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▶ deviations between measurements and Standard Model (SM) predictions
requires careful interpretation



Possible Explanations 2/28

1. QED: mismatch between predictions and measurements, particularly in
differential observables

▶ unlikely explanation [Isidori/Nabeebaccus/Zwicky 2009.00929]

▶ “dangerous hard-collinear logarithms cancel at the differential level in the
currently used experimental treatment

▶ not further discussed here

2. QCD: we lack the correct understanding of the Standard Model long-distance
dynamics, which mimic beyond the Standard Model (BSM) effects

▶ quantify potential hadronic and BSM effects (within the Weak Effective Theory)
▶ topic of this presentation

3. BSM: do we see genuine BSM effects in the data?
▶ interpret potential BSM effects qualitatively
▶ task for model builders (i.e.: not me!)
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Interpretation within the Weak
Effective Theory



Weak Effective Theory 3/28

▶ widely used tool of theoretical
physics

▶ used to interpret the anomalies w/o
assuming a concrete model beyond
SM

▶ replaces dynamical degrees of
freedom (here: t ,W , Z ) with
coefficients Ci and static structures in
local operators (here: Γi)

▶ local operators must respect
remaining U(1)EM × SU(3)C symmetry

▶ for b → sℓℓ we find in general
▶ 10 semileptonic [sΓb] [ℓΓ′ℓ] ops
▶ 20 four-quark [sΓb] [cΓ′c] ops
▶ . . .
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Weak Effective Theory: b → sℓℓ SM operators 4/28

▶ in the SM, only the following set of D = 6 effective operators contributes:

Leff
SM = LQCD + LQED +

4GF√
2

[
λt

10∑
i=3

Ci Oi + λc
2∑

j=1
Cj c Oj

c + λu
2∑

k=1
Cku Ok

u
]

with λq ≡ VqbV∗
qs

semileptonic

O9 =
α

4π
(sγµPLb)(ℓγµℓ) O10 =

α

4π
(sγµPLb)(ℓγµγ5ℓ)

radiative

O7(′) =
e

16π2mb(sσµνPR(L)b)Fµν O8(′) =
gs

16π2mb(sσµνPR(L)TAb)GA
µν

four-quark current-current (q = c,u)

O1
q = (qγµPLb)(sγµPLq) O2

q = (qγµPLTab)(sγµPLTaq)

four-quark QCD penguins

O3,5 = (sΓµ̃PLb)
∑
q

(qΓ̃µ̃q) O4,6 = (sΓµ̃TAPLb)
∑
q

(qΓ̃µ̃TAq)

▶ SM contributions to Ci(µb) known to high accuracy (NNLL) [Bobeth,Misiak,Urban ’99; Misiak,Steinhauser ’04, Gorbahn,Haisch ’04]

[Gorbahn, Haisch, Misiak ’05; Czakon, Haisch, Misiak ’06]



Tangent 1: Renormalization Group Equations (RGE) 5/28

▶ Wilson coefficients Ci can be computed in perturbation theory at some high
energy scale mb ≪ MW ∼ µ0

▶ however, matrix elements of operators are evaluated (e.g. from lattice QCD)
at some low energy scale Λhad < µ1 <mb

▶ mismatch must be resolved to obtain reliable predictions
▶ Renormalization Group Equations (RGEs) provide means to evolve both the

Wilson coefficients and the matrix elements from their respective intrinsic scales
to one common scale
⇒ RGE-improved perturbation theory



Tangent 1: Renormalization Group Equations (RGE) 5/28

▶ RGE for multiplicatively-renormalizing quantities:

µ
d
dµC(µ) = γ(αs(µ))C(µ) µ

d
dµαs(µ) = 2β(αs(µ))

γ = γ(0)
αs
4π +O

(
α2
s

)
β = β(0)

( αs
4π

)2
+O

(
α3
s

)
Solution

C(µ1) = C(µ0)

[
αs(µ1)

αs(µ0)

](
γ(0)

2β(0)

)
︸ ︷︷ ︸

LL

+O
(
αn+1
s (µ0) ln

n
(
µ1
µ0

))
︸ ︷︷ ︸

NLL

(*): resums all leading-logarithmic (LL) terms αn
s (µ0) ln

n
(

µ1
µ0

)
via[

αs(µ1)

αs(µ0)

]( γ(0)

2β(0)

)
= 1− γ(0)αs(µ0) ln

(
µ1
µ0

)
+O

(
αs(µ0)

2 ln2
(
µ1
µ0

))



Tangent 2: Role of sbcc Operators at One Loop 6/28

▶ sbcc 4-quark operators yield UV divergence
▶ must be renormalized
▶ require sbℓℓ / sbγ counterterm (C9 / C7)

▶ SM operator basis renormalizes
multiplicatively

▶ γ is promoted to a matrix γij
▶ operators mix under RGE

▶ phenomenologically important
▶ SM sbcc operators contribute ∼ 50% of

CSM
9 (µb) at NNLL

b

s

γ

c

c



Weak Effective Theory: b → sℓℓ BSM Operators 7/28

▶ in the presence of NP effects

Leff
BSM = Leff

SM +
4GF√

2

[
λt

∑
i
Ci Oi

]

semileptonic

O9′ =
α

4π (sγµPRb)(ℓγµℓ) O10′ =
α

4π (sγµPRb)(ℓγµγ5ℓ)

OS =
α

4π (sPRb)(ℓℓ) OS′ =
α

4π (sPLb)(ℓℓ)

OP =
α

4π (sPRb)(ℓγ5ℓ) OP′ =
α

4π (sPLb)(ℓγ5ℓ)

OT =
α

4π (sσ
µνb)(ℓσµνℓ) OT5 =

α

4π (sσ
µνPLb)(ℓσµνγ5ℓ)

▶ regularly considered in the literature!



Weak Effective Theory: b → sℓℓ BSM Operators 7/28

▶ in the presence of NP effects

Leff
BSM = Leff

SM +
4GF√

2

[
λt

∑
i
Ci Oi

]

▶ add further 2 × 18 current-current operators with q = c,u
▶ add further 3 × 16 QCD-penguin operators with q = d, s,b
▶ these operators are routinely ignored in the literature! [except by Jäger,Kirk,Lenz,Leslie ’17]

▶ for a truly model-independent analysis of data, would need to fit coefficients
of all 114 operators!

▶ if we ignore tiny contributions due to VubV∗
us, reduces to 94 operators

▶ if we focus on resonantly enhanced contributions due to intermediate cc states,
reduces to 34 operators somewhat more manageable!



Weak Effective Theory: Summary 8/28

▶ WET makes calculations in the SM possible in the first place
▶ separates long-distance from short-distance physics (C from ops)

▶ “divide and conquer”
▶ SM WET contributions under excellent theory control
▶ precision of SM predictions hinges on accurate control of hadronic matrix elements

▶ accounts transparently and model-independently for the effects of physics
beyond the SM

▶ treat Wilson coefficients as generalized couplings and fit from data
▶ excellent interface to model builders



From the WET to the
Observables



Anatomy of exclusive b → sℓ+ℓ− decay amplitudes 9/28

Aχ
λ = Nλ

{
(C9 ∓C10)Fλ(q2) +

2mbMB
q2

[
C7F T

λ(q2)− 16π2MB
mb

Hλ(q2)

]}
nomenclature of the essential hadronic matrix elements q2 = m2

ℓℓ

Fλ local form factors of dimension-three sγµb & sγµγ5b currents
F T
λ local dipole form factors of dimension-three sσµνb currents

Hλ nonlocal form factors of dimension-five nonlocal operators

all three needed for consistent description to leading-order in αe



Local Form Factors 10/28

▶ local form factors are conceptually “easy”
▶ yet a substantial source of uncertainties

▶ lattice QCD provides results typically at large q2

for B → K , B → K ∗, Bs → ϕ

▶ caveat: K ∗ is broad state, non-zero width can
have O (10%) effects [Descotes-Genon,Khodjamirian,Virto ’19]

▶ new lattice results down to q2 = 0 for B → K form
factors [HPQCD ’22]

▶ light-cone sum rules provide anchor points at
small q2

▶ caveat: systematic uncertainties hard to quantify

▶ IPPP group recently revisited dispersive bounds for
all local b → s form factors
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Local Form Factors: Summary of Recent Analysis 11/28

▶ global analysis finds good compatibility between
LCSR and lattice QCD results

▶ dispersive bounds have been split for the first time
by polarization state

▶ remove spurious theory correlations between
different form factors

▶ reduces extrapolation error

▶ commonly used BSZ parametrization surprisingly
efficient

▶ dispersive bound and BSZ very compatible for
q2 ≥ 0, no need to swap params as of yet

▶ for non-local form factors, we will require q2 < 0,
where BSZ underestimates uncertainties
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Non-Local Form Factors: Spectrum 12/28

Hλ = P(λ)µ ⟨Hs|
∫

d4x eiq·x T { Jµem(x), [C1Oc
1 +C2Oc

2 ](0) } |Hb⟩

]4c/2 [GeV2q
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 [GeV]*KE 12

[sketch from Blake, Gershon, Hiller 1501.03309]

▶ Oc
1,2 ∼ [sΓb] [cΓ′c]

source of dominant systematic uncertainties in theoretical predictions!
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▶ Oc
1,2 ∼ [sΓb] [cΓ′c]

▶ leading contributions expressed through local form factors Fλ
▶ correction suppressed by 1/(q2 − 4m2

c) can by systematically obtained
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▶ Oc
1,2 ∼ [sΓb] [cΓ′c]

▶ for q2 = M2
J/ψ and q2 = M2

ψ(2S), spectrum dominated by hadronic decays
▶ experimental measurements provide additional information about Hλ
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▶ Oc
1,2 ∼ [sΓb] [cΓ′c]

new strategy [Bobeth,Chrzaszcz,DvD,Virto ’17]

▶ compute Hλ at spacelike q2

▶ extrapolate to timelike q2 ≤ 4M2
D using suitable parametrization

▶ include information from hadronic decays to narrow charmonia J/ψ and ψ(2S)



Tangent 3: QCD Factorization (QCDF) 13/28

▶ the literature frequently discusses “the QCDF“ approach to the non-local form
factors

▶ more correctly labelled: 1-loop, perturbative approach to non-local form factors
▶ QCDF predicts ratios of local form factors, and ratios of some contributions to

non-local form factors
▶ QCDF is not predictive by itself, requires lattice QCD or light-cone sum rules as

inputs
▶ QCDF is not “dealing” with the charm loop contributions; it is agnostic of their

treatment
▶ slightly more technical

▶ QCDF is used to express exclusive form factors for small q2 in terms of nonlocal B
and K (∗) matrix elements (LCDAs)

▶ this calculation encounters universal divergences ⇒ not predictive for an
individual form factor

▶ universal divergences cancel in ratios



Preparing b → sℓℓ predictions
for the era of the
High-Luminosity LHC



Reduce systematical theory uncertainties 14/28

▶ check previous computations of the nonlocal form factors at subleading
power ✓

[Gubernari,DvD,Virto ’20]

▶ previous results incomplete, missing terms cancel known contributions
▶ subleading-power terms are negligible at spacelike q2

▶ improve the parametrization to control the extrapolation error ✓
[Gubernari,DvD,Virto ’20; Gubernari,Reboud,Virto ’22; Gubernari,Reboud,Virto ’23]

▶ use dispersively-bounded parametrization for both local and non-local form factors

▶ challenge implicit theory assumptions in the nonlocal form factors
▶ determine WET Wilson coefficients of sbcc operators from data ongoing

[Kirk,McPartland,Reboud,DvD,Virto]



Compute Light-Cone OPE 15/28

4m2
c − q2 ≫ Λ2

hadr.

▶ expansion in operators at light-like distances x2 ≃ 0
[Khodjamirian, Mannel, Pivovarov, Wang 2010]

▶ employing light-cone expansion of charm
propagator

[Balitsky, Braun 1989] ]4c/2 [GeV2q
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⇒ Hλ = coeff #1×Fλ +Hspect.
λ

+ coeff #2× Ṽ

▶ leading part identical to QCD Fact. results
[Beneke, Feldmann, Seidel ’01&’04]

▶ subleading coefficient computed previously
[Khodjamirian, Mannel, Pivovarov, Wang ’10]

▶ we find full agreement, also cast result in convenient form
[Gubernari,Virto,DvD ’20]

▶ next step: determine “subleading form factor” Ṽ



Compute Soft gluon matrix elements 16/28

Transition Ṽ (q2 = 1GeV2
) GvDV2020 KMPW2010

B → K Ã (+4.9± 2.8) · 10−7 (−1.3+1.0
−0.7) · 10−4

Ṽ1 (−4.4± 3.6) · 10−7 GeV (−1.5+1.5
−2.5) · 10−4 GeV

B → K ∗ Ṽ2 (+3.3± 2.0) · 10−7 GeV (+7.3+14
−7.9) · 10−5 GeV

Ṽ3 (+1.1± 1.0) · 10−6 GeV (+2.4+5.6
−2.7) · 10−4 GeV

Ṽ1 (−4.4± 5.6) · 10−7 GeV —

Bs → ϕ Ṽ2 (+4.3± 3.1) · 10−7 GeV —

Ṽ3 (+1.7± 2.0) · 10−6 GeV —

reduction by a factor of ∼ 200
▶ new structures in three-particle LCDAs account for factor 10 (due to cancellations!)
▶ updated inputs that enter the sum rules account for further factor 10
▶ similar relative uncertainties, but absolute uncertainties reduced by O (100)



Compute Developments 17/28

▶ ongoing project at IPPP to compute leading non-local contributions for full
BSM basis of sbcc operators

▶ first step to full control of non-local form factors in the WET
▶ we plan to also leverage measurements of B → Kηc and Λb → Ληc decays

▶ ongoing project in Siegen to better classify non-local operators
▶ of particular interest: contributions with hard-collinear gluon
▶ relevant to “internal” charm loop



Extrapolate Parametrisations 18/28

▶ Taylor expand Hλ in q2/M2
B around 0 [Ciuichini et al. ’15]

+ simple to use in a fit
- incomaptible with analyticity properties, does not reproduce resonances
- expansion coefficients unbounded!

▶ use information from hadronic intermediate states in a dispersion relation [Khodjamirian et al. ’10]

Hλ(q2)−Hλ(s0) = q2−s0
π

∫
ds ImHλ(s)

(s−s0)(s−q2)
+ . . .

+ reproduces resonances
- hadronic information above the threshold must be modelled
- complicated to use in a fit, relies on theory input in single point s0

▶ expand the matrix elements in variable z(q2) that develops branch cut at q2 = 4M2
D

[Bobeth,Chrzaszcz,DvD,Virto ’17]

+ resonances can be included through explicit poles (Blaschke factors)
+ easy to use in a fit
+ compatible with analyticitiy properties
- expansion coefficients unbounded!
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Extrapolate Parametrisation of the Non-Local Form Factors 19/28

▶ map q2 to new variable z that develops
branch cut at q2 = 4M2

D [Bobeth/Chrzaszcz/DvD/Virto ’17]

▶ branch cut is mapped onto unit circle in z
▶ real-valued q2 ≤ 4M2

D is mapped to real-valued z
▶ data and theory live insides the unit circle

]4c/2 [GeV2q
0 5 10 15 20

OPEQCDF

resonances
ccbroad 

resonances
ccnarrow 

pole
photon

interference
90 - 70

 [GeV]*KE 12

[sketch from Blake, Gershon, Hiller 1501.03309]



Extrapolate Parametrisation of the Non-Local Form Factors 19/28

▶ map q2 to new variable z that develops
branch cut at q2 = 4M2

D [Bobeth/Chrzaszcz/DvD/Virto ’17]

▶ branch cut is mapped onto unit circle in z
▶ real-valued q2 ≤ 4M2

D is mapped to real-valued z
▶ data and theory live insides the unit circle

Re z

Im z



Extrapolate Parametrisation of the Non-Local Form Factors 19/28

▶ map q2 to new variable z that develops
branch cut at q2 = 4M2

D [Bobeth/Chrzaszcz/DvD/Virto ’17]

▶ branch cut is mapped onto unit circle in z
▶ real-valued q2 ≤ 4M2

D is mapped to real-valued z
▶ data and theory live insides the unit circle

▶ expand in z
+ resonances J/ψ, ψ(2S) can be included (via

explicit poles/Blaschke factors)
+ easy to use in a fit to theory and data
+ compatible with analyticity
- expansion coefficients unbounded!

Re z

Im z
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matrix elements H(λ) arise from nonlocal operator [Gubernari,DvD,Virto ’20]

Hµ ∼ ⟨K |Oµ(Q; x)|B⟩ Oµ(Q; x) ∼
∫

d4y eiQ·y T{Jµem(x + y), [C1O1 +C2O2](x)}

construct four-point operator to derive a dispersive bound

▶ define matrix element of “square” (i.e., hermitian) operator∫
d4x eiQ·x ⟨0| T{Oµ(Q; x)O†,ν(Q; 0)} |0⟩ ≡

[QµQν

Q2 − gµν

]
Π(Q2)

▶ Π(Q2) has two types of discontinuities
▶ from intermediate unflavoured states (cc, cccc, . . . )
▶ from intermediate bs-flavoured states (bs, bsg, bscc, . . . )
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z(4M2
D) = −1 1 = z(|q2| → ∞)

light-cone OPE

SL phase space

J/ψ,ψ(2S)

sb cut



Extrapolate Dispersion relation for Π 23/28

dispersive representation of the bs contribution to a derivative of Π

χ(Q2) ≡ 1
2!

[ d
dQ2

]2 1
2iπ

∞∫
(mb+ms)2

ds Discbs Π(s)
s −Q2 > 0 if Q2 < 0

▶ Discbs Π can be computed in the
local OPE

→ χOPE(Q2)

▶ Discbs Π can be expressed in
terms of the nonlocal form
factors |Hλ|2

→ χhad(Q2)

▶ global quark hadron duality suggests that χOPE(Q2) = χhad(Q2)
▶ parametrize Hλ ∝

∑
n aλ,n fn with orthonormal functions fn

⇒ dispersive bound: χOPE ≥
∑
n

|aλ,n|2

▶ first application of such a bound to nonlocal form factors
▶ technically more challenging than for local form factors
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▶ expand in z
▶ fn(z) orthogonal on arc
+ accounting for behaviour on arc produces

dispersive bound on each parameter ✓
[Gubernari/DvD/Virto ’20]

▶ turns (so far!) hardly quantifiable systematic
theory uncertainties into parametric uncertainties

▶ implemented in

▶ open source software at
github.com/eos/eos

▶ Python 3 interface, available via pip as
eoshep

Re z

Im z
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▶ predictions mutually compatible; slight change to the slope in Bs → ϕ due to
local FFs

▶ our uncertainties larger, but systematically improvable
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▶ substantial tensions in B(B → Kµ+µ−) and B(Bs → ϕµ+µ−), lower in
B(B → K ∗µ+µ−)

▶ tension in angular distribution in B → K ∗µ+µ− remains
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▶ no global fit yet
▶ large # of nuisance params makes

global fit difficult
▶ instead, three individual fits
▶ mutually compatible results!
▶ compatible with previous analyses

▶ fits use all available data,
incl. angular obs.

▶ substantial tensions in B → K and
Bs → ϕ, slightly lower in B → K ∗
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▶ phenomenology of rare B decays is a complicated business
▶ WET under good control
▶ local form factors see revitalized interest from lattice QCD
▶ non-local form factors now under reasonable theory control

▶ new approach to (B)SM predictions corroborates earlier results qualitatively
▶ larger uncertainties reduce significance of the anomalies somewhat
▶ uncertainties very conservative and systematically improvable

▶ still: a lot to do for phenomenologists, amongst others:
▶ performing a truly global fit in the new approach
▶ extending analysis to Λb → Λ transitions
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Joint LHCb measurement of RK and RK ∗
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[LHCb 2212.09153]

▶ lepton-flavour-nonuniversality in b → sℓ+ℓ− is
gone!

▶ not the longest standing anomaly by far!
▶ not the only one, either!

▶ I prefer to think of it as a precision
measurement of B(B → K (∗)e+e−)

▶ gives rise to a new anomaly
▶ B(B → Ke+e−) deviates from SM prediction by

roughly the same amount as B(B → Kµ+µ−)!
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