rules

Recent update:
Leljak, Melic, van Dyk [2102.07233]

$$|V_{ub}|_{\text{excl}} = (3.77 \pm 0.15) \cdot 10^{-3}$$
The challenge of V_{ub}

Exclusive $B \rightarrow \pi \ell \nu$

- Only one form factor
- Combining Lattice QCD [FNAL/MILC, RBC/UKQCD] and QCD sum rules

Recent update:
Leljak, Melic, van Dyk [2102.07233]

$|V_{ub}|_{\text{excl}} = (3.77 \pm 0.15) \cdot 10^{-3}$

Inclusive $B \rightarrow X_u \ell \nu$

- Experimental cuts necessary to remove charm background
- Local OPE as in $b \rightarrow c$ cannot work
- Switch to different set-up using light-cone OPE
- Introduce non-perturbative shape functions (\sim parton DAs in DIS)
- Different frameworks: BLNP, GGOU, DGE, ADFR

Recent update:
Belle [2102.00020]

$|V_{ub}|_{\text{incl}} = (4.10 \pm 0.28) \cdot 10^{-3}$
Update of BLNP approach

- Systematic framework: Soft Collinear Effective Theory (SCET)
- Separates the different scales in the problem
- In progress: include known α_s^2 corrections
- Moments of shape functions can be linked to HQE parameters in $b \to c$
 - In progress: include higher-moments
 - kinetic mass scheme as in $b \to c$
- Shape function is non-perturbative and cannot be computed
 - In progress: new flexible parametrization
Update of BLNP approach

- Systematic framework: Soft Collinear Effective Theory (SCET)
- Separates the different scales in the problem
- **In progress:** include known α_s^2 corrections
- Moments of shape functions can be linked to HQE parameters in $b \to c$
 - **In progress:** include higher-moments
 - kinetic mass scheme as in $b \to c$
- Shape function is non-perturbative and cannot be computed
 - **In progress:** new flexible parametrization

In progress:

Gunawardana, Lange, Mannel, Paz, Olschewsky, KKV [in progress]

$|V_{ub}|_{incl} = \text{Stay Tuned!}$
Recently a lot of attention for the V_{cb} puzzle! [Bigi, Schacht, Gambino, Jung, Straub, Bernlochner, Bordone, van Dyk, Gubernari]
Recently a lot of attention for the V_{cb} puzzle! [Bigi, Schacht, Gambino, Jung, Straub, Bernlochner, Bordone, van Dyk, Gubernari]

Recent progress: $B_s \rightarrow K \mu \nu$ [LHCb [2012.05143], Khodjamirian, Rusov [2017]]

Unlikely to be due to NP Jung, Straub [2018]

New data necessary: stay tuned!
• NP would also influence the moments of the spectrum
• Requires a simultaneous fit of hadronic parameters and NP *In progress.*
Puzzles in nonleptonic decays
The challenge of nonleptonic B decays

- Nonleptonic decays are important probes of CP violation
 - Direct CP violation due to different strong and weak phases
 - Mixing-induced CP violation in neutral decays probe mixing phase $\phi_{d,s}$
 - Sensitivity to NP in loops (penguins)

- CP violation in the SM is too small and peculiar!
 - CKM CP violating effects only from flavour changing currents
 - Flavour diagonal CP violation tiny in SM (EDMs)
 - Large CP asymmetries with processes with tiny BRs and vice versa
The challenge of nonleptonic B decays

- Nonleptonic decays are important probes of CP violation
 - Direct CP violation due to different strong and weak phases
 - Mixing-induced CP violation in neutral decays probe mixing phase $\phi_{d,s}$
 - Sensitivity to NP in loops (penguins)

- CP violation in the SM is too small and peculiar!
 - CKM CP violating effects only from flavour changing currents
 - Flavour diagonal CP violation tiny in SM (EDMs)
 - Large CP asymmetries with processes with tiny BRs and vice versa

Challenge: Calculation of Hadronic matrix elements
How to handle nonleptonic B decays?

QCD Factorization Beneke, Buchalla, Neubert, Sachrajda

- Disentangle perturbative (calculable) and non-perturbative dynamics using HQE
- Systematic expansion in α_s and $1/m_b$ (studied up to α_s^2) Bell, Beneke, Huber, Li

\[
\langle \pi^+ \pi^- | Q_i | B \rangle = T^I_i \otimes F^{B \rightarrow \pi^+} \otimes \Phi_{\pi^-} + T^{II}_i \otimes \Phi_{\pi^-} \otimes \Phi_{\pi^+} \otimes \Phi_B
\]

- Non-perturbative form factors and LCDAs
 - from data, lattice or Light-Cone Sum Rules
- No systematic framework to compute power corrections (yet?)
- Strong phases suffer from large uncertainties
- Theoretical challenge: reliable computations of observables
- Include QED corrections Beneke, Boer, Toelstede, KKV [2020]
How to handle nonleptonic B decays?

QCD Factorization Beneke, Buchalla, Neubert, Sachrajda

- Disentangle perturbative (calculable) and non-perturbative dynamics using HQE
- Include QED corrections Beneke, Boer, Toelstede, KKV [2020]

Flavour symmetries (Isospin or $SU(3)$)

- Many studies e.g. Fleischer, Jaarsma, KKV, Malami [2017,2018]
- Recent progress: Global $SU(3)$ fit to $B \rightarrow PP$ decays Huber, Tetlalmatzi-Xolocotzi [2111.06418]
$B \rightarrow \pi K$ puzzle
The $B \to K\pi$ Puzzle

- e.g. Buras, Fleischer, Recksiegel, Schwab [2004, 2007]; Fleischer, Jaeger, Pirjol, Zupan [2008]

(Longstanding) Puzzling patterns in $B \to \pi K$ data

- Penguin dominated; Electroweak penguins contribute at same level as tree!

\[\delta(\pi K) \equiv A_{CP}(\pi^0 K^-) - A_{CP}(\pi^+ K^-) \]

- Recent LHCb measurement for $A_{CP}(K^- \pi^0)$
 LHCb Collaboration, PRL 126, 091802 [2021]

- Confirms and enhances the observed difference
 - $\delta(\pi K)^{\text{exp}} = (11.5 \pm 1.4)\%$
 - 8σ from 0
The $B \rightarrow K\pi$ Puzzle

e.g. Buras, Fleischer, Recksiegel, Schwab [2004, 2007]; Fleischer, Jaeger, Pirjol, Zupan [2008];

(Longstanding) Puzzling patterns in $B \rightarrow \pi K$ data

- Penguin dominated; Electroweak penguins contribute at same level as tree!

\[\delta(\pi K) \equiv A_{\text{CP}}(\pi^0 K^-) - A_{\text{CP}}(\pi^+ K^-) \]

- Recent LHCb measurement for $A_{\text{CP}}(K^- \pi^0)$

 LHCb Collaboration, PRL 126, 091802 [2021]

- Confirms and enhances the observed difference
 - $\delta(\pi K)^{\text{exp}} = (11.5 \pm 1.4)\%$
 - 8σ from 0

- Not clean!
 - color-suppressed tree contributes
 - $\delta(\pi K)^{\text{QCD}} = (2.1^{+2.8}_{-4.6})\%$ [Bell, Beneke, Huber, Li]
 - or via $SU(3)$ [Fleischer, Jaarsma, Malami, KKV [2018]]
The $B \rightarrow K\pi$ Puzzle

(Longstanding) Puzzling patterns in $B \rightarrow \pi K$ data

- Penguin dominated; Electroweak penguins contribute at same level as tree!

\[\delta(\pi K) \equiv A_{\text{CP}}(\pi^0 K^-) - A_{\text{CP}}(\pi^+ K^-) \]

- Recent LHCb measurement for $A_{\text{CP}}(K^- \pi^0)$
 LHCb Collaboration, PRL 126, 091802 [2021]

- Confirms and enhances the observed difference
 - $\delta(\pi K)^{\text{exp}} = (11.5 \pm 1.4)\%$
 - 8σ from 0

- Not clean!
 - color-suppressed tree contributes
 - $\delta(\pi K)^{\text{QCDF}} = (2.1^{+2.8}_{-4.6})\%$ [Bell, Beneke, Huber, Li]
 - or via $SU(3)$ [Fleischer, Jaarsma, Malami, KKV [2018]]

- Hint for NP in the EWP sector?
Isospin sumrule

\[\Delta(\pi K) \equiv A_{CP}(\pi^+ K^-) + \frac{\Gamma(\pi^- \bar{K}^0)}{\Gamma(\pi^+ K^-)} A_{CP}(\pi^- \bar{K}^0) - \frac{2\Gamma(\pi^0 K^-)}{\Gamma(\pi^+ K^-)} A_{CP}(\pi^0 K^-) \]

- \[- \frac{2\Gamma(\pi^0 \bar{K}^0)}{\Gamma(\pi^+ K^-)} A_{CP}(\pi^0 \bar{K}^0) \equiv \Delta(\pi K)^{QCD} + \delta \Delta(\pi K) \]

- Sensitive to new physics effects: \(\Delta(\pi K)^{QCD} = (0.5 \pm 1.1)\% \) [Bell, Beneke, Huber, Li]

- QED effects: \(\delta \Delta(\pi K) = -0.42\% \) [Beneke, Boer, Toelstede, KKV [2020]]

- Isospin sumrule also robust against QED effects!
Isospin sumrule

\[
\Delta(\pi K) \equiv A_{CP}(\pi^+ K^-) + \frac{\Gamma(\pi^- \bar{K}^0)}{\Gamma(\pi^+ K^-)} A_{CP}(\pi^- \bar{K}^0) - \frac{2\Gamma(\pi^0 K^-)}{\Gamma(\pi^+ K^-)} A_{CP}(\pi^0 K^-) \\
- \frac{2\Gamma(\pi^0 \bar{K}^0)}{\Gamma(\pi^+ K^-)} A_{CP}(\pi^0 \bar{K}^0) \equiv \Delta(\pi K)^{QCD} + \delta\Delta(\pi K)
\]

- Sensitive to new physics effects: \(\Delta(\pi K)^{QCD} = (0.5 \pm 1.1)\%\) [Bell, Beneke, Huber, Li]
- QED effects: \(\delta\Delta(\pi K) = -0.42\%\) [Beneke, Boer, Toelstede, KKV [2020]]
- Isospin sumrule also robust against QED effects!
- Updates of modes with neutral pions necessary \(\rightarrow\) Belle II
Isospin sumrule

e.g. Gronau [2005]; Gronau, Rosner [2006]

\[
\Delta(\pi K) \equiv A_{CP}(\pi^+ K^-) + \frac{\Gamma(\pi^- \bar{K}^0)}{\Gamma(\pi^+ K^-)} A_{CP}(\pi^- \bar{K}^0) - \frac{2\Gamma(\pi^0 K^-)}{\Gamma(\pi^+ K^-)} A_{CP}(\pi^0 K^-)
\]

\[
- \frac{2\Gamma(\pi^0 \bar{K}^0)}{\Gamma(\pi^+ K^-)} A_{CP}(\pi^0 \bar{K}^0) \equiv \Delta(\pi K)^{QCD} + \delta\Delta(\pi K)
\]

- Sensitive to new physics effects: \(\Delta(\pi K)^{QCD} = (0.5 \pm 1.1)\%\) [Bell, Beneke, Huber, Li]
- QED effects: \(\delta\Delta(\pi K) = -0.42\%\) [Beneke, Boer, Toelstede, KKV [2020]]
- Isospin sumrule also robust against QED effects!
- Updates of modes with neutral pions necessary \(\rightarrow\) Belle II
- Mixing-induced CP asymmetry in \(B \rightarrow \pi^0 K^0\) provides additional test Fleischer, Jaarsma, Malami, KKV [2016,2018]
$B \rightarrow D\pi$ puzzle
Discrepancies between data and theory for $B_s \rightarrow D_s^{+\ast}\pi^-$ and $B \rightarrow D^{+\ast}K^-$ puzzle

- pure tree decays (no color-suppressed nor penguin contributions)
- NNLO predictions in QCDF Huber, Kraenkl [1606.02888]
- Same form factors as for exclusive V_{cb}
- Updated and extended calculations give $\sim 4\sigma$ deviation Bordone, Gubernari, Huber, Jung and van Dyk, [2007.10338]

see also Cai, Deng, Li, Yang [2103.04138], Endo, Iguro, Mishima [2109.10811], Gershon, Lenz, Rusov, Skidmore [2111.04478]
Discrepancies between data and theory for $B_s \rightarrow D_s^{+} \pi^-$ and $B \rightarrow D^{+}(*) K^-$

- pure tree decays (no color-suppressed nor penguin contributions)
- NNLO predictions in QCDF Huber, Kraenkl [1606.02888]
- Same form factors as for exclusive V_{cb}
- Updated and extended calculations give $\sim 4\sigma$ deviation Bordone, Gubernari, Huber, Jung and van Dyk, [2007.10338]
- QED corrections cannot explain the tension* Beneke, Boer, Finauri, KKV [2107.03819]
- Possible NP explanations have been studied Iguro, Kitahara [2008.01086], Bordone, Grejlo, Marzocca [2103.10332]
- Also puzzling patterns in $B_s \rightarrow D_s K$ are revealed Fleischer, Malami [2110.04240]

Interesting puzzle that requires both experimental and theoretical attention!
The Challenge of QED Corrections
Electromagnetic Effects

\[\Gamma[\bar{B} \to M_1 M_2](\Delta E) \equiv \Gamma[\bar{B} \to M_1 M_2 + X_s]|_{E_{X_s} \leq \Delta E}, \]

- IR finite observable (width) must include ultra-soft photon radiation
- \(X_s \) are soft photons with total energy less than ultrasoft scale \(\Delta E \)
- Factorizes in non-radiative amplitude and ultrasoft function

\[\Gamma[\bar{B} \to M_1 M_2](\Delta E) = |A(\bar{B} \to M_1 M_2)|^2 \sum_{X_s} |\langle X_s |(\bar{S}^{(Q_B)} S_{v_1}^{(Q_{M_1})} S_{v_2}^{(Q_{M_2})})|0\rangle|^2 \theta(\Delta E - E_{X_s}) \]

Simple classification:

- Ultra-soft photons: eikonal approximation, well understood
 \[\Delta E \ll \Lambda_{QCD} \]
- NEW: Non-universal, structure dependent corrections Beneke, Boer, Toelstede, KKV [2020]
- Both effects important: virtual photons can resolve the structure of the meson!
\[\Gamma[\bar{B} \to M_1 M_2](\Delta E) \equiv \Gamma[\bar{B} \to M_1 M_2 + X_s]_{|E_{X_s} \leq \Delta E}, \]

- IR finite observable (width) must include \textit{ultra-soft photon} radiation
- \(X_s\) are soft photons with total energy less than \textit{ultrasoft scale} \(\Delta E\)
- Factorizes in \textit{non-radiative} amplitude and \textit{ultrasoft} function

\[\Gamma[\bar{B} \to M_1 M_2](\Delta E) = |A(\bar{B} \to M_1 M_2)|^2 \sum_{X_s} |\langle X_s | (\bar{S}_v^{(Q_B)} S_{v_1}^{(Q_{M_1})} S_{v_2}^{(Q_{M_2})}) |0 \rangle|^2 \theta(\Delta E - E_{X_s}) \]

\textbf{Simple classification:}

- Ultra-soft photons: eikonal approximation, well understood
 \[\Delta E \ll \Lambda_{QCD} \]

- Often done: Assume pointlike approximation up to the scale \(m_B\) \[Baracchini, Isidori\]
 \[\rightarrow\] fails to account for all large logarithms (and scales)!
 \[\rightarrow\] photons with energy \(\gtrsim \Lambda_{QCD}\) probe the partonic structure of the mesons
Ultrasoft Contribution

- Ultrasoft effects dress branching ratio

\[U(M_1 M_2) = \left(\frac{2\Delta E}{m_B} \right)^{-\frac{\alpha_{em}}{\pi}} \left(Q_B^2 + Q_{M_1}^2 \left[1 + \ln \frac{m_{M_1}}{m_{Bq}} \right] + Q_{M_2}^2 \left[1 + \ln \frac{m_{M_2}}{m_B} \right] \right) \]

- Recover the standard eikonal/QED factor Beneke, Boer, Toelstede, KKV [2020]

- \(\Delta E \) is the window of the \(\pi K \) invariant mass around \(m_B \)

- Theory requires \(\Delta E \ll \Lambda_{QCD} = 60 \text{ MeV} \)
• Ultrasoft contributions dress braching ratio

\[
U(M_1 M_2) = \left(\frac{2\Delta E}{m_B} \right)^{-\frac{\alpha_{em}}{\pi}} \left(Q_B^2 + Q_{M_1}^2 \left[1 + \ln \frac{m_{M_1}}{m_{Bq}} \right] + Q_{M_2}^2 \left[1 + \ln \frac{m_{M_2}}{m_B} \right] \right)
\]

• Recover the standard eikonal/QED factor Beneke, Boer, Toelstede, KKV [2020]

• \(\Delta E\) is the window of the \(\pi K\) invariant mass around \(m_B\)

• Theory requires \(\Delta E \ll \Lambda_{QCD} = 60\) MeV

• Large effects:
 \[\rightarrow U(\pi^+K^-) = 0.914, \ U(\pi^0K^-) = U(K^+\pi^0) = 0.976 \text{ and } U(\pi^-\bar{K}^0) = 0.954\]
Ultrasoft Contribution

- Ultrasoft effects dress branching ratio

\[U(M_1 M_2) = \left(\frac{2\Delta E}{m_B} \right)^{-\frac{\alpha_{em}}{\pi}} \left(\frac{Q_B^2 + Q_M^2}{1 + \ln \frac{m_{M_1}^2}{m_{Bq}^2}} + Q_{M_2}^2 \left[1 + \ln \frac{m_{M_2}^2}{m_B^2} \right] \right) \]

- Recover the standard eikonal/QED factor Beneke, Boer, Toelstede, KKV [2020]

- \(\Delta E \) is the window of the \(\pi K \) invariant mass around \(m_B \)

- Theory requires \(\Delta E \ll \Lambda_{QCD} = 60 \text{ MeV} \)

- Large effects:
 \(\rightarrow U(\pi^+ K^-) = 0.914, U(\pi^0 K^-) = U(K^- \pi^0) = 0.976 \) and \(U(\pi^- \bar{K}^0) = 0.954 \)

- Experimentally usoft effects included using PHOTOS

- Challenging to compare theory with experiment! In progress...
Solving Beautiful Puzzles
We are in the High-precision Era in Flavour Physics!
We are in the High-precision Era in Flavour Physics!

- Reached impressive precision
We are in the High-precision Era in Flavour Physics!

- Reached impressive precision
- Rethink our previous assumptions to reach eXtreme precision
- Many interesting puzzles still to be solved
We are in the High-precision Era in Flavour Physics!

- Reached impressive precision
- Rethink our previous assumptions to reach eXtreme precision
- Many interesting puzzles still to be solved
- Stay tuned for new data and updated theory predictions
We are in the High-precision Era in Flavour Physics!

- Reached impressive precision
- Rethink our previous assumptions to reach eXtreme precision
- Many interesting puzzles still to be solved
- Stay tuned for new data and updated theory predictions

Close collaboration between theory and experiment necessary!
Backup
Moments of the spectrum

- Tension between the slope of the lattice and experimental data
- Same form factors determine SM predictions for $R_{D(\ast)}$
- New experimental and lattice data needed!
• QED gives sub-percent corrections to Branching ratios
Beneficial to consider ratios in which QCD is suppressed

\[R_L = \frac{2 \text{Br}(\pi^0 K^0) + 2 \text{Br}(\pi^0 K^-)}{\text{Br}(\pi^- K^0) + \text{Br}(\pi^+ K^-)} = R_L^{\text{QCD}} + \cos \gamma \text{Re} \delta_E + \delta_U \]

new structure dependent QED corrections enter linearly, QCD only quadratically

\[\delta_E = (-1.12 + 0.16i) \cdot 10^{-3} \]
• Beneficial to consider ratios in which QCD is suppressed

\[R_L = \frac{2\text{Br}(\pi^0 K^0) + 2\text{Br}(\pi^0 K^-)}{\text{Br}(\pi^- K^0) + \text{Br}(\pi^+ K^-)} = R_L^{\text{QCD}} + \cos \gamma \text{Re } \delta_E + \delta_U \]

• New structure dependent QED corrections enter linearly, QCD only quadratically

\[\delta_E = (-1.12 + 0.16i) \cdot 10^{-3} \]

• Ultrasoft effects dominant

\[\delta_U \equiv \frac{1 + U(\pi^0 K^-)}{U(\pi^- \bar{K}^0) + U(\pi^+ K^-)} - 1 = 5.8\% \]
Ratios and isospin sumrules

- Beneficial to consider ratios in which QCD is suppressed

\[R_L = \frac{2\text{Br}(\pi^0 K^0) + 2\text{Br}(\pi^0 K^-)}{\text{Br}(\pi^- K^0) + \text{Br}(\pi^+ K^-)} = R_L^{\text{QCD}} + \cos \gamma \text{Re} \delta_E + \delta_U \]

- new structure dependent QED corrections enter linearly, QCD only quadratically

\[\delta_E = (-1.12 + 0.16i) \cdot 10^{-3} \]

- Ultrasoft effects dominant

\[\delta_U \equiv \frac{1 + U(\pi^0 K^-)}{U(\pi^- K^0) + U(\pi^+ K^-)} - 1 = 5.8\% \]

- Combined QED effect larger than QCD uncertainty!
Exclusive $B \rightarrow D^{(*)} \ell \bar{\nu}$

- Form factor required (only for $B \rightarrow D$ available at different kinematic points)
 - BGL: model independent based on unitarity and analyticity
 - CLN: Simple parametrization using HQE relations
- Some inconsistencies in the Belle data were pointed out see e.g. van Dyk, Jung, Bordone, Gubernari [2104.02094]

Inclusive $B \rightarrow X_c \ell \nu$

- Determined fully data driven including $1/m_b$ power corrections

Recently a lot of attention for the V_{cb} puzzle! Bigi, Schacht, Gambino, Jung, Straub, Bernlochner, Bordone, van Dyk, Gubernari

Stay tuned!
NP in the \(\tau \) sector

- Affects also inclusive \(B \to X_c \tau \nu \) Rusov, Mannel, Shahriaran [2017]
- Lepton and hadronic moments challenging to measure
- Recently moments of the five-body decay \(B \to X_c \tau(\to \mu \nu \nu) \nu \) investigated Mannel, Rahimi, KKV [2105.02163]
- Would also be influenced by NP [in progress]
- Specific NP scenarios from global fit Mandal, Murgui, Penuela, Pich [2004.06726]
Contribution from five-body charm decay to $b \rightarrow c \ell \nu$ via

\[B(p_B) \rightarrow X_c(p_X_c)(\tau(q_\tau)) \rightarrow \mu(q_\mu)\nu_\mu(q_\nu_\mu)\nu_\tau(q_\nu_\tau))\bar{\nu}_\tau(q_{\bar{\nu}_\tau}) \]

- Phase space suppressed:
 \[\frac{\Gamma_{\text{tot}}(b \rightarrow c \tau(\rightarrow \ell \bar{\nu}_\ell \nu_\tau))}{\Gamma_{\text{tot}}(b \rightarrow c \ell \bar{\nu})} \sim 4.0\% \]
- Experimentally effects diminished by cutting on the invariant mass of the B
- Can be calculated exactly in the HQE

\[\frac{d^8\Gamma}{dq^2 dq_{\nu_\tau}^2 dp_{X_c}^2 d\Omega d\Omega^* d\Omega^{**}} = - \frac{3G_F^2 |V_{cb}|^2 \sqrt{\lambda(q^2 - m_\tau^2)(m_\tau^2 - q_{\nu_\tau}^2)}B(\tau \rightarrow \mu\nu\nu)}{2^{17} \pi^5 m_\tau^8 m_b^3 q^2} W_{\mu\nu} L_{\mu\nu} \]

- $L_{\mu\nu}$ five-body leptonic tensor (narrow-width limit for τ)
- $W_{\mu\nu}$ standard hadronic tensor including HQE parameters

- Interesting to search for new physics! Mannel, Rusov, Shahriaran (2017); Mannel, Rahimi, KKV [in progress]
Shape functions

- Leading order shape functions

\[2m_B f(\omega) = \langle B(\nu) | \bar{b}_\nu \delta(\omega + i(n \cdot D)) b_\nu | B(\nu) \rangle \]

- Charged Lepton Energy Spectrum (at leading order)

\[\frac{d\Gamma}{dy} \sim \int d\omega \theta(m_b(1 - y) - \omega) f(\omega) \]

- Moments of the shape function are related to HQE \((b \to c) \) parameters:

\[f(\omega) = \delta(\omega) + \frac{\mu^2}{6m_b^2} \delta''(\omega) - \frac{\rho_D^3}{m_b^3} \delta'''(\omega) + \cdots \]

- Shape function is non-perturbative and cannot be computed
Shape functions

- Systematic framework: Soft Collinear Effective Theory (SCET)
- Separates the different scales in the problem

\[d\Gamma = H \otimes J \otimes S \]

\[\rightarrow H: \text{Hard scattering kernel at } \mathcal{O}(m_b) \]
\[\rightarrow J: \text{universal Jet function at } \mathcal{O}(\sqrt{m_b \Lambda_{QCD}}) \]
\[\rightarrow S: \text{Shape function at } \mathcal{O}(\Lambda_{QCD}) \]

- Framework to include radiative corrections (+ NNLL resummation)
- Introduces 3 subleading shape functions
Shape functions

- Systematic framework: Soft Collinear Effective Theory (SCET)
- Separates the different scales in the problem

\[d\Gamma = H \otimes J \otimes S \]

- \(H\): Hard scattering kernel at \(\mathcal{O}(m_b)\)
- \(J\): universal Jet function at \(\mathcal{O}(\sqrt{m_b\Lambda_{\text{QCD}}})\)
- \(S\): Shape function at \(\mathcal{O}(\Lambda_{\text{QCD}})\)

- Framework to include radiative corrections (+ NNLL resummation)
- Introduces 3 subleading shape functions

- Other approach: OPE with hard-cutoff \(\mu\) Gambino, Giordano, Ossola, Uraltsev
 - Use pert. theory above cutoff and parametrize the infrared
 - Different definition of the shape functions

- Shape functions have to be parametrized and obtained from data
• Too many to count: exclusive $B \to D^{(*)}$ in combination with

$$R_{D^{(*)}} = \frac{B \to D^{(*)}_{\tau\nu}}{B \to D^{(*)}_{\mu\nu}}$$

• For inclusive $b \to c$ less analyses
 - RH-current, scalar and tensor NP contributions to rate Jung, Straub [2018]
 - RH-current to moments Feger, Mannel, et. al. [2010]
 - NP for moments KKV, Fael, Rahimi [in progress]