Solving Beautiful Puzzles

K. Keri Vos

Maastricht University & Nikhef

Testing the Standard Model

Passed all tests up to 100 GeV

Testing the Standard Model

Energy/Direct

Precision/Indirect

Precision frontier

Tiny deviations from SM predictions constrain effects of New Physics

- Flavour symmetry broken by Yukawa couplings to the Higgs field
- Origin of mixing between families described by unitary CKM matrix
- Visualized by unitary triangles
- Dominant source of CP violation (antiparticle-particle asymmetry)

$$\begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

- Flavour symmetry broken by Yukawa couplings to the Higgs field
- Origin of mixing between families described by unitary CKM matrix
- Visualized by unitary triangles
- Dominant source of CP violation (antiparticle-particle asymmetry)

$$\begin{pmatrix} \mathbf{V}_{ud} & V_{us} & v_{ub} \\ V_{cd} & \mathbf{V}_{cs} & V_{cb} \\ v_{td} & V_{ts} & \mathbf{V}_{tb} \end{pmatrix}$$

Our understanding of Flavour is unsatisfactory

Thanks to Marcella Bona for providing the 2021 plots

$$ar{
ho} + iar{\eta} = -rac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*}$$

Thanks to Marcella Bona for providing the 2021 plots

$$\overline{ar{
ho}+iar{\eta}=-rac{V_{ud}V_{ub}^{*}}{V_{cd}V_{cb}^{*}}}$$

Huge amounts of data + theory advances = Precision frontier Tiny deviations from SM predictions constrain effects of New Physics

SM or beyond?

Challenge:

Disentangle SM long-distances effects from the effects of new interactions

SM or beyond?

Challenge:

Disentangle SM long-distances effects from the effects of new interactions

• Some anomalies already spotted

SM or beyond?

Challenge:

Disentangle SM long-distances effects from the effects of new interactions

- Some anomalies already spotted
- Revise previous assumptions: reliable theory uncertainties
- Look for the cleanest observables/methods

Puzzles in Flavour Physics

Puzzles in semileptonic decays

• Inclusive versus Exclusive

Disentangle SM long-dist

• V_{cb} and V_{ub}

Challenge:

• LFUV in R_D and R_{D*}

Puzzles in nonleptonic decays

- Missing CP violation
- $B \rightarrow \pi K$ puzzle

effects free contracts

• $B \rightarrow D\pi$ puzzle

 V_{cb}

ctions

Puzzles in semileptonic decays: V_{ub} and V_{cb}

Exclusive versus Inclusive Theory

• Theory (Weak interaction): Transitions between quarks/partons

Exclusive versus Inclusive Theory

Figure from Marzia Bordone

- Theory (Weak interaction): Transitions between quarks/partons
- Observation: Transitions between hadrons

Challenge:

- Dealing with QCD at large distances/small scales
- Parametrize fundamental mismatch in non-perturbative objects
 - Calculable: Lattice or Light-cone sumrules
 - Measurable: from data

Inclusive Decays

Inclusive $B \rightarrow X_c \ell \nu$: Heavy Quark Expansion (HQE)

- b quark mass is large compared to Λ_{QCD}
- Setting up the HQE: momentum of b quark: $p_b = m_b v + k$, expand in $k \sim iD$
- Optical Theorem \rightarrow (local) Operator Product Expansion (OPE)

$$d\Gamma = d\Gamma_0 + \frac{d\Gamma_1}{m_b} + \frac{d\Gamma_2}{m_b^2} + \dots \qquad d\Gamma_i = \sum_k C_i^{(k)} \left\langle B | O_i^{(k)} | B \right\rangle$$

- $C_i^{(k)}$ perturbative Wilson coefficients
- $\langle B | \dots | B
 angle$ non-perturbative matrix elements ightarrow string of iD
- operators contain chains of covariant derivatives

$$\langle B|\mathcal{O}_i^{(n)}|B\rangle = \langle B|\bar{b}_v(iD_\mu)\dots(iD_{\mu_n})b_v|B\rangle$$

 $\bullet\,$ HQE parameters extracted from lepton energy and hadronic mass moments

Decay rate

 Γ_i are power series in $\mathcal{O}(\alpha_s)$

$$\Gamma = \Gamma_0 + \frac{1}{m_b}\Gamma_1 + \frac{1}{m_b^2}\Gamma_2 + \frac{1}{m_b^3}\Gamma_3 \cdots$$

- Γ_0 : decay of the free quark (partonic contributions), $\Gamma_1 = 0$
- Γ_2 : μ_π^2 kinetic term and the μ_G^2 chromomagnetic moment

$$2M_{B}\mu_{\pi}^{2} = -\langle B|\bar{b}_{v}iD_{\mu}iD^{\mu}b_{v}|B\rangle$$

$$2M_{B}\mu_{G}^{2} = \langle B|\bar{b}_{v}(-i\sigma^{\mu\nu})iD_{\mu}iD_{\nu}b_{v}|B\rangle$$

• Γ_3 : ρ_D^3 Darwin term and ρ_{LS}^3 spin-orbit term

$$2M_{B}\rho_{D}^{3} = \frac{1}{2} \left\langle B|\bar{b}_{v}\left[iD_{\mu},\left[ivD,iD^{\mu}\right]\right]b_{v}|B\right\rangle$$
$$2M_{B}\rho_{LS}^{3} = \frac{1}{2} \left\langle B|\bar{b}_{v}\left\{iD_{\mu},\left[ivD,iD_{\nu}\right]\right\}(-i\sigma^{\mu\nu})b_{v}|B\right\rangle$$

- Γ₄: 9 parameters Mannel, Turczyk, Uraltsev, JHEP 1010 (2011) 109
- Γ₅: 18 parameters Mannel, Turczyk, Uraltsev, JHEP 1010 (2011) 109

Moments of the spectrum

BABAR, PRD 68 (2004) 111104; BABAR, PRD 81 (2010) 032003; Belle, PRD 75 (2007) 032005

Non-perturbative matrix elements obtained from moments of differential rate

Charged lepton energy

Hadronic invariant mass

c

$$\langle E^n \rangle_{\rm cut} = \frac{\int_{E_{\ell} > E_{\rm cut}} dE_{\ell} E_{\ell}^n \frac{d\Gamma}{dE_{\ell}}}{\int_{E_{\ell} > E_{\rm cut}} dE_{\ell} \frac{d\Gamma}{dE_{\ell}}} \qquad \left\langle (M_X^2)^n \right\rangle_{\rm cut} = \frac{\int_{E_{\ell} > E_{\rm cut}} dM_X^2 (M_X^2)^n \frac{dM_X^2}{dM_X^2}}{\int_{E_{\ell} > E_{\rm cut}} dM_X^2 \frac{d\Gamma}{dM_X^2}}$$

$$R^*(E_{\rm cut}) = \frac{\int_{E_{\ell} > E_{\rm cut}} dE_{\ell} \frac{d\Gamma}{dE_{\ell}}}{\int_0 dE_{\ell} \frac{d\Gamma}{dE_{\ell}}}$$

- Moments up to n = 3, 4 and with several energy cuts available
- Experimentally necessary to use lepton energy cut

1. 2 (. 2) n dE

State-of-the-art in inclusive $b \rightarrow c$

Jezabek, Kuhn, NPB 314 (1989) 1; Melnikov, PLB 666 (2008) 336; Pak, Czarnecki, PRD 78 (2008) 114015; Becher, Boos, Lunghi, JHEP 0712 (2007) 062; Alberti, Gambino, Nandi, JHEP 1401 (2014) 147; Mannel, Pivovarov, Rosenthal, PLB 741 (2015) 290; Fael, Schonwald, Steinhauser, Phys Rev. D 104 (2021) 016003; Fael, Schonwald, Steinhauser, Phys Rev. Lett. 125 (2020) 052003; Fael, Schonwald, Steinhauser, Phys Rev. D 103 (2021) 014005,

$$\Gamma \propto |V_{cb}|^2 m_b^5 \left[\Gamma_0 + \Gamma_0^{(1)} \frac{\alpha_s}{\pi} + \Gamma_0^{(2)} \left(\frac{\alpha_s}{\pi}\right)^2 + \Gamma_0^{(3)} \left(\frac{\alpha_s}{\pi}\right)^3 + \frac{\mu_{\pi}^2}{m_b^2} \left(\Gamma^{(\pi,0)} + \frac{\alpha_s}{\pi} \Gamma^{(\pi,1)}\right) \right. \\ \left. + \frac{\mu_G^2}{m_b^2} \left(\Gamma^{(G,0)} + \frac{\alpha_s}{\pi} \Gamma^{(G,1)}\right) + \frac{\rho_D^3}{m_b^3} (\Gamma^{(D,0)} + \Gamma_0^{(1)} \left(\frac{\alpha_s}{\pi}\right)) + \mathcal{O}\left(\frac{1}{m_b^4}\right) + \cdots \right)$$

- Include terms up to $1/m_b^{3st}$ see also Gambino, Healey, Turczyk [2016]
- Recent progress: α_s^3 to total rate and kinetic mass Fael, Schonwald, Steinhauser [2020, 2021]
- Recent progress: $\alpha_s
 ho_D^3$ for total rate Mannel, Pivovarov [2020]
- Includes all known α_s, α_s^2 and α_s^3 corrections!

Recent update:

$$|V_{cb}|_{
m incl} = (42.16 \pm 0.51) imes 10^{-3}$$

Gambino, Schwanda, PRD 89 (2014) 014022; Alberti, Gambino et al, PRL 114 (2015) 061802; Bordone, Capdevila, Gambino, Phys.Lett.B 822 (2021) 136679

Towards the ultimate precision in inclusive V_{cb}

$$\Gamma \propto |V_{cb}|^2 m_b^5 \left[\Gamma_0 + \Gamma_0^{(1)} \frac{\alpha_s}{\pi} + \Gamma_0^{(2)} \left(\frac{\alpha_s}{\pi} \right)^2 + \Gamma_0^{(3)} \left(\frac{\alpha_s}{\pi} \right)^3 + \frac{\mu_\pi^2}{m_b^2} \left(\Gamma^{(\pi,0)} + \frac{\alpha_s}{\pi} \Gamma^{(\pi,1)} \right) \right. \\ \left. + \frac{\mu_G^2}{m_b^2} \left(\Gamma^{(G,0)} + \frac{\alpha_s}{\pi} \Gamma^{(G,1)} \right) + \frac{\rho_D^3}{m_b^3} (\Gamma^{(D,0)} + \Gamma_0^{(1)} \left(\frac{\alpha_s}{\pi} \right)) + \mathcal{O}\left(\frac{1}{m_b^4} \right) + \cdots \right)$$

Challenge:

- Include higher-order $1/m_b$ and $lpha_s$ corrections
- Proliferation of non-perturbative matrix elements
 - 4 up to $1/m_b^3$
 - 13 up to $1/m_b^4$ Dassinger, Mannel, Turczyk, JHEP 0703 (2007) 087
 - 31 up to $1/m_b^5$ Mannel, Turczyk, Uraltsev, JHEP 1011 (2010) 109

Alternative V_{cb} determination

Mannel, KKV, JHEP 1806 (2018) 115; Fael, Mannel, KKV, JHEP 02 (2019) 177

- Setting up the HQE: momentum of b quark: $p_b = m_b v + k$, expand in $k \sim iD$
- Choice of v not unique: Reparametrization invariance (RPI)
 - links different orders in $1/m_b
 ightarrow$ reduction of parameters
 - up to $1/m_b^4$: 8 parameters (previous 13)

 $\delta_{RP} v_{\mu} = \delta v_{\mu}$ and $\delta_{RP} i D_{\mu} = -m_b \delta v_{\mu}$

Alternative V_{cb} determination

Mannel, KKV, JHEP 1806 (2018) 115; Fael, Mannel, KKV, JHEP 02 (2019) 177

- Setting up the HQE: momentum of b quark: $p_b = m_b v + k$, expand in $k \sim iD$
- Choice of v not unique: Reparametrization invariance (RPI)
 - links different orders in $1/m_b
 ightarrow$ reduction of parameters
 - up to $1/m_b^4$: 8 parameters (previous 13)

 $\delta_{RP} v_{\mu} = \delta v_{\mu}$ and $\delta_{RP} iD_{\mu} = -m_b \delta v_{\mu}$

• Caveat: standard lepton energy and hadronic mass moments are not RPI quantities

Alternative V_{cb} determination

Mannel, KKV, JHEP 1806 (2018) 115; Fael, Mannel, KKV, JHEP 02 (2019) 177

- Setting up the HQE: momentum of b quark: $p_b = m_b v + k$, expand in $k \sim iD$
- Choice of v not unique: Reparametrization invariance (RPI)
 - links different orders in $1/m_b
 ightarrow$ reduction of parameters
 - up to $1/m_b^4$: 8 parameters (previous 13)

$$\delta_{RP} v_{\mu} = \delta v_{\mu}$$
 and $\delta_{RP} iD_{\mu} = -m_b \delta v_{\mu}$

- Caveat: standard lepton energy and hadronic mass moments are not RPI quantities
- Alternative determination using only RPI q^2 moments including $1/m_b^4$
- Recent progress: First measurement of q² moments Belle [2109.01685], Belle II [2205.06372]

Belle Collaboration [2109.01685, 2105.08001]

Centralized moments as function of $q_{\rm cut}^2$

New V_{cb} Determination

Bernlochner, Welsch, Fael, Olschewsky, Persson, van Tonder, KKV [2205.10274]

New V_{cb} determination

Bernlochner, Welsch, Fael, Olschewsky, Persson, van Tonder, KKV [2205.10274]

$$V_{cb} = (41.69 \pm 0.63) \cdot 10^{-3}$$

- Independent cross check of previous determinations
 - Agreement at $1-2\sigma$ level
 - Difference due to input on branching ratio \rightarrow Need new measurements!

New V_{cb} determination

Bernlochner, Welsch, Fael, Olschewsky, Persson, van Tonder, KKV [2205.10274]

$$V_{cb} = (41.69 \pm 0.63) \cdot 10^{-3}$$

- · Independent cross check of previous determinations
 - Agreement at $1-2\sigma$ level
 - Difference due to input on branching ratio \rightarrow Need new measurements!
- First pure data extraction of $1/m_b^4$ terms
- Important to check convergence of the HQE

$$r_E^4 = (0.02 \pm 0.34) \cdot 10^{-1} \text{GeV}^4$$
 $r_G^4 = (-0.21 \pm 0.69) \text{GeV}^4$

New V_{cb} determination

Bernlochner, Welsch, Fael, Olschewsky, Persson, van Tonder, KKV [2205.10274]

$$V_{cb} = (41.69 \pm 0.63) \cdot 10^{-3}$$

- · Independent cross check of previous determinations
 - Agreement at $1-2\sigma$ level
 - Difference due to input on branching ratio \rightarrow Need new measurements!
- First pure data extraction of $1/m_b^4$ terms
- Important to check convergence of the HQE

$$r_E^4 = (0.02 \pm 0.34) \cdot 10^{-1} \text{GeV}^4$$
 $r_G^4 = (-0.21 \pm 0.69) \text{GeV}^4$

• Inputs for calculations of $B \to X_u \ell \nu$, B lifetimes and $B \to X_s \ell \ell$

Exclusive V_{cb}

$B \rightarrow D$ and $B \rightarrow D^*$

- Form factors extracted from lattice, LC sumrules (+data)
- Knowledge on the q^2 dependence crucial
- $\bullet~BGL$ Boyd, Grinstein,Lebed or CLN/HQE Caprini, Lellouch, Neubert parametrization
 - Start of many discussions Gambino, Jung, Schacht, Bordone, van Dyck, Gubernari, ...
 - BGL: model independent parametrization using analyticity
 - CLN*: uses HQE at $1/m_b$ + assumptions *justified at time of introduction
- Improved HQE treatment including $1/m_c^2$ corrections Bordone, van Dyk, Jung [1908.09398]

$$|V_{cb}|_{\text{excl}} = (40.3 \pm 0.8) \times 10^{-3}$$

$B \rightarrow D$ and $B \rightarrow D^*$

- Form factors extracted from lattice, LC sumrules (+data)
- Knowledge on the q^2 dependence crucial
- $\bullet~BGL$ Boyd, Grinstein,Lebed or CLN/HQE Caprini, Lellouch, Neubert parametrization
 - Start of many discussions Gambino, Jung, Schacht, Bordone, van Dyck, Gubernari, ...
 - BGL: model independent parametrization using analyticity
 - CLN*: uses HQE at $1/m_b$ + assumptions *justified at time of introduction
- Improved HQE treatment including $1/m_c^2$ corrections Bordone, van Dyk, Jung [1908.09398]

$$|V_{cb}|_{\text{excl}} = (40.3 \pm 0.8) \times 10^{-3}$$

- Recent progress: $B \rightarrow D^*$ form factors at nonzero recoil Fermilab/MILC [2105.14019]
 - tension between the slope of the lattice and experimental data
- Same form factors determine SM predictions for $R_{D^{(*)}}$
- New experimental and lattice data needed!

The challenge of V_{ub}

Exclusive $B \to \pi \ell \nu$

- Only one form factor
- Combining Lattice QCD [FNAL/MILC, RBC/UKQCD] and QCD sum rules

 $\begin{array}{l} \label{eq:excellength} & \text{Recent update:} \\ \text{Leljak, Melic, van Dyk [2102.07233]} \\ |V_{ub}|_{\text{excl}} = (3.77 \pm 0.15) \cdot 10^{-3} \end{array}$

The challenge of V_{ub}

Exclusive $B \to \pi \ell \nu$

- Only one form factor
- Combining Lattice QCD [FNAL/MILC, RBC/UKQCD] and QCD sum rules

 $\begin{array}{l} \label{eq:constraint} \begin{array}{l} \mbox{Recent update:} \\ \mbox{Leljak, Melic, van Dyk [2102.07233]} \\ \mbox{|} V_{ub} \mbox{|}_{excl} = (3.77 \pm 0.15) \cdot 10^{-3} \end{array}$

Inclusive $B \to X_u \ell \nu$

- Experimental cuts necessary to remove charm background
- Local OPE as in $b \rightarrow c$ cannot work
- Switch to different set-up using light-cone OPE
- Introduce non-perturbative shape functions (\sim parton DAs in DIS)
- Different frameworks: BLNP, GGOU, DGE, ADFR

Recent update:

Belle [2102.00020]

 $|V_{ub}|_{incl} = (4.10 \pm 0.28) \cdot 10^{-3}$

Bosch, Lange, Neubert, Paz [2005] Greub, Neubert, Pecjak [0909.1609]; Beneke, Huber, Li [0810.1230]; Becher, Neubert [2005]

Update of BLNP approach

- Systematic framework: Soft Collinear Effective Theory (SCET)
- Separates the different scales in the problem
- In progress: include known α_s^2 corrections
- Moments of shape functions can be linked to HQE parameters in b
 ightarrow c
 - In progress: include higher-moments
 - kinetic mass scheme as in b
 ightarrow c
- Shape function is non-perturbative and cannot be computed
 - In progress: new flexible parametrization

Bosch, Lange, Neubert, Paz [2005] Greub, Neubert, Pecjak [0909.1609]; Beneke, Huber, Li [0810.1230]; Becher, Neubert [2005]

Update of BLNP approach

- Systematic framework: Soft Collinear Effective Theory (SCET)
- Separates the different scales in the problem
- In progress: include known α_s^2 corrections
- Moments of shape functions can be linked to HQE parameters in b
 ightarrow c
 - In progress: include higher-moments
 - kinetic mass scheme as in b
 ightarrow c
- Shape function is non-perturbative and cannot be computed
 - In progress: new flexible parametrization

In progress:

Gunawardana, Lange, Mannel, Paz, Olschewsky, KKV [in progress] $|V_{ub}|_{incl} = Stay Tuned!$

Inclusive versus Exclusive semileptonic decays

• Recently a lot of attention for the V_{cb} puzzle! [Bigi, Schacht, Gambino, Jung, Straub, Bernlochner, Bordone, van Dyk, Gubernari]

Inclusive versus Exclusive semileptonic decays

- Recently a lot of attention for the V_{cb} puzzle! [Bigi, Schacht, Gambino, Jung, Straub, Bernlochner, Bordone, van Dyk, Gubernari]
- Recent progress: $B_s
 ightarrow K \mu
 u$ [LHCb [2012.05143], Khodjamirian, Rusov [2017]]
- Unlikely to be due to NP Jung, Straub [2018]
- New data necessary: stay tuned!

New Physics?

Rahimi, Fael, Vos [2208.04282]

- NP would also influence the moments of the spectrum
- Requires a simultaneous fit of hadronic parameters and NP In progress.
Puzzles in nonleptonic decays

The challenge of nonleptonic *B* decays

- Nonleptonic decays are important probes of CP violation
 - Direct CP violation due to different strong and weak phases
 - Mixing-induced CP violation in neutral decays probe mixing phase $\phi_{d,s}$
 - Sensitivity to NP in loops (penguins)
- CP violation in the SM is too small and peculiar!
 - CKM CP violating effects only from flavour changing currents
 - Flavour diagonal CP violation tiny in SM (EDMs)
 - Large CP asymmetries with processes with tiny BRs and vice versa

The challenge of nonleptonic *B* decays

- Nonleptonic decays are important probes of CP violation
 - Direct CP violation due to different strong and weak phases
 - Mixing-induced CP violation in neutral decays probe mixing phase $\phi_{d,s}$
 - Sensitivity to NP in loops (penguins)
- CP violation in the SM is too small and peculiar!
 - CKM CP violating effects only from flavour changing currents
 - Flavour diagonal CP violation tiny in SM (EDMs)
 - Large CP asymmetries with processes with tiny BRs and vice versa

Challenge: Calculation of Hadronic matrix elements

How to handle nonleptonic B decays?

QCD Factorization Beneke, Buchalla, Neubert, Sachrajda

- Disentangle perturbative (calculable) and non-perturbative dynamics using HQE
- Systematic expansion in $lpha_s$ and $1/m_b$ (studied up to $lpha_s^2$) Bell, Beneke, Huber, Li

$$\langle \pi^+\pi^-|\mathcal{Q}_i|B
angle=T_i^I\otimes \textit{F}^{B
ightarrow\pi^+}\otimes \Phi_{\pi^-}+T_i^{II}\otimes \Phi_{\pi^-}\otimes \Phi_{\pi^+}\otimes \Phi_B$$

- Non-perturbative form factors and LCDAs
 - from data, lattice or Light-Cone Sum Rules
- No systematic framework to compute power corrections (yet?)
- Strong phases suffer from large uncertainties
- Theoretical challenge: reliable computations of observables
- Include QED corrections Beneke, Boer, Toelstede, KKV [2020]

How to handle nonleptonic B decays?

QCD Factorization Beneke, Buchalla, Neubert, Sachrajda

- Disentangle perturbative (calculable) and non-perturbative dynamics using HQE
- Include QED corrections Beneke, Boer, Toelstede, KKV [2020]

Flavour symmetries (Isospin or SU(3))

- Many studies e.g. Fleischer, Jaarsma, KKV, Malami [2017,2018]
- Recent progress: Global SU(3) fit to $B \rightarrow PP$ decays Huber, Tetlalmatzi-Xolocotzi [2111.06418]

$B \rightarrow \pi K$ puzzle

The $B ightarrow K\pi$ Puzzle

e.g. Buras, Fleischer, Recksiegel, Schwab [2004, 2007];Fleischer, Jaeger, Pirjol, Zupan [2008] Neubert, Rosner [1998]; Beaudry, Datta, London, Rashed, Roux [2018]; Fleischer, Jaarsma, KKV [2018]

(Longstanding) Puzzling patterns in $B
ightarrow \pi K$ data

• Penguin dominated; Electroweak penguins contribute at same level as tree!

$$\delta(\pi K) \equiv A_{\rm CP}(\pi^0 K^-) - A_{\rm CP}(\pi^+ K^-)$$

- Recent LHCb measurement for $A_{\rm CP}(K^-\pi^0)$ LHCb Collaboration, PRL 126, 091802 [2021]
- Confirms and enhances the observed difference
 - $\delta(\pi K)^{\exp} = (11.5 \pm 1.4)\%$
 - 8σ from 0

The $B ightarrow K\pi$ Puzzle

e.g. Buras, Fleischer, Recksiegel, Schwab [2004, 2007];Fleischer, Jaeger, Pirjol, Zupan [2008] Neubert, Rosner [1998]; Beaudry, Datta, London, Rashed, Roux [2018]; Fleischer, Jaarsma, KKV [2018]

(Longstanding) Puzzling patterns in $B
ightarrow \pi K$ data

• Penguin dominated; Electroweak penguins contribute at same level as tree!

$$\delta(\pi K) \equiv A_{\rm CP}(\pi^0 K^-) - A_{\rm CP}(\pi^+ K^-)$$

- Recent LHCb measurement for $A_{\rm CP}(K^-\pi^0)$ LHCb Collaboration, PRL 126, 091802 [2021]
- Confirms and enhances the observed difference
 - $\delta(\pi K)^{\exp} = (11.5 \pm 1.4)\%$
 - 8σ from 0
- Not clean!
 - color-suppressed tree contributes
 - $\delta(\pi {\cal K})^{
 m QCDF} = (2.1^{+2.8}_{-4.6})\%$ [Bell, Beneke, Huber, Li]
 - or via SU(3) [Fleischer, Jaarsma, Malami, KKV [2018]]

The $B ightarrow K\pi$ Puzzle

e.g. Buras, Fleischer, Recksiegel, Schwab [2004, 2007];Fleischer, Jaeger, Pirjol, Zupan [2008] Neubert, Rosner [1998]; Beaudry, Datta, London, Rashed, Roux [2018]; Fleischer, Jaarsma, KKV [2018]

(Longstanding) Puzzling patterns in $B \rightarrow \pi K$ data

• Penguin dominated; Electroweak penguins contribute at same level as tree!

$$\delta(\pi K) \equiv A_{\rm CP}(\pi^0 K^-) - A_{\rm CP}(\pi^+ K^-)$$

- Recent LHCb measurement for $A_{\rm CP}(K^-\pi^0)$ LHCb Collaboration, PRL 126, 091802 [2021]
- Confirms and enhances the observed difference
 - $\delta(\pi K)^{\exp} = (11.5 \pm 1.4)\%$
 - 8σ from 0
- Not clean!
 - color-suppressed tree contributes
 - $\delta(\pi {\cal K})^{
 m QCDF} = (2.1^{+2.8}_{-4.6})\%$ [Bell, Beneke, Huber, Li]
 - or via SU(3) [Fleischer, Jaarsma, Malami, KKV [2018]]
- Hint for NP in the EWP sector?

e.g. Gronau [2005]; Gronau, Rosner [2006]

$$\begin{split} \Delta(\pi K) &\equiv A_{\rm CP}(\pi^+ K^-) + \frac{\Gamma(\pi^- \bar{K}^0)}{\Gamma(\pi^+ K^-)} A_{\rm CP}(\pi^- \bar{K}^0) - \frac{2\Gamma(\pi^0 K^-)}{\Gamma(\pi^+ K^-)} A_{\rm CP}(\pi^0 K^-) \\ &- \frac{2\Gamma(\pi^0 \bar{K}^0)}{\Gamma(\pi^+ K^-)} A_{\rm CP}(\pi^0 \bar{K}^0) \equiv \Delta(\pi K)^{\rm QCD} + \delta \Delta(\pi K) \end{split}$$

- Sensitive to new physics effects: $\Delta(\pi {\cal K})^{
 m QCD}=(0.5\pm 1.1)\%$ [Bell, Beneke, Huber, Li]
- QED effects: $\delta\Delta(\pi K) = -0.42\%$ [Beneke, Boer, Toelstede, KKV [2020]]
- Isospin sumrule also robust against QED effects!

e.g. Gronau [2005]; Gronau, Rosner [2006]

$$\begin{split} \Delta(\pi K) &\equiv A_{\rm CP}(\pi^+ K^-) + \frac{\Gamma(\pi^- \bar{K}^0)}{\Gamma(\pi^+ K^-)} A_{\rm CP}(\pi^- \bar{K}^0) - \frac{2\Gamma(\pi^0 K^-)}{\Gamma(\pi^+ K^-)} A_{\rm CP}(\pi^0 K^-) \\ &- \frac{2\Gamma(\pi^0 \bar{K}^0)}{\Gamma(\pi^+ K^-)} A_{\rm CP}(\pi^0 \bar{K}^0) \equiv \Delta(\pi K)^{\rm QCD} + \delta \Delta(\pi K) \end{split}$$

- Sensitive to new physics effects: $\Delta(\pi {\cal K})^{
 m QCD}=(0.5\pm 1.1)\%$ [Bell, Beneke, Huber, Li]
- QED effects: $\delta\Delta(\pi K) = -0.42\%$ [Beneke, Boer, Toelstede, KKV [2020]]
- Isospin sumrule also robust against QED effects!
- Updates of modes with neutral pions necessary \rightarrow Belle II

e.g. Gronau [2005]; Gronau, Rosner [2006]

$$\begin{split} \Delta(\pi K) &\equiv A_{\rm CP}(\pi^+ K^-) + \frac{\Gamma(\pi^- \bar{K}^0)}{\Gamma(\pi^+ K^-)} A_{\rm CP}(\pi^- \bar{K}^0) - \frac{2\Gamma(\pi^0 K^-)}{\Gamma(\pi^+ K^-)} A_{\rm CP}(\pi^0 K^-) \\ &- \frac{2\Gamma(\pi^0 \bar{K}^0)}{\Gamma(\pi^+ K^-)} A_{\rm CP}(\pi^0 \bar{K}^0) \equiv \Delta(\pi K)^{\rm QCD} + \delta \Delta(\pi K) \end{split}$$

- Sensitive to new physics effects: $\Delta(\pi {\cal K})^{
 m QCD}=(0.5\pm 1.1)\%$ [Bell, Beneke, Huber, Li]
- QED effects: $\delta\Delta(\pi K) = -0.42\%$ [Beneke, Boer, Toelstede, KKV [2020]]
- Isospin sumrule also robust against QED effects!
- Updates of modes with neutral pions necessary \rightarrow Belle II
- Mixing-induced CP asymmetry in $B \to \pi^0 K^0$ provides additional test Fleischer, Jaarsma, Malami, KKV [2016,2018]

$B ightarrow D\pi$ puzzle

$B^0_s o D^+_s \pi$ and $B^0_d o D^+ K^-$ puzzle

see also Cai, Deng, Li, Yang [2103.04138], Endo, Iguro, Mishima [2109.10811], Gershon, Lenz, Rusov, Skidmore [2111.04478]

Discrepancies between data and theory for $B_s o D_s^{+(*)}\pi^-$ and $B o D^{+(*)}K^-$

- pure tree decays (no color-suppressed nor penguin contributions)
- NNLO predictions in QCDF Huber, Kraenkl [1606.02888]
- Same form factors as for exclusive V_{cb}
- Updated and extended calculations give $\sim 4\sigma$ deviation Bordone, Gubernari, Huber, Jung and van Dyk, [2007.10338]

$B^0_s o D^+_s \pi$ and $B^0_d o D^+ K^-$ puzzle

see also Cai, Deng, Li, Yang [2103.04138], Endo, Iguro, Mishima [2109.10811], Gershon, Lenz, Rusov, Skidmore [2111.04478]

Discrepancies between data and theory for $B_s o D_s^{+(*)}\pi^-$ and $B o D^{+(*)}K^-$

- pure tree decays (no color-suppressed nor penguin contributions)
- NNLO predictions in QCDF Huber, Kraenkl [1606.02888]
- Same form factors as for exclusive V_{cb}
- Updated and extended calculations give $\sim4\sigma$ deviation <code>Bordone, Gubernari, Huber, Jung and van Dyk, [2007.10338]</code>
- QED corrections cannot explain the tension* Beneke, Boer, Finauri, KKV [2107.03819]
- Possible NP explanations have been studied Iguro, Kitahara [2008.01086], Bordone, Greljo, Marzocca [2103.10332]
- Also puzzling patterns in $B_s \rightarrow D_s K$ are revealed Fleischer, Malami [2110.04240]

Interesting puzzle that requires both experimental and theoretical attention!

The Challenge of QED Corrections

Electromagnetic Effects

Beneke, Boer, Toelstede, KKV, JHEP 11 (2020) 081 [2008.10615]

$$\Gamma[\bar{B} \to M_1 M_2](\Delta E) \equiv \Gamma[\bar{B} \to M_1 M_2 + X_s] \big|_{E_{X_s} \leq \Delta E} \,,$$

- IR finite observable (width) must include ultra-soft photon radiation
- X_s are soft photons with total energy less than ultrasoft scale ΔE
- Factorizes in non-radiative amplitude and ultrasoft function

$$\Gamma[\bar{B} \to M_1 M_2](\Delta E) = |\mathcal{A}(\bar{B} \to M_1 M_2)|^2 \sum_{X_s} |\langle X_s | (\bar{S}_{v_B}^{(Q_B)} S_{v_1}^{\dagger(Q_{M_1})} S_{v_2}^{\dagger(Q_{M_2})}) | 0 \rangle|^2 \theta(\Delta E - E_{X_s})$$

Simple classification:

• Ultra-soft photons: eikonal approximation, well understood

$$\Delta E \ll \Lambda_{\rm QCD}$$

- NEW: Non-universal, structure dependent corrections Beneke, Boer, Toelstede, KKV [2020]
- Both effects important: virtual photons can resolve the structure of the meson!

Electromagnetic Effects

Beneke, Boer, Toelstede, KKV, JHEP 11 (2020) 081 [2008.10615]

$$\Gamma[ar{B}
ightarrow M_1 M_2](\Delta E) \equiv \Gamma[ar{B}
ightarrow M_1 M_2 + X_s] \big|_{E_{X_s} \leq \Delta E}$$

- IR finite observable (width) must include ultra-soft photon radiation
- X_s are soft photons with total energy less than ultrasoft scale ΔE
- Factorizes in non-radiative amplitude and ultrasoft function

$$\Gamma[\bar{B} \to M_1 M_2](\Delta E) = |\mathcal{A}(\bar{B} \to M_1 M_2)|^2 \sum_{X_s} |\langle X_s | (\bar{S}_v^{(Q_B)} S_{v_1}^{\dagger(Q_{M_1})} S_{v_2}^{\dagger(Q_{M_2})}) | 0 \rangle|^2 \, \theta(\Delta E - E_{X_s})$$

Simple classification:

• Ultra-soft photons: eikonal approximation, well understood

$$\Delta E \ll \Lambda_{
m QCD}$$

- Often done: Assume pointlike approximation up to the scale m_B [Baracchini, Isidori]
 - \rightarrow fails to account for all large logarithms (and scales)!
 - $\rightarrow~$ photons with energy $\gtrsim \Lambda_{\rm QCD}$ probe the partonic structure of the mesons

Ultrasoft Contribution

• Ultrasoft effects dress braching ratio

$$U(M_1M_2) = \left(\frac{2\Delta E}{m_B}\right)^{-\frac{\alpha_{\rm em}}{\pi} \left(Q_B^2 + Q_{M_1}^2 \left[1 + \ln \frac{m_{M_1}^2}{m_{B_q}^2}\right] + Q_{M_2}^2 \left[1 + \ln \frac{m_{M_2}^2}{m_B^2}\right]\right)}$$

- Recover the standard eikonal/QED factor Beneke, Boer, Toelstede, KKV [2020]
- ΔE is the window of the πK invariant mass around m_B
- Theory requires $\Delta E \ll \Lambda_{\rm QCD} = 60 \text{ MeV}$

Ultrasoft Contribution

• Ultrasoft effects dress braching ratio

$$U(M_1M_2) = \left(\frac{2\Delta E}{m_B}\right)^{-\frac{\alpha_{em}}{\pi} \left(Q_B^2 + Q_{M_1}^2 \left[1 + \ln \frac{m_{M_1}^2}{m_{B_q}^2}\right] + Q_{M_2}^2 \left[1 + \ln \frac{m_{M_2}^2}{m_B^2}\right]\right)}$$

- Recover the standard eikonal/QED factor Beneke, Boer, Toelstede, KKV [2020]
- ΔE is the window of the πK invariant mass around m_B
- Theory requires $\Delta E \ll \Lambda_{\rm QCD} = 60 \mbox{ MeV}$
- Large effects:

$$\rightarrow U(\pi^+K^-) = 0.914, U(\pi^0K^-) = U(K^-\pi^0) = 0.976 \text{ and } U(\pi^-\bar{K}^0) = 0.954$$

Ultrasoft Contribution

• Ultrasoft effects dress braching ratio

$$U(M_1M_2) = \left(\frac{2\Delta E}{m_B}\right)^{-\frac{\alpha_{em}}{\pi} \left(Q_B^2 + Q_{M_1}^2 \left[1 + \ln \frac{m_{M_1}^2}{m_{B_q}^2}\right] + Q_{M_2}^2 \left[1 + \ln \frac{m_{M_2}^2}{m_B^2}\right]\right)}$$

- Recover the standard eikonal/QED factor Beneke, Boer, Toelstede, KKV [2020]
- ΔE is the window of the πK invariant mass around m_B
- Theory requires $\Delta E \ll \Lambda_{\rm QCD} = 60 \, \text{MeV}$
- Large effects:

 $\rightarrow~U(\pi^+K^-)=0.914, U(\pi^0K^-)=U(K^-\pi^0)=0.976$ and $U(\pi^-ar{K}^0)=0.954$

- Experimentally usoft effects included using PHOTOS
- Challenging to compare theory with experiment! In progress...

We are in the High-precision Era in Flavour Physics!

We are in the High-precision Era in Flavour Physics!

• Reached impressive precision

We are in the High-precision Era in Flavour Physics!

- Reached impressive precision
- Rethink our previous assumptions to reach eXtreme precision
- Many interesting puzzles still to be solved

We are in the High-precision Era in Flavour Physics!

- Reached impressive precision
- Rethink our previous assumptions to reach eXtreme precision
- Many interesting puzzles still to be solved
- Stay tuned for new data and updated theory predictions

We are in the High-precision Era in Flavour Physics!

- Reached impressive precision
- Rethink our previous assumptions to reach eXtreme precision
- Many interesting puzzles still to be solved
- Stay tuned for new data and updated theory predictions

Close collaboration between theory and experiment necessary!

Backup

Moments of the spectrum

Gambino, Schwanda Phys. Rev. D 89, 014022 (2014)

$B \rightarrow D^*$ form factors

Fermilab-MILC [2105.14019]

- Tension between the slope of the lattice and experimental data
- Same form factors determine SM predictions for $R_{D^{(*)}}$
- New experimental and lattice data needed!

Ratios and isospin sumrules

Beneke, Boer, Toelstede, KKV, JHEP 11 (2020) 081 [2008.10615]

• QED gives sub-percent corrections to Branching ratios

Beneke, Boer, Toelstede, KKV, JHEP 11 (2020) 081 [2008.10615]

• Beneficial to consider ratios in which QCD is suppressed

$$R_{L} = \frac{2\mathrm{Br}(\pi^{0}K^{0}) + 2\mathrm{Br}(\pi^{0}K^{-})}{\mathrm{Br}(\pi^{-}K^{0}) + \mathrm{Br}(\pi^{+}K^{-})} = R_{L}^{\mathrm{QCD}} + \cos\gamma\mathrm{Re}\,\delta_{\mathrm{E}} + \delta_{U}$$

• new structure dependent QED corrections enter linearly, QCD only quadratically

$$\delta_E = (-1.12 + 0.16i) \cdot 10^{-3}$$

Beneke, Boer, Toelstede, KKV, JHEP 11 (2020) 081 [2008.10615]

• Beneficial to consider ratios in which QCD is suppressed

$$R_{L} = \frac{2\mathrm{Br}(\pi^{0}K^{0}) + 2\mathrm{Br}(\pi^{0}K^{-})}{\mathrm{Br}(\pi^{-}K^{0}) + \mathrm{Br}(\pi^{+}K^{-})} = R_{L}^{\mathrm{QCD}} + \cos\gamma\mathrm{Re}\,\delta_{\mathrm{E}} + \delta_{U}$$

new structure dependent QED corrections enter linearly, QCD only quadratically

$$\delta_E = (-1.12 + 0.16i) \cdot 10^{-3}$$

• Ultrasoft effects dominant

$$\delta_U \equiv rac{1+U(\pi^0 K^-)}{U(\pi^- ar{K}^0)+U(\pi^+ K^-)} - 1 = 5.8\%$$

Beneke, Boer, Toelstede, KKV, JHEP 11 (2020) 081 [2008.10615]

• Beneficial to consider ratios in which QCD is suppressed

$$R_{L} = \frac{2\mathrm{Br}(\pi^{0}K^{0}) + 2\mathrm{Br}(\pi^{0}K^{-})}{\mathrm{Br}(\pi^{-}K^{0}) + \mathrm{Br}(\pi^{+}K^{-})} = R_{L}^{\mathrm{QCD}} + \cos\gamma\mathrm{Re}\,\delta_{\mathrm{E}} + \delta_{U}$$

new structure dependent QED corrections enter linearly, QCD only quadratically

$$\delta_E = (-1.12 + 0.16i) \cdot 10^{-3}$$

• Ultrasoft effects dominant

$$\delta_U \equiv \frac{1 + U(\pi^0 K^-)}{U(\pi^- \bar{K}^0) + U(\pi^+ K^-)} - 1 = 5.8\%$$

• Combined QED effect larger than QCD uncertainty!

Exclusive $B \to D^{(*)} \ell \bar{\nu}$

- Form factor required (only for $B \rightarrow D$ available at different kinematic points)
- Different parametrizations for form factors: CLN Caprini, Lellouch, Neubert [1997] and BGL Boyd, Grinstein, Lebed [1995]
 - BGL: model independent based on unitarity and analyticity
 - CLN: Simple parametrization using HQE relations
- Some inconsistencies in the Belle data were pointed out see e.g. van Dyk, Jung, Bordone, Gubernari [2104.02094]

Inclusive $B \to X_c \ell \nu$

• Determined fully data driven including $1/m_b$ power corrections

Recently a lot of attention for the V_{cb} puzzle! Bigi, Schacht, Gambino, Jung, Straub, Bernlochner, Bordone, van Dyk, Gubernari

Stay tuned!

Mannel, Rahimi, KKV [in progress]

<u>NP in the τ sector</u>

- Affects also inclusive $B
 ightarrow X_c au
 u$ Rusov, Mannel, Shahriaran [2017]
- Lepton and hadronic moments challenging to measure
- Recently moments of the five-body decay $B \rightarrow X_c \tau (\rightarrow \mu \nu \nu) \nu$ investigated Mannel, Rahimi, KKV [2105.02163]
- Would also be influenced by NP [in progress]
- Specific NP scenarios from global fit Mandal, Murgui, Penuela, Pich [2004.06726]

Preliminary!
Rahimi, Mannel, KKV JHEP 09 (2021) 051 [arXiv: 2105.02163];

Contribution from five-body charm decay to $b
ightarrow c \ell
u$ via

$$B(p_B) \to X_c(p_{X_c})(\tau(q_{[\tau]}) \to \mu(q_{[\mu]})\nu_{\mu}(q_{[\bar{\nu}_{\mu}]})\nu_{\tau}(q_{[\nu_{\tau}]}))\bar{\nu}_{\tau}(q_{[\bar{\nu}_{\tau}]})$$

• Phase space suppressed:

$$\frac{\Gamma_{\rm tot}(b \to c\tau(\to \ell \bar{\nu}_\ell \nu_\tau) \bar{\nu}_\tau)}{\Gamma_{\rm tot}(b \to c \ell \bar{\nu})} \sim 4.0\%$$

- Experimentally effects diminished by cutting on the invariant mass of the B
- Can be calculated exactly in the HQE

$$\frac{d^8 \Gamma}{dq^2 dq^2_{\nu\bar{\nu}} dp^2_{\chi_c} d^2 \Omega d\Omega^* d^2 \Omega^{**}} = -\frac{3G_F^2 |V_{cb}|^2 \sqrt{\lambda} (q^2 - m_{\tau}^2) (m_{\tau}^2 - q^2_{\nu\bar{\nu}}) \mathcal{B}(\tau \to \mu\nu\nu)}{2^{17} \pi^5 m_{\tau}^8 m_b^3 q^2} W_{\mu\nu} L^{\mu\nu}$$

- $L_{\mu\nu}$ five-body leptonic tensor (narrow-width limit for τ)
- $\dot{W}_{\mu\nu}$ standard hadronic tensor including HQE parameters
- Interesting to search for new physics! Mannel, Rusov, Shahriaran (2017); Mannel, Rahimi, KKV [in progress]

Shape functions

Bigi, Shifman, Uraltsev, Luke, Neubert, Mannel, · · ·

• Leading order shape functions

$$2m_B f(\omega) = \langle B(v) | \bar{b}_v \delta(\omega + i(n \cdot D)) b_v | B(v) \rangle$$

• Charged Lepton Energy Spectrum (at leading order)

$$rac{d\Gamma}{dy}\sim\int d\omega heta(m_b(1-y)-\omega)f(\omega)$$

• Moments of the shapefunction are related to HQE $(b \rightarrow c)$ parameters:

$$f(\omega) = \delta(\omega) + \frac{\mu_{\pi}^2}{6m_b^2}\delta''(\omega) - \frac{\rho_D^3}{m_b^3}\delta'''(\omega) + \cdots$$

• Shape function is non-perturbative and cannot be computed

Shape functions

Lange, Neubert, Bosch, Paz

- Systematic framework: Soft Collinear Effective Theory (SCET)
- Separates the different scales in the problem

 $d\Gamma = H \otimes J \otimes S$

- \rightarrow H: Hard scattering kernel at $\mathcal{O}(m_b)$
- \rightarrow J: universal Jet function at $\mathcal{O}(\sqrt{m_b\Lambda_{\rm QCD}})$
- \rightarrow S: Shape function at $\mathcal{O}(\Lambda_{\rm QCD})$
- Framework to include radiative corrections (+ NNLL resummation)
- Introduces 3 subleading shape functions

Shape functions

Lange, Neubert, Bosch, Paz

- Systematic framework: Soft Collinear Effective Theory (SCET)
- Separates the different scales in the problem

 $d\Gamma = H \otimes J \otimes S$

- \rightarrow H: Hard scattering kernel at $\mathcal{O}(m_b)$
- \rightarrow J: universal Jet function at $\mathcal{O}(\sqrt{m_b\Lambda_{\rm QCD}})$
- \rightarrow S: Shape function at $\mathcal{O}(\Lambda_{\rm QCD})$
- Framework to include radiative corrections (+ NNLL resummation)
- Introduces 3 subleading shape functions
- Other approach: OPE with hard-cutoff μ Gambino, Giordano, Ossola, Uraltsev
 - Use pert. theory above cutoff and parametrize the infrared
 - Different definition of the shape functions
- Shape functions have to be parametrized and obtained from data

New Physics explanation?

• Too many to count: exclusive $B \rightarrow D^{(*)}$ in combination with

$$R_{D^{(*)}} = \frac{B \to D^{(*)} \tau \nu}{B \to D^{(*)} \mu \nu}$$

- For inclusive $b \rightarrow c$ less analyses
 - RH-current, scalar and tensor NP contributions to rate Jung, Straub [2018]
 - RH-current to moments Feger, Mannel, et. al. [2010]
 - NP for moments KKV, Fael, Rahimi [in progress]

