The Phenomenology of Rare $b \rightarrow s \ell^{+} \ell^{-}$ Decays

Danny van Dyk
Institute for Particle Physics Phenomenology, Durham

- deviations between measurements and Standard Model (SM) predictions requires careful interpretation

1. QED: mismatch between predictions and measurements, particularly in differential observables

- unlikely explanation
- "dangerous hard-collinear logarithms cancel at the differential level in the currently used experimental treatment
- not further discussed here

1. QED: mismatch between predictions and measurements, particularly in differential observables

- unlikely explanation
[Isidori/Nabeebaccus/Zwicky 2009.00929]
- "dangerous hard-collinear logarithms cancel at the differential level in the currently used experimental treatment
- not further discussed here

2. QCD: we lack the correct understanding of the Standard Model long-distance dynamics, which mimic beyond the Standard Model (BSM) effects

- quantify potential hadronic and BSM effects (within the Weak Effective Theory)
- topic of this presentation

1. QED: mismatch between predictions and measurements, particularly in differential observables

- unlikely explanation
- "dangerous hard-collinear logarithms cancel at the differential level in the currently used experimental treatment
- not further discussed here

2. QCD: we lack the correct understanding of the Standard Model long-distance dynamics, which mimic beyond the Standard Model (BSM) effects

- quantify potential hadronic and BSM effects (within the Weak Effective Theory)
- topic of this presentation

3. BSM: do we see genuine BSM effects in the data?

- interpret potential BSM effects qualitatively
- task for model builders (i.e.: not me!)

Interpretation within the Weak

Effective Theory

- widely used tool of theoretical physics
- used to interpret the anomalies w/o assuming a concrete model beyond SM

- widely used tool of theoretical physics
- used to interpret the anomalies w/o assuming a concrete model beyond SM

- replaces dynamical degrees of freedom (here: t, W, Z) with coefficients \mathcal{C}_{i} and static structures in local operators (here: Γ_{i})
- widely used tool of theoretical physics
- used to interpret the anomalies w/o assuming a concrete model beyond SM
- replaces dynamical degrees of freedom (here: t, W, Z) with coefficients \mathcal{C}_{i} and static structures in local operators (here: Γ_{i})
- local operators must respect remaining $\mathrm{U}(1)_{\mathrm{EM}} \times \mathrm{SU}(3)_{\mathrm{C}}$ symmetry

M_{+}^{+}
M_{W}

$$
M_{B}
$$

M_{p}

- widely used tool of theoretical physics
- used to interpret the anomalies w/o assuming a concrete model beyond SM
- replaces dynamical degrees of freedom (here: t, W, Z) with coefficients \mathcal{C}_{i} and static structures in local operators (here: Γ_{i})
- local operators must respect remaining $\mathrm{U}(1)_{\mathrm{EM}} \times \mathrm{SU}(3)_{\mathrm{C}}$ symmetry
- for $b \rightarrow$ sle we find in general
- 10 semileptonic [$\bar{s}\ulcorner b]\left[\overline{\ell^{\prime}} \ell\right]$ ops
- 20 four-quark [s「b] [c $\Gamma^{\prime} c$] ops

- in the SM, only the following set of $D=6$ effective operators contributes:

$$
\mathcal{L}_{\mathrm{SM}}^{\mathrm{eff}}=\mathcal{L}_{\mathrm{QCD}}+\mathcal{L}_{\mathrm{QED}}+\frac{4 G_{F}}{\sqrt{2}}\left[\lambda_{t} \sum_{i=3}^{10} \mathcal{C}_{i} \mathcal{O}_{i}+\lambda_{c} \sum_{j=1}^{2} \mathcal{C}_{j}{ }^{c} \mathcal{O}_{j}{ }^{c}+\lambda_{u} \sum_{k=1}^{2} \mathcal{C}_{k}{ }^{u} \mathcal{O}_{k}{ }^{u}\right] \quad \text { with } \lambda_{a} \equiv V_{\mathrm{qb}} V_{\mathrm{q} s}^{*}
$$

semileptonic

$$
\mathcal{O}_{9}=\frac{\alpha}{4 \pi}\left(\bar{s} \gamma_{\mu} P_{L} b\right)\left(\bar{\ell} \gamma^{\mu} \ell\right) \quad \mathcal{O}_{10}=\frac{\alpha}{4 \pi}\left(\bar{s} \gamma_{\mu} P_{L} b\right)\left(\bar{\ell} \gamma^{\mu} \gamma_{5} \ell\right)
$$

radiative

$$
\mathcal{O}_{7(\prime)}=\frac{e}{16 \pi^{2}} m_{b}\left(\bar{s} \sigma^{\mu \nu} P_{R(L)} b\right) F_{\mu \nu} \quad \mathcal{O}_{8(\prime)}=\frac{g_{s}}{16 \pi^{2}} m_{b}\left(\bar{s} \sigma^{\mu \nu} P_{R(L)} T^{A} b\right) G_{\mu \nu}^{A}
$$

four-quark current-current $(q=c, u)$

$$
\mathcal{O}_{1}^{a}=\left(\bar{q} \gamma_{\mu} P_{L} b\right)\left(\bar{s} \gamma^{\mu} P_{L} a\right) \quad \mathcal{O}_{2}^{a}=\left(\bar{q} \gamma_{\mu} P_{L} T^{a} b\right)\left(\bar{s} \gamma^{\mu} P_{L} T^{a} q\right)
$$

four-quark QCD penguins

$$
\mathcal{O}_{3,5}=\left(\bar{s} \Gamma_{\tilde{\mu}} P_{L} b\right) \sum_{q}\left(\bar{q}^{\tilde{\Gamma} \tilde{\mu}} q\right) \quad \mathcal{O}_{4,6}=\left(\bar{s} \Gamma_{\tilde{\mu}} T^{A} P_{L} b\right) \sum_{q}\left(\bar{q}^{\tilde{\Gamma}} \tilde{\mu} T^{A} q\right)
$$

- SM contributions to $\mathcal{\mathcal { C } _ { i }}\left(\mu_{\mathrm{b}}\right)$ known to high accuracy (NNLL) [Bobeth,Misiak.Urban '99; Misiak.Steinhauser '04, Gorbahn,Halish '04]
- Wilson coefficients \mathcal{C}_{i} can be computed in perturbation theory at some high energy scale $m_{b} \ll M_{W} \sim \mu_{0}$
- however, matrix elements of operators are evaluated (e.g. from lattice QCD) at some low energy scale $\Lambda_{\text {had }}<\mu_{1}<m_{b}$
- mismatch must be resolved to obtain reliable predictions
- Renormalization Group Equations (RGEs) provide means to evolve both the Wilson coefficients and the matrix elements from their respective intrinsic scales to one common scale
\Rightarrow RGE-improved perturbation theory
- RGE for multiplicatively-renormalizing quantities:

$$
\begin{aligned}
\mu \frac{d}{d \mu} \mathcal{C}(\mu) & =\gamma\left(\alpha_{s}(\mu)\right) \mathcal{C}(\mu) & \mu \frac{d}{d \mu} \alpha_{s}(\mu) & =2 \beta\left(\alpha_{s}(\mu)\right) \\
\gamma & =\gamma^{(0)} \frac{\alpha_{s}}{4 \pi}+\mathcal{O}\left(\alpha_{s}^{2}\right) & \beta & =\beta^{(0)}\left(\frac{\alpha_{s}}{4 \pi}\right)^{2}+\mathcal{O}\left(\alpha_{s}^{3}\right)
\end{aligned}
$$

Solution

$$
\mathcal{C}\left(\mu_{1}\right)=\underbrace{\mathcal{C}\left(\mu_{0}\right)\left[\frac{\alpha_{s}\left(\mu_{1}\right)}{\alpha_{s}\left(\mu_{0}\right)}\right]^{\left(\frac{\gamma^{(0)}}{2 \beta^{(0)}}\right)}}_{\mathrm{LL}}+\underbrace{\mathcal{O}\left(\alpha_{s}^{n+1}\left(\mu_{0}\right) \ln ^{n}\left(\frac{\mu_{1}}{\mu_{0}}\right)\right)}_{\mathrm{NLL}}
$$

$\left(^{*}\right):$ resums all leading-logarithmic (LL) terms $\alpha_{s}^{n}\left(\mu_{0}\right) \ln ^{n}\left(\frac{\mu_{1}}{\mu_{0}}\right)$ via

$$
\left[\frac{\alpha_{s}\left(\mu_{1}\right)}{\alpha_{s}\left(\mu_{0}\right)}\right]^{\left(\frac{\gamma^{(0)}}{2 \beta^{(0)}}\right)}=1-\gamma^{(0)} \alpha_{s}\left(\mu_{0}\right) \ln \left(\frac{\mu_{1}}{\mu_{0}}\right)+\mathcal{O}\left(\alpha_{s}\left(\mu_{0}\right)^{2} \ln ^{2}\left(\frac{\mu_{1}}{\mu_{0}}\right)\right)
$$

- sbcc 4-quark operators yield UV divergence
- must be renormalized
- require sble / sb γ counterterm (C_{9} / C_{7})
- SM operator basis renormalizes multiplicatively
- γ is promoted to a matrix $\gamma_{i j}$
- operators mix under RGE
- phenomenologically important
- SM sbcc operators contribute $\sim 50 \%$ of $\mathcal{C}_{9}^{\text {SM }}\left(\mu_{\mathrm{b}}\right)$ at NNLL
b

S
- in the presence of NP effects

$$
\mathcal{L}_{\mathrm{BSM}}^{\mathrm{eff}}=\mathcal{L}_{\mathrm{SM}}^{\mathrm{eff}}+\frac{4 \mathcal{G}_{F}}{\sqrt{2}}\left[\lambda_{t} \sum_{i} \mathcal{C}_{i} \mathcal{O}_{i}\right]
$$

semileptonic

$$
\begin{array}{ll}
\mathcal{O}_{9^{\prime}}=\frac{\alpha}{4 \pi}\left(\bar{s} \gamma_{\mu} P_{R} b\right)\left(\bar{\ell} \gamma^{\mu} \ell\right) & \mathcal{O}_{10^{\prime}}=\frac{\alpha}{4 \pi}\left(\bar{s} \gamma_{\mu} P_{R} b\right)\left(\bar{\ell} \gamma^{\mu} \gamma_{5} \ell\right) \\
\mathcal{O}_{S}=\frac{\alpha}{4 \pi}\left(\bar{s} P_{R} b\right)(\bar{\ell} \ell) & \mathcal{O}_{S^{\prime}}=\frac{\alpha}{4 \pi}\left(\bar{s} P_{L} b\right)(\bar{\ell} \ell) \\
\mathcal{O}_{P}=\frac{\alpha}{4 \pi}\left(\bar{s} P_{R} b\right)\left(\bar{\ell} \gamma_{5} \ell\right) & \mathcal{O}_{P^{\prime}}=\frac{\alpha}{4 \pi}\left(\bar{s} P_{L} b\right)\left(\bar{\ell} \gamma_{5} \ell\right) \\
\mathcal{O}_{T}=\frac{\alpha}{4 \pi}\left(\bar{s} \sigma^{\mu \nu} b\right)\left(\bar{\ell} \sigma_{\mu \nu} \ell\right) & \mathcal{O}_{T 5}=\frac{\alpha}{4 \pi}\left(\bar{s} \sigma^{\mu \nu} P_{L} b\right)\left(\bar{\ell} \sigma_{\mu \nu} \gamma_{5} \ell\right)
\end{array}
$$

- regularly considered in the literature!
- in the presence of NP effects

$$
\mathcal{L}_{\mathrm{BSM}}^{\mathrm{eff}}=\mathcal{L}_{\mathrm{SM}}^{\mathrm{eff}}+\frac{4 \mathcal{G}_{F}}{\sqrt{2}}\left[\lambda_{t} \sum_{i} \mathcal{C}_{i} \mathcal{O}_{i}\right]
$$

- add further 2×18 current-current operators with $q=c, u$
- add further 3×16 QCD-penguin operators with $q=d, s, b$
- these operators are routinely ignored in the literature!
- for a truly model-independent analysis of data, would need to fit coefficients of all 114 operators!
- if we ignore tiny contributions due to $V_{u b} V_{u s}^{*}$, reduces to 94 operators
- if we focus on resonantly enhanced contributions due to intermediate $\bar{c} c$ states, reduces to 34 operators somewhat more manageable!
- WET makes calculations in the SM possible in the first place
- separates long-distance from short-distance physics (C from ops)
- "divide and conquer"
- SM WET contributions under excellent theory control
- precision of SM predictions hinges on accurate control of hadronic matrix elements
- accounts transparently and model-independently for the effects of physics beyond the SM
- treat Wilson coefficients as generalized couplings and fit from data
- excellent interface to model builders

From the WET to the Observables

$$
\mathcal{A}_{\lambda}^{\chi}=\mathcal{N}_{\lambda}\left\{\left(C_{9} \mp C_{10}\right) \mathcal{F}_{\lambda}\left(q^{2}\right)+\frac{2 m_{b} M_{B}}{q^{2}}\left[C_{7} F_{\lambda}^{\top}\left(q^{2}\right)-16 \pi^{2} \frac{M_{B}}{m_{b}} \mathcal{H}_{\lambda}\left(q^{2}\right)\right]\right\}
$$

nomenclature of the essential hadronic matrix elements

$$
q^{2}=m_{\ell \ell}^{2}
$$

\mathcal{F}_{λ} local form factors of dimension-three $\bar{s} \gamma^{\mu} b \& \bar{s} \gamma^{\mu} \gamma_{5} b$ currents
$\mathcal{F}_{\lambda}^{\top}$ local dipole form factors of dimension-three $\bar{s} \sigma^{\mu \nu}$ b currents
\mathcal{H}_{λ} nonlocal form factors of dimension-five nonlocal operators

- local form factors are conceptually "easy"
- yet a substantial source of uncertainties
- lattice QCD provides results typically at large q^{2} for $B \rightarrow K, B \rightarrow K^{*}, B_{s} \rightarrow \phi$
- caveat: K^{*} is broad state, non-zero width can have $\mathcal{O}(10 \%)$ effects [Descotes-Genon.Khodamilion,Vition '19]
- new lattice results down to $q^{2}=0$ for $B \rightarrow K$ form factors [HPQCD '22]
- light-cone sum rules provide anchor points at small q^{2}
- caveat: systematic uncertainties hard to quantify
- local form factors are conceptually "easy"
- yet a substantial source of uncertainties
- lattice QCD provides results typically at large q^{2} for $B \rightarrow K, B \rightarrow K^{*}, B_{s} \rightarrow \phi$
- caveat: K^{*} is broad state, non-zero width can have \mathcal{O} (10\%) effects [Descotes-Genon,Khodjamirian,Virto '19]
- new lattice results down to $q^{2}=0$ for $B \rightarrow K$ form factors
[HPQCD '22]
- light-cone sum rules provide anchor points at small q^{2}
- caveat: systematic uncertainties hard to quantify

[Gubernari,Reboud,DvD,Virto '23]
- IPPP group recently revisited dispersive bounds for all local $b \rightarrow s$ form factors
- global analysis finds good compatibility between LCSR and lattice QCD results
- dispersive bounds have been split for the first time by polarization state
- remove spurious theory correlations between different form factors
- reduces extrapolation error
- global analysis finds good compatibility between LCSR and lattice QCD results
- dispersive bounds have been split for the first time by polarization state
- remove spurious theory correlations between different form factors
- reduces extrapolation error
- commonly used BSZ parametrization surprisingly efficient
- dispersive bound and BSZ very compatible for $q^{2} \geq 0$, no need to swap params as of yet

- for non-local form factors, we will require $q^{2}<0$, where BSZ underestimates uncertainties

source of dominant systematic uncertainties in theoretical predictions!

$$
\mathcal{H}_{\lambda}=P(\lambda)_{\mu}\left\langle H_{s}\right| \int d^{4} x e^{i q \cdot x} \mathcal{T}\left\{J_{\mathrm{em}}^{\mu}(x),\left[C_{1} O_{1}^{c}+C_{2} O_{2}^{c}\right](0)\right\}\left|H_{b}\right\rangle
$$

- $O_{1,2}^{c} \sim[s \Gamma b]\left[C \Gamma^{\prime} c\right]$
- leading contributions expressed through local form factors \mathcal{F}_{λ}
- correction suppressed by $1 /\left(q^{2}-4 m_{c}^{2}\right)$ can by systematically obtained

$$
\mathcal{H}_{\lambda}=P(\lambda)_{\mu}\left\langle H_{s}\right| \int d^{4} x e^{i q \cdot x} \mathcal{T}\left\{J_{\mathrm{em}}^{\mu}(x),\left[C_{1} O_{1}^{c}+C_{2} O_{2}^{c}\right](0)\right\}\left|H_{b}\right\rangle
$$

- $O_{1,2}^{c} \sim[s \Gamma b]\left[C \Gamma^{\prime} c\right]$
- for $q^{2}=M_{J / \psi}^{2}$ and $q^{2}=M_{\psi(2 S)}^{2}$, spectrum dominated by hadronic decays
- experimental measurements provide additional information about \mathcal{H}_{λ}

$$
\mathcal{H}_{\lambda}=P(\lambda)_{\mu}\left\langle H_{s}\right| \int d^{4} x e^{i q \cdot x} \mathcal{T}\left\{J_{\mathrm{em}}^{\mu}(x),\left[C_{1} O_{1}^{c}+C_{2} O_{2}^{c}\right](0)\right\}\left|H_{b}\right\rangle
$$

- $O_{1,2}^{c} \sim\left[\begin{array}{l}\text { S } \\ \text { b }\end{array}\right]\left[C \Gamma^{\prime} c\right]$
- compute \mathcal{H}_{λ} at spacelike q^{2}
- extrapolate to timelike $q^{2} \leq 4 M_{D}^{2}$ using suitable parametrization
- include information from hadronic decays to narrow charmonia J / ψ and $\psi(2 S)$
- the literature frequently discusses "the QCDF" approach to the non-local form factors
- more correctly labelled: 1-loop, perturbative approach to non-local form factors
- QCDF predicts ratios of local form factors, and ratios of some contributions to non-local form factors
- QCDF is not predictive by itself, requires lattice QCD or light-cone sum rules as inputs
- QCDF is not "dealing" with the charm loop contributions; it is agnostic of their treatment
- slightly more technical
- QCDF is used to express exclusive form factors for small q^{2} in terms of nonlocal B and $K^{(*)}$ matrix elements (LCDAs)
- this calculation encounters universal divergences \Rightarrow not predictive for an individual form factor
- universal divergences cancel in ratios

Preparing $b \rightarrow s \ell \ell$ predictions for the era of the
 High-Luminosity LHC

- check previous computations of the nonlocal form factors at subleading power
- previous results incomplete, missing terms cancel known contributions
- subleading-power terms are negligible at spacelike q^{2}
- improve the parametrization to control the extrapolation error
[Gubernari,DvD,Virto '20; Gubernari,,Reboud,Virto '22; Gubernari,,Reboud,Virto '23]
- use dispersively-bounded parametrization for both local and non-local form factors
- challenge implicit theory assumptions in the nonlocal form factors
- determine WET Wilson coefficients of sbcc operators from data

Compute Light-Cone OPE

$$
4 m_{c}^{2}-q^{2} \gg \Lambda_{\text {hadr. }}^{2}
$$

- expansion in operators at light-like distances $x^{2} \simeq 0$
[Khodjamirian, Mannel, Pivovarov, Wang 2010]
- employing light-cone expansion of charm propagator

$$
\begin{aligned}
& \int d^{4} x e^{i q \cdot x} \mathcal{T}\left\{J_{\mathrm{em}}^{\mu}(x),\left[C_{1} O_{1}^{c}+C_{2} O_{2}^{c}\right](0)\right\} \\
& \xrightarrow{a^{2} \ll 4 m_{c}^{2}} \underbrace{\left(\frac{C_{1}}{3}+C_{2}\right) g\left(m_{c}^{2}, q^{2}\right)}_{\text {coeff } \# 1}[\bar{s} \Gamma b]+\cdots \\
& \quad+(\text { coeff } \# 2) \times\left[\bar{s}_{L} \gamma^{\alpha}\left(i_{+} \cdot \mathcal{D}\right)^{n} \tilde{G}_{\beta \gamma} b_{L}\right]
\end{aligned}
$$

Compute Light-Cone OPE

$$
4 m_{c}^{2}-q^{2} \gg \Lambda_{\text {hadr }}^{2} .
$$

- expansion in operators at light-like distances $x^{2} \simeq 0$
[Khodjamirian, Mannel, Pivovarov, Wang 2010]
- employing light-cone expansion of charm propagator
[Balitsky, Braun 1989]

$$
\begin{aligned}
\Rightarrow \mathcal{H}_{\lambda} & =\text { coeff } \# 1 \times \mathcal{F}_{\lambda}+\mathcal{H}_{\lambda}^{\text {spect. }} \\
& + \text { coeff } \# 2 \times \tilde{\mathcal{V}}
\end{aligned}
$$

- leading part identical to QCD Fact. results
[Beneke, Feldmann, Seidel '01\&'04]
- subleading coefficient computed previously
- we find full agreement, also cast result in convenient form
[Gubernari,Virto,DvD '20]
- next step: determine "subleading form factor" $\tilde{\mathcal{V}}$

Transition	$\tilde{\mathcal{V}}\left(q^{2}=1 \mathrm{GeV}^{2}\right)$	GVDV2020	KMPW2010
$B \rightarrow K$	$\tilde{\mathcal{A}}$	$(+4.9 \pm 2.8) \cdot 10^{-7}$	$\left(-1.3_{-0.7}^{+1.0}\right) \cdot 10^{-4}$
	$\tilde{\mathcal{V}}_{1}$	$(-4.4 \pm 3.6) \cdot 10^{-7} \mathrm{GeV}$	$\left(-1.5_{-2.5}^{+1.5}\right) \cdot 10^{-4} \mathrm{GeV}$
$B \rightarrow K^{*}$	$\tilde{\mathcal{V}}_{2}$	$(+3.3 \pm 2.0) \cdot 10^{-7} \mathrm{GeV}$	$\left(+7.3_{-7.9}^{+14}\right) \cdot 10^{-5} \mathrm{GeV}$
	$\tilde{\mathcal{V}}_{3}$	$(+1.1 \pm 1.0) \cdot 10^{-6} \mathrm{GeV}$	$\left(+2.4_{-2.7}^{+5.6}\right) \cdot 10^{-4} \mathrm{GeV}$
	$\tilde{\mathcal{V}}_{1}$	$(-4.4 \pm 5.6) \cdot 10^{-7} \mathrm{GeV}$	-
$B_{s} \rightarrow \phi$	$\tilde{\mathcal{V}}_{2}$	$(+4.3 \pm 3.1) \cdot 10^{-7} \mathrm{GeV}$	-
	$\tilde{\mathcal{V}}_{3}$	$(+1.7 \pm 2.0) \cdot 10^{-6} \mathrm{GeV}$	-

reduction by a factor of ~ 200

- new structures in three-particle LCDAs account for factor 10 (due to cancellations!)
- updated inputs that enter the sum rules account for further factor 10
- similar relative uncertainties, but absolute uncertainties reduced by \mathcal{O} (100)
- ongoing project at IPPP to compute leading non-local contributions for full BSM basis of sbcc operators
- first step to full control of non-local form factors in the WET
- we plan to also leverage measurements of $\bar{B} \rightarrow K \eta_{c}$ and $\Lambda_{b} \rightarrow \Lambda \eta_{c}$ decays
- ongoing project in Siegen to better classify non-local operators
- of particular interest: contributions with hard-collinear gluon
- relevant to "internal" charm loop
- Taylor expand \mathcal{H}_{λ} in q^{2} / M_{B}^{2} around 0
+ simple to use in a fit
- incomaptible with analyticity properties, does not reproduce resonances
- expansion coefficients unbounded!
- Taylor expand \mathcal{H}_{λ} in q^{2} / M_{B}^{2} around 0
+ simple to use in a fit
- incomaptible with analyticity properties, does not reproduce resonances
- expansion coefficients unbounded!
- use information from hadronic intermediate states in a dispersion relation
[Khodjamirian et al. '10]

$$
\mathcal{H}_{\lambda}\left(q^{2}\right)-\mathcal{H}_{\lambda}\left(s_{0}\right)=\frac{q^{2}-s_{0}}{\pi} \int d s \frac{\operatorname{lm} \mathcal{H}_{\lambda}(s)}{\left(s-s_{0}\right)\left(s-q^{2}\right)}+\ldots
$$

+ reproduces resonances
- hadronic information above the threshold must be modelled
- complicated to use in a fit, relies on theory input in single point s_{0}
- Taylor expand \mathcal{H}_{λ} in q^{2} / M_{B}^{2} around 0
+ simple to use in a fit
- incomaptible with analyticity properties, does not reproduce resonances
- expansion coefficients unbounded!
- use information from hadronic intermediate states in a dispersion relation [khodjamirian et al. '10]

$$
\mathcal{H}_{\lambda}\left(q^{2}\right)-\mathcal{H}_{\lambda}\left(s_{0}\right)=\frac{q^{2}-s_{0}}{\pi} \int d s \frac{\operatorname{lm} \mathcal{H}_{\lambda}(s)}{\left(s-s_{0}\right)\left(s-q^{2}\right)}+\ldots
$$

+ reproduces resonances
- hadronic information above the threshold must be modelled
- complicated to use in a fit, relies on theory input in single point s_{0}
- expand the matrix elements in variable $z\left(q^{2}\right)$ that develops branch cut at $q^{2}=4 M_{D}^{2}$
+ resonances can be included through explicit poles (Blaschke factors)
+ easy to use in a fit
+ compatible with analyticitiy properties
- expansion coefficients unbounded!

Extrapolate Parametrisation of the Non-Local Form Factors

- map q^{2} to new variable z that develops
branch cut at $q^{2}=4 M_{D}^{2}$
[Bobeth/Chrzaszcz/DvD/Virto '17]

Extrapolate Parametrisation of the Non-Local Form Factors $19 / 28$

- map q^{2} to new variable z that develops
branch cut at $q^{2}=4 M_{D}^{2}$
[Bobeth/Chrzaszcz/DvD/Virto '17]
- branch cut is mapped onto unit circle in z
- real-valued $q^{2} \leq 4 M_{D}^{2}$ is mapped to real-valued z
- data and theory live insides the unit circle

Extrapolate Parametrisation of the Non-Local Form Factors

- map q^{2} to new variable z that develops branch cut at $q^{2}=4 M_{D}^{2}$
- branch cut is mapped onto unit circle in z
- real-valued $q^{2} \leq 4 M_{D}^{2}$ is mapped to real-valued z
- data and theory live insides the unit circle
- expand in z
+ resonances $J / \psi, \psi(2 S)$ can be included (via explicit poles/Blaschke factors)
+ easy to use in a fit to theory and data
+ compatible with analyticity
- expansion coefficients unbounded!

matrix elements $\mathcal{H}^{(\lambda)}$ arise from nonlocal operator

$$
\mathcal{H}^{\mu} \sim\langle K| O^{\mu}(Q ; x)|B\rangle \quad O^{\mu}(Q ; x) \sim \int d^{4} y e^{i Q \cdot y} T\left\{J_{\mathrm{em}}^{\mu}(x+y),\left[C_{1} O_{1}+C_{2} O_{2}\right](x)\right\}
$$

construct four-point operator to derive a dispersive bound

- define matrix element of "square" (i.e., hermitian) operator

$$
\int d^{4} x e^{i Q \cdot x}\langle 0| T\left\{O^{\mu}(Q ; x) O^{\dagger, \nu}(Q ; 0)\right\}|0\rangle \equiv\left[\frac{Q^{\mu} Q^{\nu}}{Q^{2}}-g^{\mu \nu}\right] \Pi\left(Q^{2}\right)
$$

- $\Pi\left(Q^{2}\right)$ has two types of discontinuities
- from intermediate unflavoured states ($c \bar{c}, c \bar{c} c \bar{c}, \ldots$)
- from intermediate $b \bar{s}$-flavoured states ($b \bar{s}, b \bar{s} g, b \bar{s} c \bar{c}, \ldots$)

Extrapolate Cuts of $\boldsymbol{\Pi}$

- unflavoured states ($c \bar{c}, c \bar{c} c \bar{c}, \ldots$)
- bss-flavoured states (bs̄, bssg, bsccc, ...)

Extrapolate Lay of the Land

light-cone OPE
SL phase space

$$
J / \psi, \psi(2 S)
$$

$\bar{s} b$ cut
dispersive representation of the $b \bar{s}$ contribution to a derivative of Π

$$
\chi\left(Q^{2}\right) \equiv \frac{1}{2!}\left[\frac{d}{d Q^{2}}\right]^{2} \frac{1}{2 i \pi} \int_{\left(m_{b}+m_{s}\right)^{2}}^{\infty} d s \frac{\operatorname{Disc}_{b \bar{s}} \Pi(s)}{s-Q^{2}}>0 \quad \text { if } Q^{2}<0
$$

- Disc $_{b \bar{s}} \Pi$ can be computed in the local OPE
$\rightarrow \chi^{\mathrm{OPE}}\left(Q^{2}\right)$
- Disc $_{b \bar{s}} \Pi$ can be expressed in terms of the nonlocal form factors $\left|\mathcal{H}_{\lambda}\right|^{2}$

$$
\rightarrow \chi^{\mathrm{had}}\left(Q^{2}\right)
$$

- global quark hadron duality suggests that $\chi^{\mathrm{OPE}}\left(Q^{2}\right)=\chi^{\text {had }}\left(Q^{2}\right)$
- parametrize $\mathcal{H}_{\lambda} \propto \sum_{n} a_{\lambda, n} f_{n}$ with orthonormal functions f_{n} \Rightarrow dispersive bound: $\quad \chi^{\mathrm{OPE}} \geq \sum_{n}\left|a_{\lambda, n}\right|^{2}$
- first application of such a bound to nonlocal form factors
- technically more challenging than for local form factors

Extrapolate New parametrisation w/ dispersive bounds

- expand in z
- $f_{n}(z)$ orthogonal on arc
+ accounting for behaviour on arc produces dispersive bound on each parameter
[Gubernari/DvD/Virto '20]
- turns (so far!) hardly quantifiable systematic theory uncertainties into parametric uncertainties
- implemented in EOS
- open source software at github.com/eos/eos
- Python 3 interface, available via pip as
eoshep

- predictions mutually compatible; slight change to the slope in $B_{s} \rightarrow \phi$ due to local FFs
- our uncertainties larger, but systematically improvable

- substantial tensions in $\mathcal{B}\left(B \rightarrow K \mu^{+} \mu^{-}\right)$and $\mathcal{B}\left(B_{s} \rightarrow \phi \mu^{+} \mu^{-}\right)$, lower in $\mathcal{B}\left(B \rightarrow K^{*} \mu^{+} \mu^{-}\right)$

- substantial tensions in $\mathcal{B}\left(B \rightarrow K \mu^{+} \mu^{-}\right)$and $\mathcal{B}\left(B_{s} \rightarrow \phi \mu^{+} \mu^{-}\right)$, lower in $\mathcal{B}\left(B \rightarrow K^{*} \mu^{+} \mu^{-}\right)$
- tension in angular distribution in $B \rightarrow K^{*} \mu^{+} \mu^{-}$remains

Updated BSM Interpretation

- no global fit yet
- large \# of nuisance params makes global fit difficult
- instead, three individual fits
- mutually compatible results!
- compatible with previous analyses
- fits use all available data, incl. angular obs.
- substantial tensions in $B \rightarrow K$ and $B_{s} \rightarrow \phi$, slightly lower in $B \rightarrow K^{*}$

Summary

- phenomenology of rare B decays is a complicated business
- WET under good control
- local form factors see revitalized interest from lattice QCD
- non-local form factors now under reasonable theory control
- new approach to (B)SM predictions corroborates earlier results qualitatively
- larger uncertainties reduce significance of the anomalies somewhat
- uncertainties very conservative and systematically improvable
- still: a lot to do for phenomenologists, amongst others:
- performing a truly global fit in the new approach
- extending analysis to $\Lambda_{b} \rightarrow \Lambda$ transitions

Backup Slides

The elephant in the room

Joint LHCb measurement of R_{K} and $R_{K^{*}}$

R_{K} low- $q^{2} \quad R_{K}$ central $-q^{2} \quad R_{K^{*}}$ low- $q^{2} \quad R_{K^{*}}$ central $-q^{2}$

- lepton-flavour-nonuniversality in $b \rightarrow s \ell^{+} \ell^{-}$is gone!
- not the longest standing anomaly by far!
- not the only one, either!
- I prefer to think of it as a precision measurement of $\mathcal{B}\left(B \rightarrow K^{(*)} e^{+} e^{-}\right)$
- gives rise to a new anomaly
- $\mathcal{B}\left(B \rightarrow K e^{+} e^{-}\right)$deviates from SM prediction by roughly the same amount as $\mathcal{B}\left(B \rightarrow K \mu^{+} \mu^{-}\right)$!

