Search for heavy di-muon resonances + b-jets

Moo-or

Bee quark

Moo-or

Chris McNicol Warwick EPP Seminar – 7th March 2019

Contents

I will be describing the analysis I have been working on: <u>arXiv:1901.08144</u>

- Motivation
- Object & Event Selection
- Background & Signal Modeling
- Fit procedure
- Results
- ► New! Improved background rejection with BDT

Motivation

Object & Event Selection

Muons:

- 2 muons with opposite charge
- mu20_iloose (2015) / mu26_ivarmedium (2016) OR mu50 Trigger
- ▶ Muon *p*_T > 30 *GeV*

Jets:

- ▶ *p*_T > 25 *GeV*
- b-tagged with MV2c10 85% working point

Signal Regions

High mass ($m_{\mu\mu} > 160 \text{ GeV}$):

SRbVeto = 0 b-tagged jets

 $SRbTag \ge 1$ b-tagged jets

Control Regions

Low mass ($m_{\mu\mu} < 160 \text{ GeV}$):

 $\begin{aligned} \mathbf{CRbVeto} &= 0 \text{ b-tagged jets} \\ \mathbf{CRbTag} \text{ b-tag AND } E_{miss}^T < 100 \text{ } GeV \\ \mathbf{CRttbar} \text{ b-tag AND } E_{miss}^T > 100 \text{ } GeV \end{aligned}$

Background MC

- Z+jets Powheg+Pythia8 with AZNLO tune - sliced in M_{μμ} applying mass-dependent k-Factor to match NNLO, QCD & EW
- Splitting Zjets into light-flavour (LF) and heavy-flavour (HF) components using HadronConeExcITruthLabeIID.
- $t\bar{t}$ Powheg+Pythia6 with Perugia tune.
- Other backgrounds: Diboson (Sherpa using mass-sliced samples) & Single-Top (Powheg+Pythia)

Signal MC

- Use heavy Higgs model as proxy for any narrow scalar resonance
- Looking at b-associated (bbΦ) and gluon-fusion (ggF) production mechanisms
- *m*_Φ in the range 200 − 1000 *GeV* in steps of 100 *GeV*
- Generators: bbΦ (aMc@NLO), ggF (Powheg)

Signal Shape Interpolation

- Double-sided Crystal Ball models signal well across the mass range
- Parameterize each DCSB parameter with a polynomial
- Verify by removing templates and compare with interpolated shape

DSCB Parameter	Polynomial
Normalisation	$a_N + b_N m_{\Phi} + c_N m_{\Phi}^2$
Mean (x̄)	$a_{\overline{x}} + b_{\overline{x}} m_{\Phi}$
Width (o)	$a_{\sigma} + b_{\sigma} m_{\Phi} + c_{\sigma} m_{\Phi}^2$
α_L	$a_{\alpha_L} + b_{\alpha_L} m_{\Phi}$
nL	$a_{n_L} + b_{n_L} m_{\Phi}$
α _H	$a_{\alpha_H} + b_{\alpha_H} m_{\Phi}$
n _H	a _{nH}

$$DSCB(M_{\mu\mu};\bar{\mathbf{x}},\sigma,\alpha_{L},\alpha_{H},n_{L},n_{H}) = \begin{cases} e^{-\left(\frac{(M_{\mu\mu}-\bar{\mathbf{x}})^{2}}{2\sigma^{2}}\right)} & \text{for } \alpha_{L} < \frac{M_{\mu\mu}-\bar{\mathbf{x}}}{\sigma} < \alpha_{H} \\ = \left(\frac{n_{L}}{|\alpha_{L}|}\right)^{n_{L}} \times \left(\frac{n_{L}}{|\alpha_{L}|} - |\alpha_{L}| - \frac{M_{\mu\mu}-\bar{\mathbf{x}}}{\sigma}\right)^{-n_{L}} & \text{for } \alpha_{L} < \frac{M_{\mu\mu}-\bar{\mathbf{x}}}{\sigma} \\ = \left(\frac{n_{H}}{|\alpha_{H}|}\right)^{n_{H}} \times \left(\frac{n_{H}}{|\alpha_{H}|} - |\alpha_{H}| - \frac{M_{\mu\mu}-\bar{\mathbf{x}}}{\sigma}\right)^{-n_{H}} & \text{for } \alpha_{H} < \frac{M_{\mu\mu}-\bar{\mathbf{x}}}{\sigma} \end{cases}$$

Fit details

- 3 background normalisation factors - freely floating
- A <u>lot</u> of Nuisance parameters covering uncertainties
- Binned likelihood fit, test statistics:

$$\begin{split} q_0 &= \begin{cases} -2\log\frac{\mathcal{L}(\mu,\hat{\hat{\theta}}(\mu))}{\mathcal{L}(0,\hat{\hat{\theta}}(0))} & \hat{\mu} \geq 0\\ 0 & \hat{\mu} < 0 \end{cases} \\ \tilde{q}_{\mu} &= \begin{cases} -2\log\frac{\mathcal{L}(\mu,\hat{\hat{\theta}}(\mu))}{\mathcal{L}(0,\hat{\hat{\theta}}(0))} & \hat{\mu} < 0\\ -2\log\frac{\mathcal{L}(\mu,\hat{\hat{\theta}}(\mu))}{\mathcal{L}(\mu,\hat{\hat{\theta}})} & 0 \leq \hat{\mu} \leq \mu\\ 0 & \hat{\mu} < \mu \end{cases} \end{split}$$

Results - Control Regions

0 ATI AS Internal ATLAS Internal Post-fit Control Regions: each 1 bin Minth Bell tt and Zjets+LF ► Data Non Z+jets[LF Z+jets]HF ATI AS Internal normalisations adjusted by 2% Zjets+HF scaled by ► 46% to account for b متبا متعمل بمعتا متبعا متعام multiplicity modeling deficiencies Normalisation Factor Real data Asimov data 1.46 ± 0.26 mu_Zjets_HF 1.00 ± 0.23 mu_Zjets_LF 1.00 ± 0.02 1.02 ± 0.02 1.02 ± 0.04 mu_ttbar 1.00 ± 0.04

Results

Results - Signal Regions

1

Results - $p_0 bb\Phi$

Results - p₀ ggF

Results - upper limits

BDT Selection

Current Selection quite loose ttbar ► bbH400 dRMuonBlet and "model independent" 0.6 Can we gain sensitivity if we ► 0.5 have a better selection? 0.4 Several good, correlated ► discriminating variables 0.0 Ideal for an MVA! ttbar D bbH400 MET Correlations ttbar 0.025 subleadLepEta 0.75 lead eoEta 0.020 0.50 niets nBlets60 0.25 nB(ets85 0.015 0.00 MET -0.25 DPHIIMET 0.010 dRMuonBlet -0.50 DEtal -0.75 DPhil 0.005 Deta 0.000 175 25 50 100 125 150 200

BDT Selection

BDT details

- Train a BDT with tt as "signal"
- Approximately 1M events for each sample
- Training on 30%
- Using AdaBoost classifier in scikit-learn
- Good discrimination
- Many possible optimisations, not a lot of time!

HyperParameter	Value	
Max_depth	7	
Min_samples_leaf	100	
n_estimators	1500	
learning_rate	0.05	

BDT Selection

UNLIMITED POWER!

U

Sensitivity Gains

- Scan through cuts on BDT score
- Check $\frac{S}{\sqrt{B}}$ in the signal peak
- Best gains in sensitivity at low mass but with a tighter cut
- Perhaps indicates choosing different cuts for different masses or even training separate BDTs for each mass although there are lots of complications with this

Conclusion

- No significant excesses above Standard Model expectations
- Cross-section times Branching Ratio limits set
- Use of BDT selection to improve sensitivity looks promising
- Thesis mostly plagiarised written

Backup

CMS 28GeV 'bump'

- Recent CMS paper on arXiv looks for dimuon resonances at low mass, with associated b-jets, in 8 TeV and 13 TeV data.
- Excesses seen at $m_{\mu\mu} \approx 28 \text{ GeV}$, particularly in 8 TeV data.
- Cross-check with ATLAS 13 TeV data, since bHmumu ATLAS analysis has similar signature.

POI uncertainty breaking

POI uncertainty breaking for different systematic sources from the combined fit with the 400 GeV bbH signal. Dominated by data statistics, then MC statistics.

POI	Central Value
SigXsecOverSM	-0.0272564
Set of nuisance	Impact on error
parameters	
Total	$^{+0.417}_{-0.41}, \pm 0.414$
DataStat	$^{+0.365}_{-0.357},\pm0.361$
FullSyst	$^{+0.202}_{-0.2},\pm 0.201$
All normalizations	$^{+0.0517}_{-0.0392}, \pm 0.0455$
MII Shape	$^{+0.0712}_{-0.0768},\pm0.074$
Muon	$^{+0.0628}_{-0.0427}, \pm 0.0528$
Btag	$^{+0.0198}_{-0.0243}, \pm 0.0221$
Jet/MET	$^{+0.00808}_{-0.00915}, \pm 0.00861$
Ratio	$^{+0.031}_{-0.0267},\pm 0.0289$
Modeling	$^{+0.00971}_{-0.0196},\pm 0.0146$
Pileup reweighting	$^{+0.01}_{-0.0131}, \pm 0.0116$
Signal theory	$^{+0.00489}_{-0.0064}, \pm 0.00565$
Luminosity	± 0.0123 ± 0.0116
MC stat	$^{+0.139}_{-0.143}, \pm 0.141$

Backup

Pulls

►

top: asimov fit, bottom: data in control regions

Signal Interpolation - Quality of fit

The interpolated pdf (green), calculated when each sample is removed from the fit, remains a good fit.

The shape and normalisation match the MC templates across the mass range.

Ptll reweight - bVeto leadMuon pT

Backup

Ptll reweight - Signal Regions

Effect of Ptll reweight much smaller than Zjets modeling uncertainties currently applied. For b-Tag signal region (for b-Veto region, reweighting has smaller effect):

Experimental Systematic Uncertainties

Include recomended systematics for following objectes are varied coherently between signal and backgrounds:

- muon (trigger, reco, momentum scale and resolution, muon TTVA, isolation and ID -(BadMuonSys for use with High pT working point)
- jet (use 21NP scheme)
- flavour tagging (use reduced scheme with 13 NPs)
- MET (SoftTrack Reso systs, and Scale up and Down)
- pile-up rescaling and pile-up rejection systematics

Modelling and Theoretical Systematic Uncertainties

- Theory uncertainties due to PDFs, α_S, QCD scale and EW corrections for Z+LF (both norm. and shape).
- ► Shape uncertainty on the m_{ll} for Z+H.F.
- Shape uncertainty on the m_{\parallel} for $t\bar{t}$ process, following recomendations from Top group
- Control Region to Signal Region extrapolation uncertainties

The theory uncertainties for Z+jets calculated by the Z^{prime} analysis applied as shape-only to both the Z+LF and Z+HF components.

Systematic uncertainty for Z+HF component

Z+jets modelling comparison at truth level of m_{ll} dsitrubution in the range $m_{ll} > 160 \text{ GeV}$ between POWHEG, MEPSatNLO and MADGRAPH

- LEFT: the fraction of $Z + \ge 1$ b-jet events
- ▶ RIGHT: log10(m_{\parallel}) for $Z + \ge 1$ b-jet events

A shape systematic uncertainty as a function of truth m_{ll} is defined to cover the differences: $\pm 0.4 \times \log_{10} \frac{m_{ll}}{300}$.

Systematic uncertainty for ttbar background

Following reccomendations from Top group, a shape systematic uncertainty is estimated comparing m_{ll} shape for different background samples.

- Powheg+Pythia6 (DSID 410000)
- Powheg+Pythia6-radHi (DSID 410001)
- Powheg+Pythia6-radLo (DSID 410002)
- aMCatNLOHerwiggpp ME/shower (DSID 410003)
- PowegHerwiggpp shower (DSID 410004)

A functional form is chosen to encompass the differences: $\pm 0.2 \times \log_{10} \frac{m_{ll}}{300}$. Applied using reco-level m_{ll} .

Extrapolation Uncertainty

Uncertainty on the relative normalisation for the $t\bar{t}$, Z+HF and Z+LF processes in the control and signal regions. Estimated for $t\bar{t}$ as acceptance ratio between the signal and the $t\bar{t}$ control region for different MC samples.

Ratio_TTBAR_CRSR: 3.5 %

We use three extrapolation uncertainties for the Z+jets backgrounds.

- Ratio_ZjetsLF_bVetobTag uncertainty on extrapolation of ZjetsLF from bVeto CR to bTag SR Value 27%. Applied in CRbTag and SRbTag
- Ratio_ZjetsLF_CRSR uncertainty on extrapolation of ZjetsLF from bVeto CR to bVeto SR Value 2%. Applied in all SRs.
- Ratio_ZjetsHF_CRSR uncertainty on extrapolation of ZjetsHF from bTag CR to bTag SR Value 5%. Applied in all SRs.

