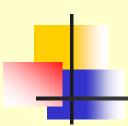
A precision test of lepton universality in K⁺→l⁺v decays at CERN NA62

Evgueni Goudzovski

(University of Birmingham)


email: eg@hep.ph.bham.ac.uk

Outline:

- 1) Introduction: purely leptonic meson decays
- 2) Overview of NA48/NA62 experiments at CERN
- 3) Analysis of NA62 dedicated $K^+ \rightarrow l^+ v$ sample (2007)
- 4) Competitors, comparison to world data
- 5) The future: NA62 phase II
- 6) Summary

Introduction: purely leptonic meson decays

Flavour physics in the LHC era

Searches for physics beyond the Standard Model

Energy Frontier (LHC)

Determine the <u>energy scale</u> of NP by direct production of NP particles

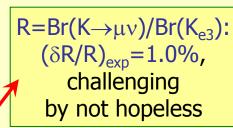
Rarity (High Intensity) Frontier

Determine the <u>flavour structure</u> of NP via virtual effects in precision observables: deviations from precise <u>SM</u> predictions in <u>rare or forbidden processes</u>.

Physics programme at the Rarity Frontier is complementary to direct searches for new particles at the Energy Frontier

Leptonic meson decays: P+→l+v

SM contribution is helicity suppressed:


Sizeable tree level charged Higgs (H[±]) contributions in models with two Higgs doublets (2HDM including SUSY) PRD48 (1993) 2342; Prog. Theor. Phys. 111 (2004) 295

(numerical examples for $M_H = 500 \text{GeV/c}^2$, $\tan \beta = 40$)

BaBar, Belle: $Br_{exp}(B \to \tau \nu) = (1.42 \pm 0.43) \times 10^{-4}$

Standard Model: $Br_{SM}(B \rightarrow \tau \nu) = (1.33 \pm 0.23) \times 10^{-4}$

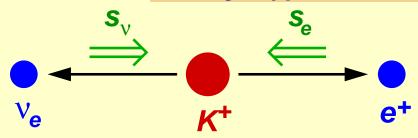
(SM uncertainties: $\delta f_B/f_B=10\%$, $\delta |V_{ub}|^2/|V_{ub}|^2=13\%$)

PRL100 (2008) 241802 $f_{Ds}^{(QCD)}=(241\pm3)MeV$ $f_{Ds}^{(exp)} = (277 \pm 9) \text{MeV}$

~4 σ discrepancy + new data: PRD79 (2009) 052001

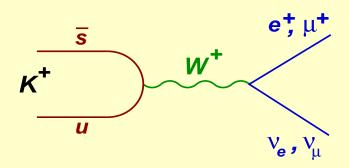
 $\Delta\Gamma/\Gamma_{SM}=1.07\pm0.37$

(JHEP 0811 (2008) 42)


$R_K = K_{e2}/K_{\mu 2}$ in the SM

Observable sensitive to lepton flavour violation and its SM expectation:

$$R_{K} = \frac{\Gamma(K^{\pm} \to e^{\pm}\nu)}{\Gamma(K^{\pm} \to \mu^{\pm}\nu)} = \frac{m_{e}^{2}}{m_{\mu}^{2}} \cdot \left(\frac{m_{K}^{2} - m_{e}^{2}}{m_{K}^{2} - m_{\mu}^{2}}\right)^{2} \cdot (1 + \delta R_{K}^{rad.corr.})$$


(similarly, R_{π} in the pion sector)

Helicity suppression: f~10⁻⁵

- <u>SM prediction:</u> excellent <u>sub-permille</u> accuracy due to cancellation of hadronic uncertainties.
- Measurements of R_K and R_{π} have long been considered as tests of lepton universality.
- Recently understood: helicity suppression of R_K might enhance sensitivity to non-SM effects to an experimentally accessible level.

Radiative correction (few %) due to $K^+ \rightarrow e^+ v\gamma$ (IB) process, by definition included into R_K

$$R_K^{SM} = (2.477 \pm 0.001) \times 10^{-5}$$

 $R_{\pi}^{SM} = (12.352 \pm 0.001) \times 10^{-5}$

Phys. Lett. 99 (2007) 231801

$R_K = K_{e2}/K_{u2}$ beyond the SM

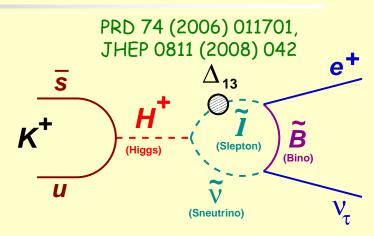
2HDM – tree level (including SUSY)

K₁₂ can proceed via exchange of charged Higgs H[±] instead of W[±]

 \rightarrow Does not affect the ratio R_K

<u> 2HDM – one-loop level</u>

Dominant contribution to ΔR_{κ} : H[±] mediated LFV (rather than LFC) with emission of v_{τ}


 \rightarrow R_K enhancement can be experimentally accessible

$$\mathbf{R}_{\mathbf{K}}^{\mathsf{LFV}} \approx \mathbf{R}_{\mathbf{K}}^{\mathsf{SM}} \left[\mathbf{1} + \left(\frac{\mathbf{m}_{\mathbf{K}}^{\mathbf{4}}}{\mathbf{M}_{\mathbf{H}^{\pm}}^{\mathbf{4}}} \right) \left(\frac{\mathbf{m}_{\tau}^{\mathbf{2}}}{\mathbf{M}_{\mathbf{e}}^{\mathbf{2}}} \right) |\mathbf{\Delta_{13}}|^{\mathbf{2}} \mathrm{tan}^{\mathbf{6}} \, \boldsymbol{\beta} \right]$$

Up to $\sim 1\%$ effect in large (but not extreme) tanβ regime with a massive H[±]

Example:

 $(\Delta_{13}=5\times10^{-4}, \tan\beta=40, M_{H}=500 \text{ GeV/c}^2)$ lead to $R_{\kappa}^{MSSM} = R_{\kappa}^{SM}(1+0.013)$.

Analogous SUSY effect in pion decay is suppressed by a factor $(M_{\pi}/M_{K})^{4} \approx 6 \times 10^{-3}$

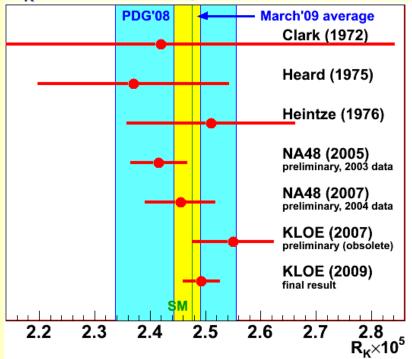
(see also PRD76 (007) 095017)

Large effects in B decays due to $(M_B/M_K)^4 \sim 10^4$:

 $B_{\mu\nu}/B_{\tau\nu} \rightarrow \sim 50\%$ enhancement;

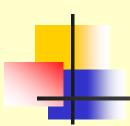
 $B_{ev}/B_{Tv} \rightarrow$ enhanced by ~one order of magnitude.

Out of reach: $Br^{SM}(B_{ev}) \approx 10^{-11}$



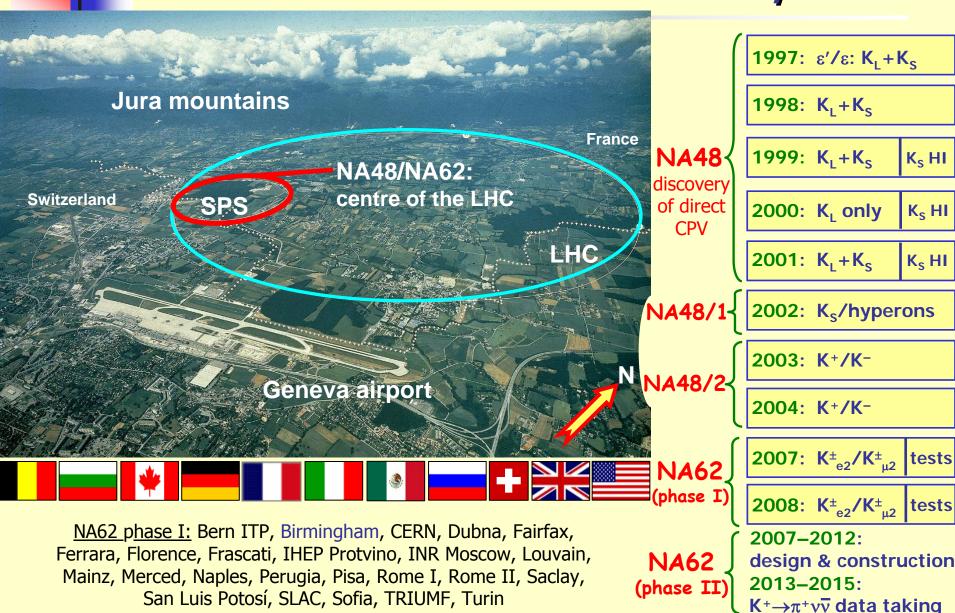
$R_K & R_{\pi}$: experimental status

Kaon experiments:

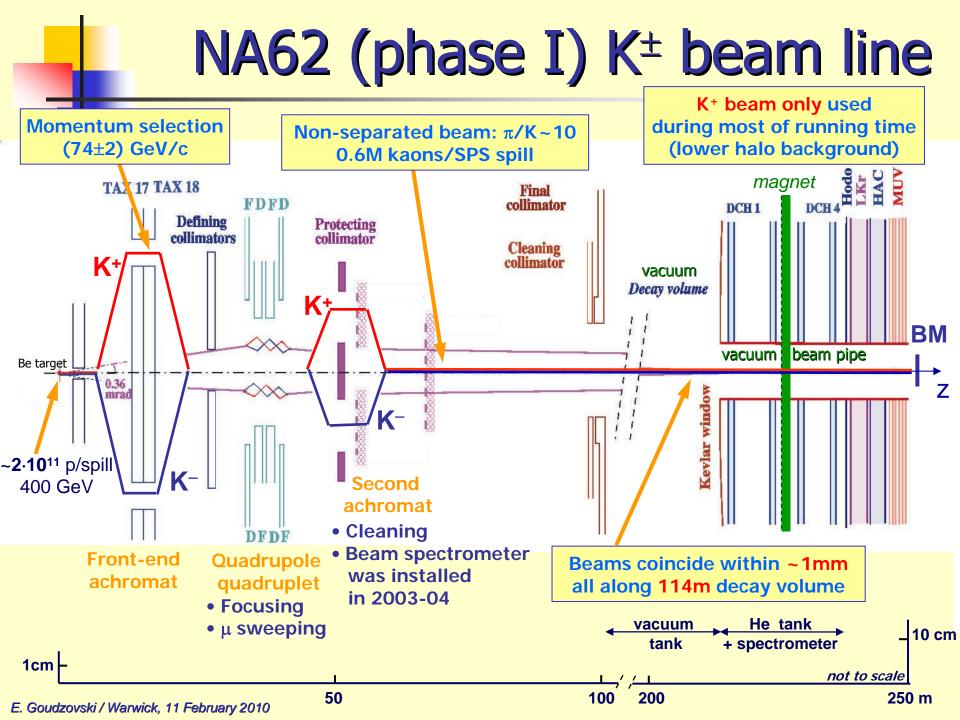

- → PDG'08 average (1970s measurements): $R_K = (2.45\pm0.11)\times10^{-5} (\delta R_K/R_K = 4.5\%)$
- \rightarrow Recent improvement: KLOE (Frascati). Data collected in 2001–2005, 13.8K K_{e2} candidates, 16% background. R_K=(2.493±0.031)×10⁻⁵ (δ R_K/R_K=1.3%) (EPJ *C*64 (2009) 627)
- NA62 (phase I) goal: dedicated data taking strategy, ~150K K_{e2} candidates, <10% background, δR_K/R_K<0.5% : a stringent SM test.

R_K world average (March 2009)

Pion experiments:


- → PDG'08 average (1980s, 90s measurements): $R_{\pi} = (12.30 \pm 0.04) \times 10^{-5} \ (\delta R_{\pi}/R_{\pi} = 0.3\%)$
- → Current projects: PEN@PSI (stopped π) running (arXiv:0909.4358) PIENU@TRIUMF (in-flight) proposed (T. Numao, PANIC'08 proceedings, p.874) $\delta R_{\pi}/R_{\pi}\sim 0.05\%$ foreseen (similar to SM precision)

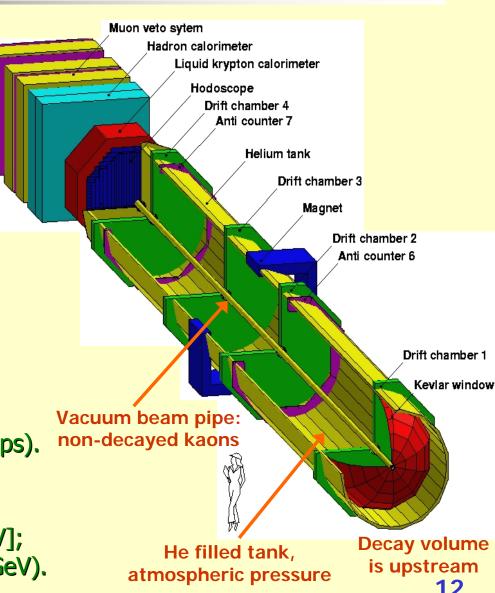
NA48/NA62: kaon programme at CERN



CERN NA48/NA62

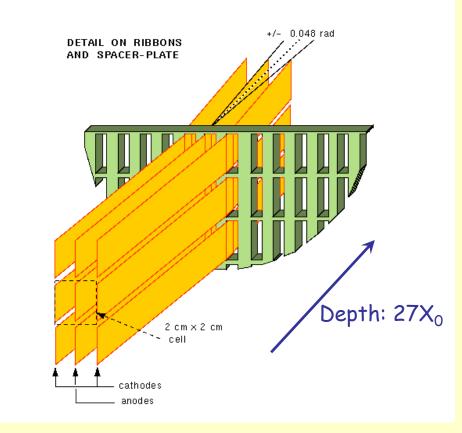
NA48/NA62 K[±] beam line Kaon decays in flight: beamline+setup are ~700 feet long

4

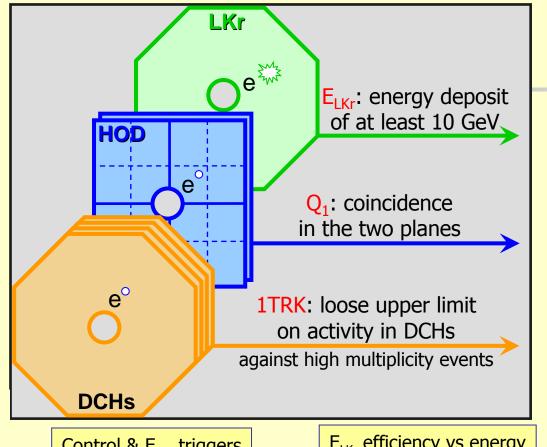

Data taking & detector: 2007/08

Data taking

- Four months in 2007:
 - ~400K SPS spills,
 - ~300TB of raw data handled
- Two weeks in 2008: dedicated data sets allowing reduction of the systematic uncertainties.


Principal subdetectors for R_K:

- Magnetic spectrometer (4 DCHs):
 4 views/DCH: redundancy ⇒ efficiency;
 Δp/p = 0.47% + 0.020%*p [GeV/c]
- Hodoscope fast trigger, precise t measurement (150ps).
- Liquid Krypton EM calorimeter (LKr) High granularity, quasi-homogenious; $\sigma_{\text{E}}/\text{E} = 3.2\%/\text{E}^{1/2} + 9\%/\text{E} + 0.42\% \text{ [GeV]};$ $\sigma_{\text{x}}=\sigma_{\text{y}}=0.42/\text{E}^{1/2} + 0.6\text{mm (1.5mm@10GeV)}.$


Electromagnetic LKr calorimeter

Transversal segmentation: 13,248 cells (2×2cm²), no longitudinal segmentation.

Essential for the present analysis: (1) electron/muon identification (2) photon veto.

Trigger logic

Minimum bias trigger in 2007: (high efficiency, but low purity)

 $K_{\mu 2}$ condition: $Q_1 \times 1$ TRK/D, downscaling (D) 50 to 150. Purity ~2% (rate dominated by the beam halo).

 $\frac{\text{K}_{e2}}{\text{condition:}} \ Q_1 \times \text{E}_{LKr} \times 1 \text{TRK.}$ Purity $\sim 10^{-5}$ (same order as R_K).

- Efficiencies of the trigger components are monitored using control triggers.
- Measured E_{LKr} inefficiency for electrons: <0.05% for in the relevant momentum range.

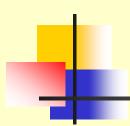
Control & E_{LKr} triggers

0.8

0.8

0.6

0.4


E_{LKr} triggers

10 GeV
threshold

0.4

Energy deposit, GeV
20 40 60

20 40 60

Dedicated $K\rightarrow lv$ sample: analysis of 2007 run

Measurement strategy

- (1) K_{e2}/K_{u2} candidates are collected <u>simultaneously</u>:
- the result does not rely on kaon flux measurement;
- several systematic effects cancel at first order (e.g. reconstruction/trigger efficiencies, time-dependent effects).
- (2) counting experiment, independently in 10 lepton momentum bins (owing to strong momentum dependence of backgrounds and event topology)

$$R_{K} = \frac{N(K_{e2}) - N_{B}(K_{e2})}{N(K_{\mu 2}) - N_{B}(K_{\mu 2})} \cdot \frac{A(K_{\mu 2}) \times f_{\mu} \times \epsilon(K_{\mu 2})}{A(K_{e2}) \times f_{e} \times \epsilon(K_{e2})} \cdot \frac{1}{f_{LKr}}$$

 $N(K_{e2}), N(K_{u2})$: numbers of selected K_{12} candidates;

 $N_B(K_{e2})$, $N_B(K_{u2})$:

numbers of background events; $\searrow \bigvee_{\text{of systematic errors}} N_B(K_{e2})$: main source of systematic errors

 $A(K_{e2}), A(K_{u2})$: MC geometric acceptances (no ID);

 f_{e} , f_{u} : directly measured particle ID efficiencies;

 $\varepsilon(K_{e2})/\varepsilon(K_{u2})>99.9\%$: E_{LKr} trigger condition efficiency;

 $f_{1Kr} = 0.9980(3)$: global LKr readout efficiency.

- (3) MC simulations used to a limited extent only:
- Geometrical part of the acceptance correction (not for particle ID);
- simulation of "catastrophic" bremsstrahlung by muons.

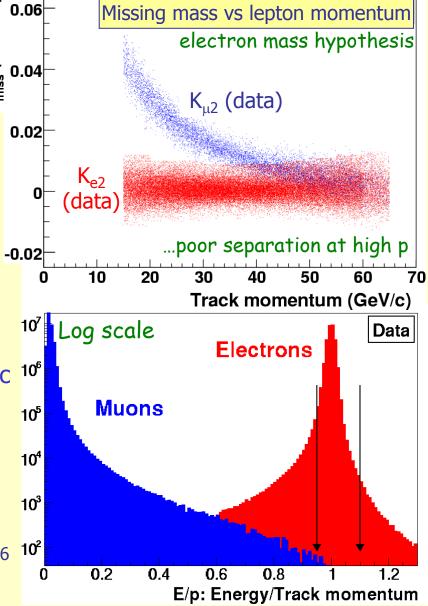
K_{e2} vs K_{μ2} selection

Large common part (topological similarity)

- one reconstructed track;
- geometrical acceptance cuts;
- K decay vertex: closest approach of track & nominal kaon axis;
- veto extra LKr energy deposition clusters;
- track momentum: 15GeV/c<p<65GeV/c.

Kinematic separation

missing mass $M_{miss}^2 = (P_K - P_l)^2$


 P_K : average measured with $K_{3\pi}$ decays

 \rightarrow Sufficient K_{e2}/K_{u2} separation at p_{track}<25GeV/c

Separation by particle ID

E/p = (LKr energy deposit/track momentum). 0.95 < E/p < 1.10 for electrons, E/p < 0.85 for muons.

 \rightarrow Powerful μ^{\pm} suppression in e^{\pm} sample: $f\sim10^6$

K_{μ2} background in K_{e2} sample

Main background source

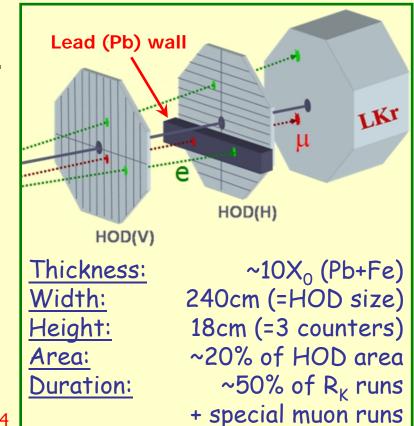
Muon "catastrophic" energy loss in LKr by emission of energetic bremsttrahlung photons. $P(\mu \rightarrow e) \sim 3 \times 10^{-6}$ (and momentum-dependent).

 $P(\mu \rightarrow e)/R_K \sim 10\%$:

 $K_{\mu 2}$ decays represent a major background

Theoretical bremsstralung cross-section [Phys. Atom. Nucl. 60 (1997) 576]

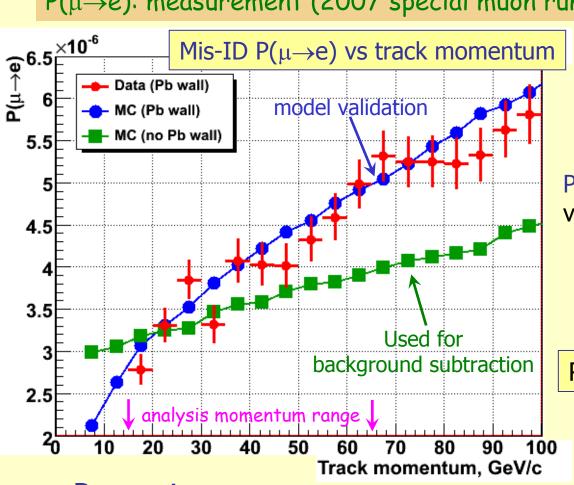
must be validated in the region $(E_{\gamma}/E_{\mu})>0.9$ by a <u>direct measurement</u> of $P(\mu\rightarrow e)$ to $\sim 10^{-2}$ relative precision.


Obtaining pure muon samples

Electron contamination due to $\mu \rightarrow e$ decay: ~10⁻⁴.

Pb wall ($\sim 10X_0$) placed between the HOD planes:

tracks traversing the wall and having E/p>0.95


are sufficiently pure muon samples (electron contamination $<10^{-7}$).

$K_{\mu 2}$ background (2)

 $P(\mu \rightarrow e)$: measurement (2007 special muon run) vs Geant4-based simulation

[Cross-section model: Phys. Atom. Nucl. 60 (1997) 576]

Excellent data/MC agreement for the Pb wall installed

 $P(\mu \rightarrow e)$ is modified by the Pb wall via two competing mechanisms:

- 1) ionization losses in Pb (low p);
- 2) bremstrahlung in Pb (high p).
- → a significant MC correction

Result: $B/(S+B) = (6.28\pm0.17)\%$

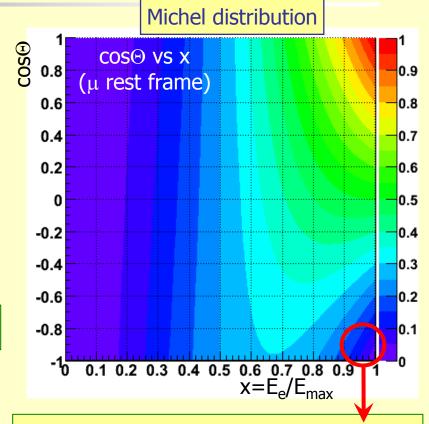
(uncertainty is due to the limited size of the data sample used to validate the cross-section model)

Prospects:

- The 2008 special muon sample is twice as large as the 2007 one;
- Muons from regular K_{u2} decays from kaon runs with the Pb wall installed.

$K_{\mu 2}$ with $\mu \rightarrow e$ decay in flight

Muons from $K_{\mu 2}$ decay are fully polarized: Michel electron distribution

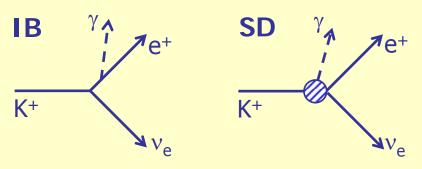

$$d^2\Gamma/dxd(\cos\Theta) \sim x^2[(3-2x) - \cos\Theta(1-2x)]$$

$$x = E_e/E_{max} \approx 2E_e/M_{II}$$

 Θ is the angle between p_e and the muon spin (all quantities are defined in muon rest frame).

Result: $B/(S+B) = (0.23\pm0.01)\%$

Important but not dominant background

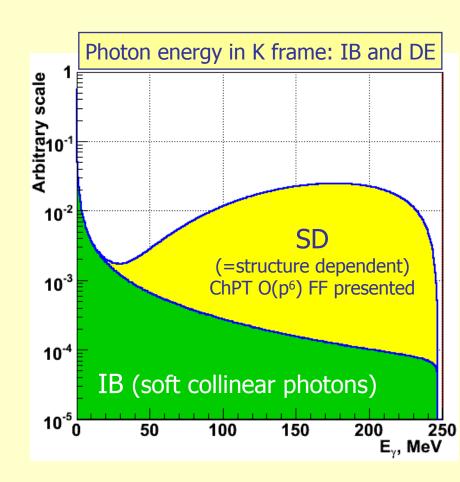


Only energetic forward electrons (passing M_{miss} , E/p, vertex CDA cuts) are selected as K_{e2} candidates: (high x, low $cos\Theta$).

They are naturally suppressed by the muon polarisation

Radiative $K^+\rightarrow e^+\nu\gamma$ process

By definition, R_K is inclusive of the IB part of the radiative $K_{e2\gamma}$ process



- The K_{e2γ} (SD) process is a background.
- SD is not helicity suppressed, and its rate is similar to that of K_{e2}.
- Known to a limited precision of ~15%.

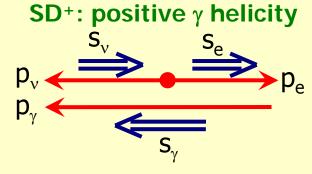
(NB: a recent 4% precision measurement, EPJC64 (2009) 627, not used in present analysis)

Experiment: BR= $(1.52\pm0.23)\times10^{-5}$ (average of 1970s measurements)

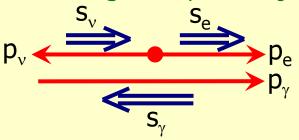
Theory: BR= $(1.38-1.53)\times10^{-5}$ [PRD77 (2008) 014004] (uncertainty due to a model-dependent form factor)

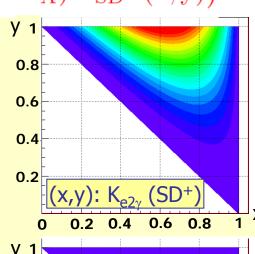
$K^+ \rightarrow e^+ v\gamma$ (SD) decay

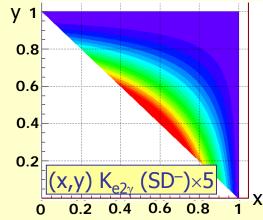
$$\frac{\mathrm{d}\Gamma(\mathrm{K}\to\mathrm{e}\nu\gamma)}{\mathrm{d}\mathrm{x}\mathrm{d}\mathrm{y}} = \underbrace{\rho_{\mathrm{IB}}(\mathrm{x},\mathrm{y})}_{\text{helicity suppressed}} + \underbrace{\rho_{\mathrm{SD}}(\mathrm{x},\mathrm{y})}_{\text{negligible}} + \underbrace{\rho_{\mathrm{INT}}(\mathrm{x},\mathrm{y})}_{\text{negligible}}$$


Kinematic variables

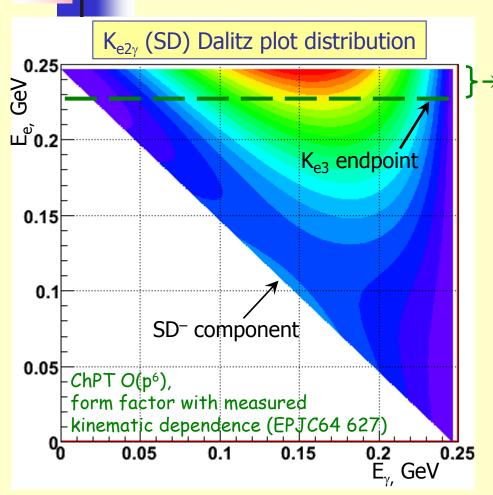
(kaon frame):
$$x = 2E_{\gamma}/M_{K}, \quad y = 2E_{e}/M_{K}$$


$$\rho_{\rm SD}(x,y) = \frac{G_{\rm F}^2 |V_{\rm us}|^2 \alpha}{64\pi^2} M_{\rm K}^5 \left((f_{\rm V} + f_{\rm A})^2 \, f_{\rm SD+}(x,y) + (f_{\rm V} - f_{\rm A})^2 \, f_{\rm SD-}(x,y) \right)$$


Two non-interfering contributions SD+ and SD-: emission of photons with positive and negative helicity


> $f_{V}(x)$, $f_{A}(x)$: model-dependent effective vector and axial couplings

SD-: negative γ helicity



4

$K^+\rightarrow e^+\nu\gamma$ (SD+) background

 $K_{e2\gamma}$ (SD⁻) background is negligible, peaking at $E_e = E_{max}/2 \approx 123$ MeV

Only energetic electrons (E_e*>230MeV) are compatible to K_{e2} kinematic ID and contribute to the background

This region of phase space is accessible for direct BR and form-factor measurement (being above the $E_e^*=227$ MeV endpoint of the K_{e3} spectrum).

SD background contamination

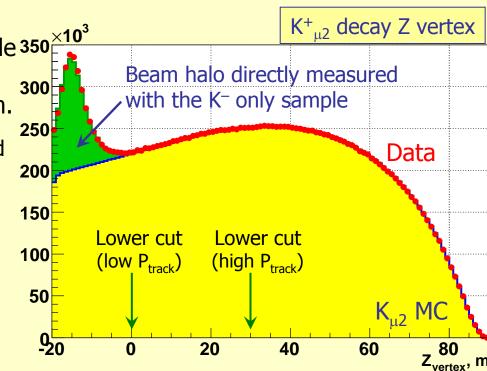
$$B/(S+B) = (1.02\pm0.15)\%$$

(uncertainty due to PDG BR, to be improved by NA62 & KLOE)

Beam halo background

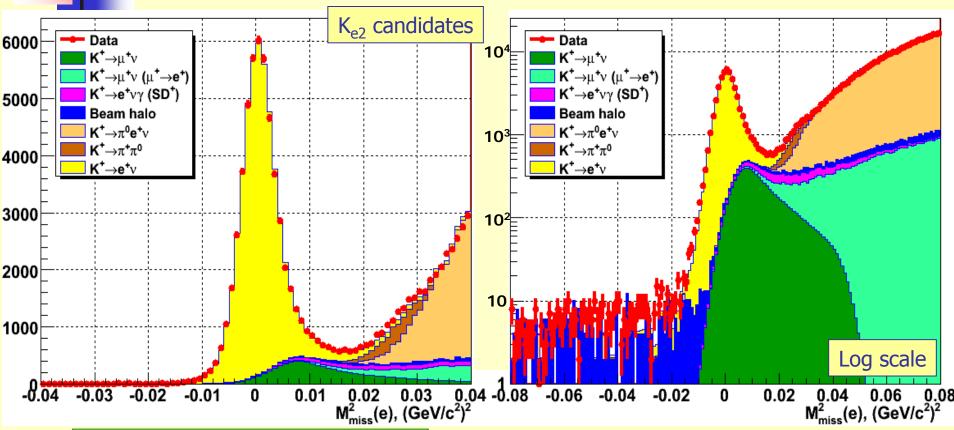
Electrons produced by beam halo muons via $\mu \rightarrow e$ decay can be kinematically and geometrically compatible to genuine K_{e2} decays

Background measurement:


- Halo background much higher for K_{e2}^- (~20%) than for K_{e2}^+ (~1%).
- Halo background in the K_{u2} sample is considerably lower.
- ~90% of the data sample is K⁺ only, ~10% is K⁻ only.
- K⁺ halo component is measured directly with the K⁻ sample and vice versa.

The background is measured to sub-permille 350 precision, and strongly depends on decay vertex position and track momentum.

The selection criteria (esp. Z_{vertex}) are optimized to minimize the halo background.

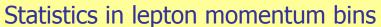

$$B/(S+B) = (0.45\pm0.04)\%$$

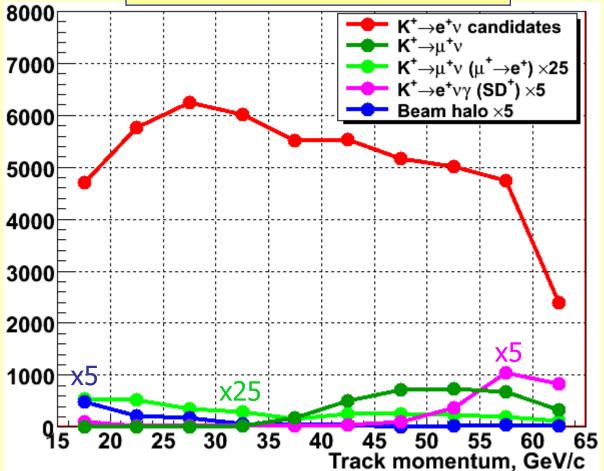
Uncertainty is due to the limited size of the control sample.

K_{e2}: partial (40%) data set



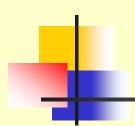
51,089 K⁺ \rightarrow e⁺ ν candidates, 99.2% electron ID efficiency, B/(S+B) = (8.0±0.2)%


cf. KLOE: 13.8K candidates (K⁺ and K⁻), ~90% electron ID efficiency, 16% background

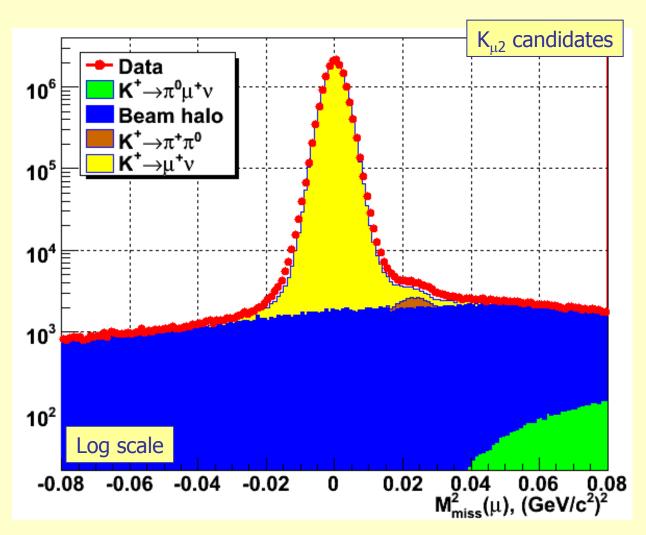

NA62 estimated total K_{e2} sample: ~120K K⁺ & ~15K K⁻ candidates.

Proposal (CERN-SPSC-2006-033): 150K candidates

Backgrounds: summary


(selection criteria, e.g. Z_{vertex} and M_{miss}^2 , are optimised individually in each P_{track} bin)

Backgrounds


Source	B/(S+B)
$K_{\mu 2}$	(6.28±0.17)%
$K_{\mu 2} (\mu \rightarrow e)$	(0.23±0.01)%
$K_{e2\gamma}$ (SD+)	(1.02±0.15)%
Beam halo	(0.45±0.04)%
K _{e3}	0.03%
$K_{2\pi}$	0.03%
Total	(8.03±0.23)%

Record K_{e2} sample: 51,089 candidates with low background $B/(S+B) = (8.0\pm0.2)\%$

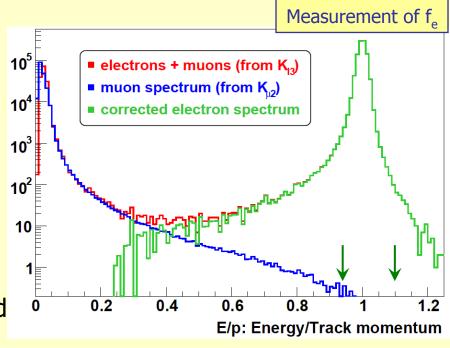
Lepton momentum bins are differently affected by backgrounds and thus the systematic uncertainties. 26

K_{u2}: partial (40%) data set

15.56M candidates with low background B/(S+B) = 0.25%

 $(K_{\mu 2}$ trigger was pre-scaled by D=150)

The only significant background source is the beam halo.

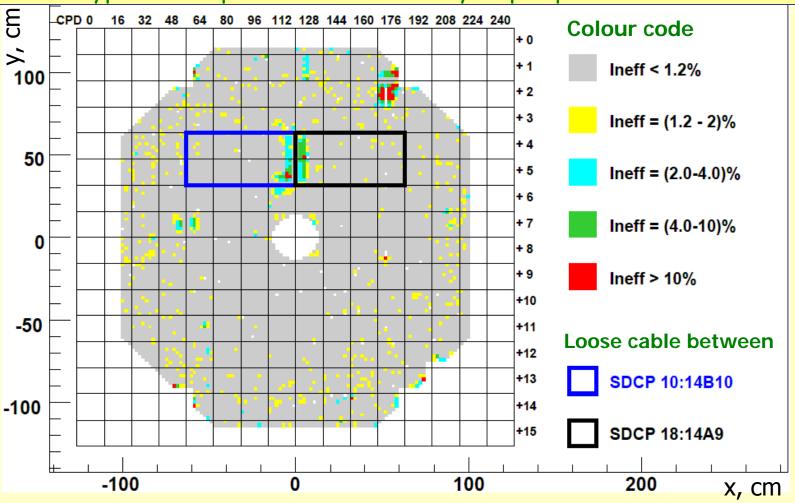

Electron ID efficiency (f_e)

Measured directly with samples of pure electrons:

- $K^{\pm} \rightarrow \pi^0 e^{\pm} v$ from main K^{\pm} data taking (limited track momentum p<50GeV/c);
- K_L→π[±]e[±]v from a special 15h K_L run (wider track momentum range, due to broad K_L momentum spectrum).

Measurement with $K^{\pm} \rightarrow \pi^0 e^{\pm} v$ decays:

- Selected event sample consists of $K^{\pm} \rightarrow \pi^0 e^{\pm} \nu$ and some $K^{\pm} \rightarrow \pi^0 \mu^{\pm} \nu$ events;
- To subtract the muon component, normalised muon E/p spectrum measured using the $K_{\mu 2}$ sample is used.



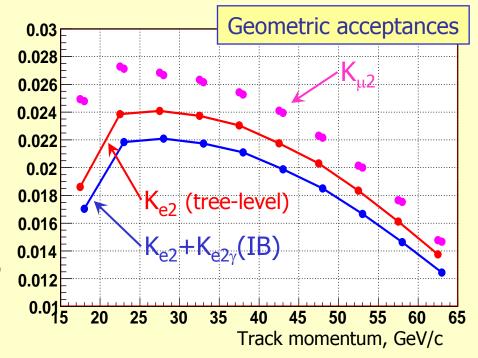
Measurement with $K_L \rightarrow \pi^{\pm} e^{\pm} v$ is more complicated: the pion component also contributes to the spectrum.

Excellent agreement between K^{\pm} and K_{L} methods. Average f_{e} =99.15%, precision <0.1%, weak momentum dependence.

LKr inefficiency map

LKr efficiency is monitored vs time for every 2×2cm² cell within acceptance. A typical example of the inefficiency map is presented below.

Higher inefficiency is at low momentum \rightarrow room for optimization


Other systematic effects

Geometric acceptance correction

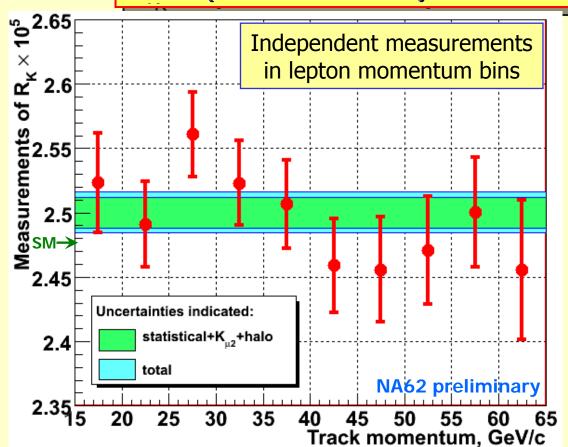
- p_{track}-dependent, A(K_{μ2})/A(K_{e2})~1.3;
- strongly affected by the radiative (IB) corrections to K_{e2};

IB process simulated according to V. Cirigliano and I. Rosell, Phys. Lett. 99 (2007) 231801

• conservative systematic uncertainty for prelim. result: $\delta R_K/R_K=0.3\%$, due to approximations used in IB simulation.

Trigger efficiency correction

- E_{LKr} efficiency directly affects R_K;
- monitored with control trigger samples;
- conservative systematic uncertainty for preliminary result: $\delta R_K/R_K=0.3\%$ (due to dead time generated by accidentals).


Global LKr efficiency

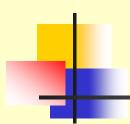
- Also affects the result directly;
- f_{LKr}=(99.80±0.03)% is measured directly using a parallel ('spy') calorimeter readout.

Preliminary result (40% data set)

$$R_K = (2.500 \pm 0.012_{stat} \pm 0.011_{syst}) \times 10^{-5}$$

= $(2.500 \pm 0.016) \times 10^{-5}$

(arXiv:0908.3858)



Uncertainties

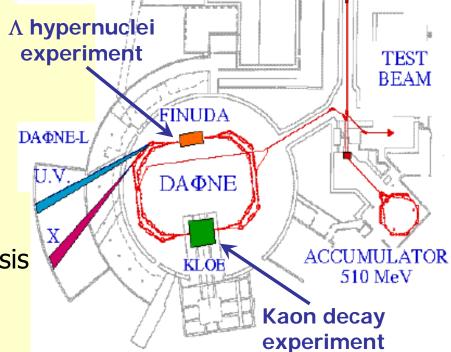
Officer tallities	
Source	$\delta R_{K} \times 10^{5}$
Statistical	0.012
$K_{\mu 2}$	0.004
Beam halo	0.001
$K_{e2\gamma}$ (SD+)	0.004
Electron ID	0.001
IB simulation	0.007
Acceptance	0.002
Trigger timing	0.007
Total	0.016

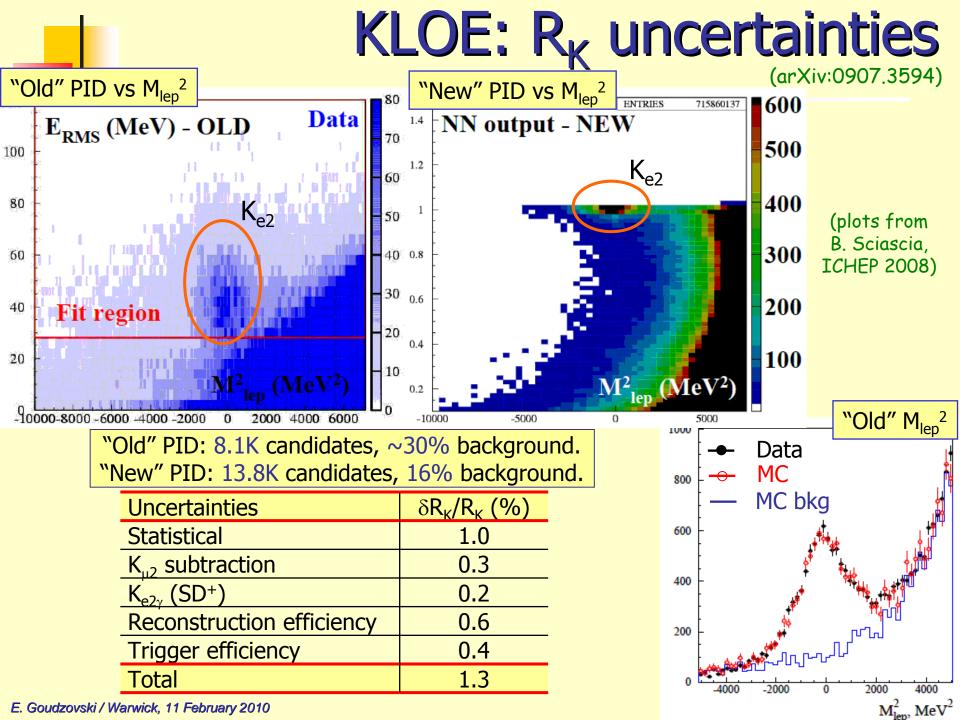
(0.64% precision)

The whole 2007 sample will allow statistical uncertainty $\sim 0.3\%$, total uncertainty of 0.4–0.5%. 31

Competitors, comparison to world data

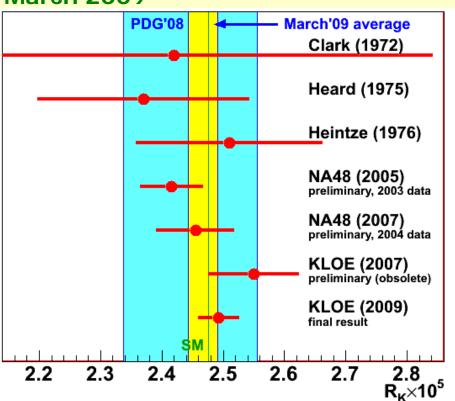
KLOE K_{e2} analysis: decays at rest

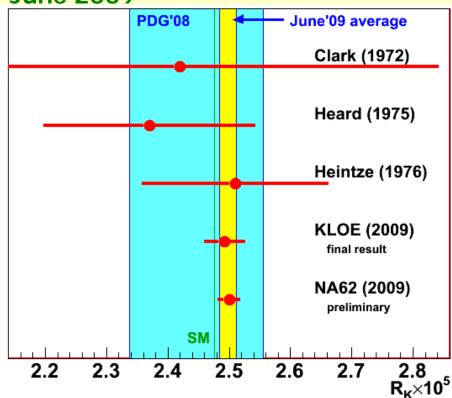

DAΦNE: an e⁺e⁻ collider at LNF Frascati


- CM energy $\sim m_{\phi} = 1019.4 \text{ MeV}$;
- BR($\phi \rightarrow K^+K^-$) = 49.2%;
- ϕ production cross-section $\sigma_{\phi} = 1.3 \mu b$;
- Data sample (2001–05): 2.5 fb⁻¹.

$K_{e2}/K_{\mu 2}$ separation technique in comparison to NA62:

- Kinematics: by M_{lep}² (equivalent to M_{miss}² in NA62);
- PID: initially based on longitudinal distribution of EMC energy deposition, then replaced by a neural network analysis (vs E/p for NA62).

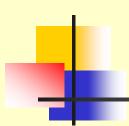




Updated world average

March 2009

June 2009

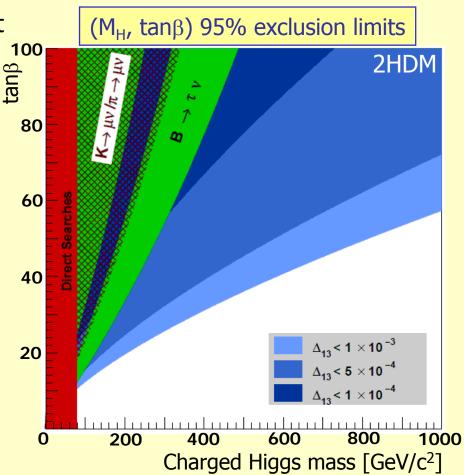


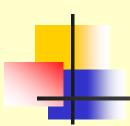
World average	$\delta R_{K} \times 10^{5}$	Precision
March 2009	2.467±0.024	0.97%
June 2009	2.498±0.014	0.56%

Last 5 years have seen active experimental development!

(NA48/2 preliminary results are excluded from the June 2009 fit: they are superseded by NA62)

R_K: sensitivity to new physics


R_K measurements are currently in agreement with the SM expectation at ~1.5σ.


Any significant enhancement with respect to the SM value would be an evidence of new physics.

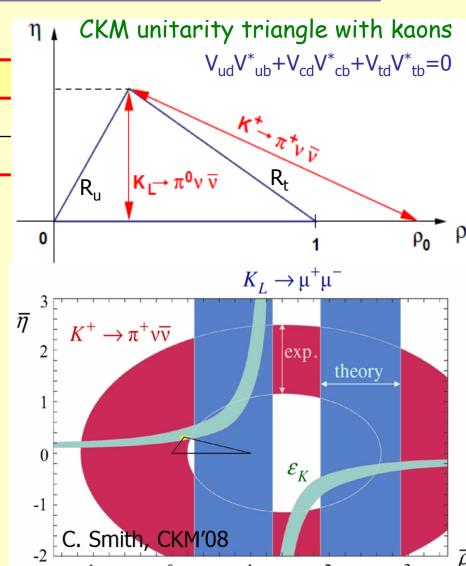
Exclusion limits at 95% CL derived from the new $R_{\rm K}$ world average are presented.

For non-tiny values of the LFV slepton mixing Δ_{13} , sensitivity to H[±] in R_K=K_{e2}/K_{µ2} is better than in B $\to \tau \nu$

"Maybe NA62 will find the first evidence for a charged Higgs exchange?" -- John Ellis (arXiv:0901.1120)

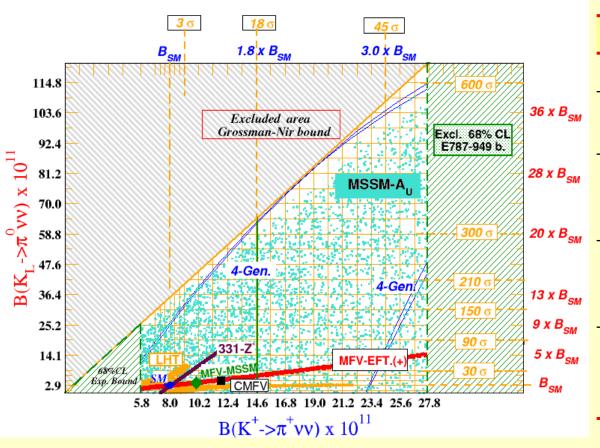
Future CERN programme: NA62 phase II

NA62 phase II: $K_{\pi\nu\nu}$


 $K \rightarrow \pi \nu \nu$: theoretically clean, sensitive to NP, almost unexplored

Branching ratio ×10¹⁰

	Theory (SM)	Experiment		
$K^+ \rightarrow \pi^+ \nu \nu (\gamma)$	0.82±0.08	1.73 ^{+1.15} _{-1.05}		
$K_L \rightarrow \pi^0 \nu \nu$	0.28±0.04	<670 (90% CL)		


$$BR(K^+ \rightarrow \pi^+ \nu \nu) \sim |V_{ts}^* V_{td}|^2$$

- Ultra-rare FCNC processes, proceed via penguin and loop diagrams only.
- Hadronic matrix element extracted from precise $K \rightarrow \pi e \nu$ measurements.
- Exceptional SM precision not matched by any other loop-induced meson decay.
- Uncertainties mainly come from charm contributions.

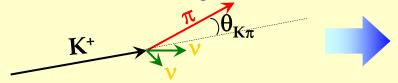
Sensitivity of new physics

BR(K ⁺ $\rightarrow \pi^+ \nu \nu$) ×10 ¹⁰ : selected models		
SM	0.82±0.08	
MFV (hep-ph/0310208)	1.91	
EEWP (NPB697 (2004) 133, hep-ph/0402112)	0.75±0.21	
EDSQ (PRD70 (2004) 093003, hep-ph/0407021)	up to 1.5	
MSSM (NPB713 (2005) 103, hep-ph/0408142)	up to 4.0	

- Large variations in predictions for new physics.
- Need a 10% precision measurement to provide a stringent SM test.

The NA62 collaboration aims to measure $O(100)~K^+ \rightarrow \pi^+ \nu \nu$ candidates with ~10% background in 2-3 years of data taking

NA62 guidance principles


O(100) K⁺ $\rightarrow \pi^+ \nu \overline{\nu}$ events, ~10% background @BR(SM) = 8×10^{-11}

 $N(K decays) \sim 10^{13}$ Acceptance = 10%

- Kaon decay in flight technique;
- 400 GeV proton beam from SPS;
- Unseparated high energy K⁺ beam $(P_{\kappa}=75 \text{ GeV/c});$

Kinematical rejection

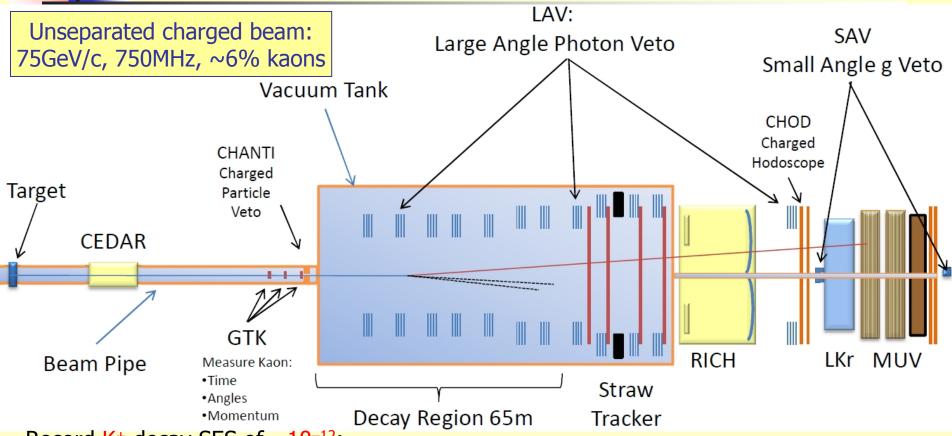
Single track signature: $m_{miss}^2 = (P_K - P_{\pi})^2$

- Kaon momentum: beam tracker;
- Pion momentum: spectrometer;

Particle ID and veto

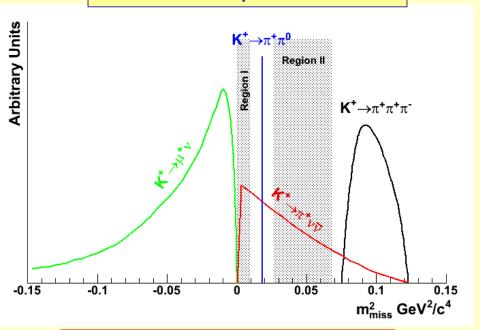
in addition to kinematical rejection

- Charged track veto: spectrometer;
- Photon veto: calorimeters;
- Beam kaon identification: CEDAR;
- $\pi/\mu/e$ separation: RICH;


Budget limitations

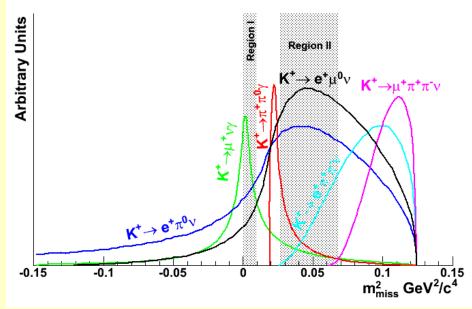
Use of existing NA48 infrastructure: beam line, LKr calorimeter, ...

NA62 experiment (phase II)

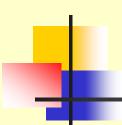


- Record K⁺ decay SES of ~10⁻¹²;
- Hermetic veto & redundant measurements;
- R&D finishing, subdetector construction has started.
 - Approved by the CERN research board in December 2008.
 - Reviewed by PPAP in July 2009.
 - SoI submitted to PPAN in November 2009;
 signed by Birmingham, Bristol, Glasgow, Liverpool.

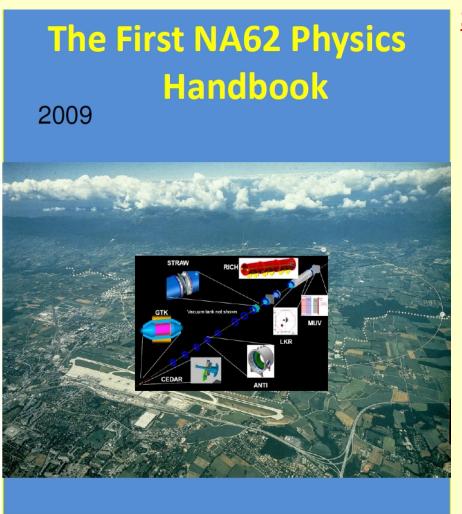
Kinematics and backgrounds


Kinematically constrained

92% of total background


- ▶ Allows us to define a signal region
- ► K⁺→ $\pi^+\pi^0$ forces us to split it into two parts (Region I and Region II)

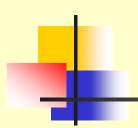
NOT kinematically constrained



8% of total background

- ▶ Span across the signal region
- **▶** Rejection relies on vetoes/PID

NA62 (phase II) programme



<u>Several other physics goals are:</u>

- Lepton Flavour Violation: measurement of R_K to ~0.1% precision;
- Searches for ~100keV neutrinos, light sgoldstinos, possibly other new particles;
- Low-energy QCD: pion scattering lengths from final-state rescattering in $K_{3\pi}$ and K_{e4} decays;
- ChPT tests with rare kaon/pion decays.

1st Physics Handbook meeting: CERN, 10-11 December 2009

http://indico.cern.ch/conferenceDisplay.py?confId=65927

Summary

- Due to the suppression of the K_{e2} decay in the SM, the measurement of $R_{\rm K}$ is well-suited for a stringent SM test.
- $P^+ \rightarrow l^+ \nu$: active developments of experiment and theory. After recent precise R_K measurements, the R_K world average has a 0.6% precision (and compatible with the SM prediction). Timely result: direct searches for new physics at the LHC are approaching.
- NA62 is a key player: the 2007/08 data taking was optimised for R_K measurement, and increased the world K_{e2} sample by an order of magnitude. Excellent $K_{e2}/K_{\mu2}$ separation (>99% electron ID efficiency and ~10⁶ μ suppression) leads to a low ~8% background.
- NA62 phase II: stringent SM test by measurement of the ultra rare decay $K^+ \rightarrow \pi^{\pm} \nu \nu$ with 10% precision, R_K measurement with ~0.1% precision, and much more.