

Belle II: flavour physics at the intensity frontier

Jim Libby (IIT Madras) University of Warwick Seminar 9th October 2018

University of Warwick Seminar 9/10/18

Overview

- Particle physics and frontiers
- Some flavour history
 - Flavour as a predictor
 - Belle
 - Complementarity with LHCb
- Belle II
 - Highlights of the instrumentation and first results
 - Some physics highlights
- Conclusion

Overview

Overview

arXiv:1808.10567 [hep-ex]

KEK Preprint 2018-27 BELLE2-PAPER-2018-001 FERMILAB-PUB-18-398-T JLAB-THY-18-2780 INT-PUB-18-047 UWThPh 2018-26

The Belle II Physics Book

E. Kou^{74,¶,†}, P. Urquijo^{142,§,†}, W. Altmannshofer^{132,¶}, F. Beaujean^{78,¶}, G. Bell^{119,¶}, M. Beneke^{111,¶}, I. I. Bigi^{145,¶}, F. Bishara^{147,16,¶}, M. Blanke^{49,50,¶}, C. Bobeth^{110,111,¶},

Probably a Y(4S) event

The standard model

University of Warwick Seminar 9/10/18

The standard model

Problems

• Empirical

- Neutrinos are massive
- Dark matter
- Dark energy!!!!
- Matter rather than antimatter
- Gravity

<u>Aesthetic</u>

- Why three of everything?
- Why eighteen parameters?
 - Many with a distinct hierarchy?
- Why do we need to know them to 18 decimal places?
- Unification

ATLAS SUSY Searches* - 95% CL Lower Limits

December 2017

	Model	e, μ, τ, γ	Jets	E ^{miss} _T	∫ <i>L dt</i> [fb	⁻¹] Mass limit	$\sqrt{s} = 7, 8$	TeV $\sqrt{s} = 13 \text{ TeV}$	Reference
Inclusive Searches	$\tilde{q}\tilde{q}, \tilde{q} \rightarrow q\tilde{\chi}_{1}^{0}$ $\tilde{q}\tilde{q}, \tilde{q} \rightarrow q\tilde{\chi}_{1}^{0}$ (compressed) $\tilde{q}\tilde{q}, \tilde{q} \rightarrow q\tilde{\chi}_{1}^{0}$	0 mono-jet	2-6 jets 1-3 jets 2-6 jets	Yes Yes	36.1 36.1	 <i>q</i> <i>q</i> <	1.57 TeV	$m(\tilde{\chi}_{1}^{0}) < 200 \text{ GeV}, m(1^{\text{st}} \text{ gen.} \tilde{q}) = m(2^{\text{nd}} \text{ gen.} \tilde{q})$ $m(\tilde{q}) - m(\tilde{\chi}_{1}^{0}) < 5 \text{ GeV}$ $m(\tilde{\chi}_{2}^{0}) < 200 \text{ GeV}$	1712.02332 1711.03301 1712.02332
	$gg, g \rightarrow qq \chi_1$ $\tilde{a}\tilde{a}, \tilde{a} \rightarrow aa \tilde{X}^{\pm} \rightarrow aa W^{\pm} \tilde{X}^0$	0	2-6 jets	Yes	36.1	8 ğ	2.02 TeV	$m(\tilde{x}_{1}^{0}) < 200 \text{ GeV}$ $m(\tilde{x}_{1}^{0}) < 200 \text{ GeV}$ $m(\tilde{x}^{\pm}) = 0.5(m(\tilde{x}_{1}^{0}) + m(\tilde{v}))$	1712.02332
	$gg, g \to qqq, 1 \to qq m \times 1$ $\tilde{g}\tilde{g}, \tilde{g} \to q\tilde{q}(f)\tilde{\chi}^0,$	ee, µµ	2 jets	Yes	14.7	o ĝ	1.7 TeV	$m(\tilde{x}_{1}^{0}) < 300 \text{ GeV}$	1611.05791
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow ga(\ell\ell/\gamma v)\tilde{\chi}_1^0$	3 e, µ	4 jets	-	36.1	Ĩ	1.87 TeV	$m(\tilde{\chi}_1^0) = 0 \text{ GeV}$	1706.03731
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q q W Z \tilde{\chi}_1^0$	0	7-11 jets	Yes	36.1	Ĩ	1.8 TeV	$m(\tilde{\chi}_{1}^{0}) < 400 \text{GeV}$	1708.02794
	GMSB (Î NLSP)	1-2 <i>τ</i> + 0-1 ℓ	0-2 jets	Yes	3.2	ğ	2.0 TeV		1607.05979
	GGM (bino NLSP)	2γ	-	Yes	36.1	ĝ	2.15 Te	🗸 cτ(NLSP)<0.1 mm	ATLAS-CONF-2017-080
	GGM (higgsino-bino NLSP)	γ	2 jets	Yes	36.1	Ĩ	2.05 TeV	$m(\tilde{\chi}_{1}^{0})=1700 \text{ GeV}, c\tau(\text{NLSP})<0.1 \text{ mm}, \mu>0$	ATLAS-CONF-2017-080
	Gravitino LSP	0	mono-jet	Yes	20.3	F ^{1/2} scale 865 GeV		$m(\tilde{G})>1.8 \times 10^{-4} \text{ eV}, m(\tilde{g})=m(\tilde{q})=1.5 \text{ TeV}$	1502.01518
len. ed.	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow b\bar{b}\tilde{\chi}_{1}^{0}$	0	3 b	Yes	36.1	Ĩ.	1.92 TeV	m($\tilde{\chi}_{1}^{0}$)<600 GeV	1711.01901
a g	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow t\tilde{t}\tilde{\chi}_1^0$	0-1 <i>e</i> , <i>µ</i>	3 b	Yes	36.1	Ĩ	1.97 TeV	$m(\tilde{\chi}_1^0) < 200 \text{GeV}$	1711.01901
~ ~~	7 7 7 . L ²⁰	0	2.6	Vac	26.1	ĩ. 050 CoV			1708 00266
S L	$b_1 b_1, b_1 \rightarrow b \mathcal{X}_1$ $\tilde{b}_1 \tilde{b}_2, \tilde{b}_3 \rightarrow t \tilde{\mathcal{X}}^{\pm}$	2 e u (SS)	1 h	Voc	36.1	δ. 275-700 GeV		$m(\tilde{r}_1) < 420 \text{ GeV}$ $m(\tilde{r}_2^0) < 200 \text{ GeV}$ $m(\tilde{r}_2^{\pm}) = m(\tilde{r}_2^0) + 100 \text{ GeV}$	1706.03200
ctic	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow b \tilde{\chi}^{\dagger}_1$	0-2 e,μ	1-2 <i>b</i>	Yes 4	4.7/13.3	<i>t</i> ₁ 117-170 GeV 200-720 GeV		$m(\tilde{\chi}_{1}^{\pm}) = 2m(\tilde{\chi}_{1}^{0}), m(\tilde{\chi}_{1}^{0}) = 55 \text{ GeV}$	1209.2102, ATLAS-CONF-2016-077
3rd gen. squ direct produ	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow W b \tilde{\chi}_1^0 \text{ or } t \tilde{\chi}_1^0$	$0-2 e, \mu$ (0-2 jets/1-2	b Yes 2	20.3/36.1	<i>ī</i> ₁ 90-198 GeV 0.195-1.0 TeV		$m(\tilde{\chi}_{1}^{0}) = 1 \text{ GeV}$	1506.08616, 1709.04183, 1711.11520
	$\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow c\tilde{\chi}_1^0$	0	mono-jet	Yes	36.1	ĩ ₁ 90-430 GeV		$m(\tilde{t}_1)-m(\tilde{\chi}_1^0)=5 \text{ GeV}$	1711.03301
	$\tilde{t}_1 \tilde{t}_1$ (natural GMSB)	2 e, µ (Z)	1 <i>b</i>	Yes	20.3	Ĩ ₁ 150-600 GeV		$m(\tilde{\chi}_1^0)>150 GeV$	1403.5222
	$\tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + Z$	3 e, μ (Z)	1 <i>b</i>	Yes	36.1	ĩ ₂ 290-790 GeV		$m(\tilde{\chi}_1^0)=0 \text{ GeV}$	1706.03986
	$\tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + h$	1-2 e,μ	4 <i>b</i>	Yes	36.1	Ĩ ₂ 320-880 GeV		$m(\tilde{\chi}_1^0)=0 \text{ GeV}$	1706.03986
EW lirect	$\tilde{\ell}_{I,R}\tilde{\ell}_{I,R}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_{1}^{0}$	2 e, µ	0	Yes	36.1			$m(\tilde{\chi}_{1}^{0})=0$	ATLAS-CONF-2017-039
	$\tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^+ \rightarrow \tilde{\ell} \nu(\ell \tilde{\nu})$	2 e, µ	0	Yes	36.1	<i>x</i> [±] ₁ 750 GeV		$m(\tilde{\chi}_{1}^{0})=0, m(\tilde{\ell}, \tilde{\nu})=0.5(m(\tilde{\chi}_{1}^{\pm})+m(\tilde{\chi}_{1}^{0}))$	ATLAS-CONF-2017-039
	$\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp} / \tilde{\chi}_2^0, \tilde{\chi}_1^{+} \rightarrow \tilde{\tau} \nu(\tau \tilde{\nu}), \tilde{\chi}_2^0 \rightarrow \tilde{\tau} \tau(\nu \tilde{\nu})$	2 τ	-	Yes	36.1	$\tilde{\chi}_{1}^{\pm}$ 760 GeV		$m(\tilde{\chi}_{1}^{0})=0, m(\tilde{\tau}, \tilde{\nu})=0.5(m(\tilde{\chi}_{1}^{\pm})+m(\tilde{\chi}_{1}^{0}))$	1708.07875
	$\tilde{\chi}_{1}^{\pm} \tilde{\chi}_{2}^{0} \rightarrow \tilde{\ell}_{L} \nu \tilde{\ell}_{L} \ell(\tilde{\nu}\nu), \ell \tilde{\nu} \tilde{\ell}_{L} \ell(\tilde{\nu}\nu)$	3 e,μ	0	Yes	36.1	$\tilde{X}_{1}^{\pm}, \tilde{X}_{2}^{0}$ 1.13 Te	$m(\tilde{\chi}_1^{\pm})=r$	$n(\tilde{\chi}_{2}^{0}), m(\tilde{\chi}_{1}^{0})=0, m(\tilde{\ell}, \tilde{\nu})=0.5(m(\tilde{\chi}_{1}^{\pm})+m(\tilde{\chi}_{1}^{0}))$	ATLAS-CONF-2017-039
	$\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} Z \tilde{\chi}_{1}^{0}$	2-3 e,μ	0-2 jets	Yes	36.1	$\tilde{x}_{1}^{\pm}, \tilde{x}_{2}^{0}$ 580 GeV		$m(\tilde{\chi}_{1}^{\pm})=m(\tilde{\chi}_{2}^{0}), m(\tilde{\chi}_{1}^{0})=0, \tilde{\ell} \text{ decoupled}$	ATLAS-CONF-2017-039
0	$\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} h \tilde{\chi}_{1}^{0}, h \rightarrow b \bar{b} / W W / \tau \tau / \gamma \gamma$	e, μ, γ	0-2 b	Yes	20.3	$\tilde{\chi}_{1}^{x}, \tilde{\chi}_{2}^{y}$ 270 GeV	-0	$m(\tilde{\chi}_1^{\pm})=m(\tilde{\chi}_2^0), m(\tilde{\chi}_1^0)=0, \tilde{\ell} \text{ decoupled}$	1501.07110
	$\tilde{\chi}_2^{\circ}\tilde{\chi}_3^{\circ}, \tilde{\chi}_{2,3}^{\circ} \rightarrow \ell_{\mathrm{R}}\ell$	4 e,μ	0	Yes	20.3	X _{2,3} 635 GeV	$m(\tilde{\chi}_2^0)=r$	$n(\tilde{\chi}_{3}^{0}), m(\tilde{\chi}_{1}^{0})=0, m(\tilde{\ell}, \tilde{\nu})=0.5(m(\tilde{\chi}_{2}^{0})+m(\tilde{\chi}_{1}^{0}))$	1405.5086
	GGM (wino NLSP) weak prod., $\chi_1^{\circ} \rightarrow \chi_2^{\circ}$	$\gamma G = 1 e, \mu + \gamma$	-	Yes	20.3	W 115-370 GeV		cr<1 mm	1507.05493
	GGM (bino NLSP) weak prod., $\chi_1 \rightarrow \chi_2$	G 2γ	-	res	36.1	W 1.06 lev		<i>c</i> τ<1 mm	ATLAS-CONF-2017-080
	Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^\pm$	Disapp. trk	1 jet	Yes	36.1	<i>x</i> [±] 460 GeV		m($\tilde{\chi}_1^{\pm}$)-m($\tilde{\chi}_1^{0}$)~160 MeV, τ ($\tilde{\chi}_1^{\pm}$)=0.2 ns	1712.02118
	Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^\pm$	dE/dx trk	-	Yes	18.4	<i>x</i> [±] 495 GeV		$m(\tilde{\chi}_{1}^{\pm})-m(\tilde{\chi}_{1}^{0})\sim 160 \text{ MeV}, \tau(\tilde{\chi}_{1}^{\pm})<15 \text{ ns}$	1506.05332
pe s	Stable, stopped g R-hadron	0	1-5 jets	Yes	27.9	850 GeV		$m(\tilde{\chi}_1^0)=100 \text{ GeV}, 10 \mu\text{s} < \tau(\tilde{g}) < 1000 \text{ s}$	1310.6584
ij j	Stable g R-hadron	trk	-	-	3.2	8	1.58 TeV	(⁵⁰) (00 0)) (00 0	1606.05129
Long- parti	Metastable \tilde{g} R-hadron $\tilde{z} \to a a \tilde{v}^0$	de/ax trk		Voc	32.8	8 õ	1.57 TEV	$m(\ell_1)=100 \text{ GeV}, \tau>10 \text{ ns}$	1710 04901
	GMSB stable $\tilde{\tau} \tilde{\chi}^0_1 \rightarrow \tilde{\tau}(\tilde{a} \ \tilde{u}) + \tau(a \ u)$	1-2 µ	-	-	19.1	x ⁰ 537 GeV	2.31	$10 < \tan \beta < 50$	1411.6795
	GMSB $\tilde{\chi}_{1}^{0} \rightarrow \gamma \tilde{G}$ long-lived $\tilde{\chi}_{1}^{0}$	2 2	-	Yes	20.3	x ⁰ 440 GeV		$1 \le \tau(\tilde{\chi}_1^0) \le 3$ ns. SPS8 model	1409.5542
	$\tilde{g}\tilde{g}, \tilde{\chi}^0_1 \rightarrow eev/e\mu v/\mu\mu v$	displ. ee/eµ/µ	μ -	-	20.3	<i>x</i> ₁ ⁰ 1.0 TeV		$7 < c\tau(\tilde{\chi}_1^0) < 740 \text{ mm}, m(\tilde{g}) = 1.3 \text{ TeV}$	1504.05162
	$ \text{EV} nn \rightarrow \tilde{v}_{-} + X \tilde{v}_{-} \rightarrow eu/e\tau/u\tau$	eu.et.ut			3.2	ũ.	1.9 ToV	a'=0.11_dunum=0.07	1607 09079
	Bilinear BPV CMSSM	2 e. µ (SS)	0-3 h	Yes	20.3	\tilde{q}, \tilde{g}	1.45 TeV	$m(\tilde{a})=m(\tilde{a}), c_{T,S,R}<1 \text{ mm}$	1404 2500
	$\tilde{X}_{1}^{\dagger}\tilde{X}_{1}^{-}$ $\tilde{X}_{1}^{\dagger} \rightarrow W \tilde{X}_{1}^{0}$ $\tilde{X}_{1}^{0} \rightarrow eev$ evy viv	4 e.μ	-	Yes	13.3	λ [±] 1.14 Te	eV	$m(\tilde{\chi}_{1}^{0}) > 400 \text{ GeV}$ $d_{12k} \neq 0 \ (k = 1, 2)$	ATLAS-CONF-2016-075
~	$\tilde{\chi}_{1}^{\dagger}\tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{\dagger} \rightarrow W \tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow \tau \tau \gamma_{r}, e \tau \gamma_{\tau}$	$3e, \mu + \tau$	-	Yes	20.3	X [±] 450 GeV		$m(\tilde{\chi}_{1}^{0}) > 0.2 \times m(\tilde{\chi}_{1}^{\pm}), \lambda_{133} \neq 0$	1405.5086
d	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow ga\tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow gag$	0 4-	-5 large- <i>R</i> je	ets -	36.1	Ĩ	1.875 TeV	$m(\tilde{\chi}_{1}^{0})=1075 \text{ GeV}$	SUSY-2016-22
ιL.	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow t\tilde{t}\tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow qqq$	1 <i>e</i> ,μ 8	-10 jets/0-4	b -	36.1	ĝ	2.1 TeV	$m(\tilde{\chi}_{1}^{0}) = 1 \text{ TeV}, \lambda_{112} \neq 0$	1704.08493
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow \tilde{t}_1 t, \tilde{t}_1 \rightarrow bs$	1 <i>e</i> ,µ 8	-10 jets/0-4	b -	36.1	ğ	1.65 TeV	m(t̃ ₁)= 1 TeV, λ ₃₂₃ ≠0	1704.08493
	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow bs$	0	2 jets + 2 b	-	36.7	100-470 GeV 480-610 GeV			1710.07171
	$\bar{t}_1\bar{t}_1, \bar{t}_1 \rightarrow b\ell$	2 <i>e</i> , µ	2 b	-	36.1	<i>ī</i> ₁ 0.4-	-1.45 TeV	$BR(\bar{t}_1 \rightarrow be/\mu) > 20\%$	1710.05544
Other	Scalar charm, $\tilde{c} \rightarrow c \tilde{\chi}_1^0$	0	2 <i>c</i>	Yes	20.3	δ 510 GeV		$m(\tilde{\chi}_1^0)$ <200 GeV	1501.01325
*Only phen simp	Only a selection of the available mass limits on new states or phenomena is shown. Many of the limits are based on simplified models, c.f. refs. for the assumptions made.								

University of Warwick Seminar 9/10/18

ATLAS Preliminary $\sqrt{s} = 7, 8, 13 \text{ TeV}$

9

.

9/10/18 University of Warwick Seminar

ISTER MARGARET'S PICK DEAD POOL AGE DAVE \$50 COSBY, B \$12.01 JAK SHEEN BET \$75 78 WEASEL PICK WEST, 50 \$2.00 AGE \$110 MARC TAD WILLSON, ROCK 38 3175 \$190 RANDY TYSONTH WADE PUTIN 45 FRANKIE \$67 9150 NELSON T BOOTHE 49 62 \$120 MOLE WAYNE 56 21 JOHN \$60 JEMBO LABEOUF, S 33 \$110 \$80 RETNOLDS, R HANK BEATTY, N 29 \$190 38 MILLER, TJ REEVES 78 \$77 35 DIEFELD, R LOHAN, L JIRIK \$35 48 OSBONKNE, O \$80 MOORS 67 \$150 BYNES, A GRIGGS 29

ISTER MARGARET'S PICK DEAD POOL AGE DAVE \$50 CMSSM \$12.01 JAK SHEEN BET \$75 78 WEASEL PICK WEST, 50 \$2.00 AGE \$110 MARC TAD WILLSOW ROCK 38 3175 \$190 RANDY TYSONTH WADE PUTEN 45 FRANKIE \$67 9150 NELSON, T 49 2HDM II 62 \$120 MOLE WAYNE 56 21 JOHN \$60 JEMBO LABEOUR, S 33 \$110 \$80 RETNOLDS, R HANK BEATTY, N 29 \$190 38 MILLERTJ REEVES 78 \$77 35 DIEFELD, R JIRIK **RPV SUSY** \$35 48 OSBONKNE, O \$80 MOORS 67 \$150 BYNES, A GRIGG 29

University of Warwick Seminar 9/10/18

. 17

Problems

• Empirical

- Neutrinos are massive
- Dark matter
- Dark energy!!!!
- Matter rather than antimatter
- Gravity

<u>Aesthetic</u>

- Why three of everything?
- Why eighteen parameters?
 - Many with a distinct hierarchy?
- Why do we need to know them to 18 decimal places?
- Unification

Flavour physics – history of discovery

- Particle zoo of mesons and baryons discovered in 1950s and early 1960s lead to the quark model
 - up (u)
 - down (d)
 - strange (s)
- An allowed but rare decay such as

$$K_L^0(s\overline{d}) \to \mu^+\mu^-$$

Predicted but not seen!

$$\frac{s}{d} \ u \ W^{-} \ v \ \mu^{+}$$

Flavour physics – history of discovery

$$\frac{\sin \theta_{c}}{S} \qquad W^{-} \qquad \psi^{\mu}_{\mu^{+}} \qquad \psi^{\mu}_{\mu^{+}} \\ \frac{\cos \theta_{c}}{\cos \theta_{c}} \qquad \frac{S}{d} \qquad C \qquad W^{-} \qquad \psi^{\mu}_{\mu^{+}} \qquad \psi^{\mu}_{\mu^{+}} \qquad \frac{S}{d} \qquad W^{-} \qquad \psi^{\mu}_{\mu^{+}} \qquad \frac{W^{-}}{\mu^{+}} \qquad \frac{W^{-$$

 $-\sin\theta_c$

Glashow

liopoulos

Maiani

Phys. Rev. D 2, 1285 (1970) 2 ∞ Rate ~ O

 $m_c > m_\kappa$

Such rare virtual processes tell you about higher energy particles

ARGUS: B mixing \Rightarrow heavy top

OBSERVATION OF B⁰-B⁰ MIXING

ARGUS Collaboration

reconstructed event consisting of the decay Y

econstructed event consisting of the decay

m_t> 50 Gev

and $B_2^0 \rightarrow D_2^{*-} \mu_2^+ \nu_2$ \downarrow $D_2^{*-} \rightarrow \pi^0 D^ \downarrow$ $D^- \rightarrow K_2^+ \pi_2^- \pi_2^- .$

ARGUS: B mixing \Rightarrow heavy top

OBSERVATION OF B⁰-B⁰ MIXING

ARGUS Collaboration

CKM matrix

$$\begin{pmatrix} u & c \end{pmatrix} \begin{bmatrix} \cos \theta_C & \sin \theta_C \\ -\sin \theta_C & \cos \theta_C \end{bmatrix} \begin{pmatrix} d \\ s \end{pmatrix}$$

 Two by two mixing matrix proposed Cabibbo

CKM matrix

- Two by two mixing matrix proposed Cabibbo
 - Kobayashi-Maskawa proposed third generation to explain observed CP violation by Cronin and Fitch
- 3 × 3 unitary complex matrix
 - 4 parameters
 - 3 mixing angle and 1 phase
- Intergenerational coupling disfavoured

Visualising CP violation:
the unitarity triangle
1)
$$\begin{pmatrix} 1-\lambda^2/2 \\ -\lambda \\ \lambda^3 [1-(\rho-i\eta)] \end{pmatrix}$$
 $\begin{pmatrix} \lambda \\ 1-\lambda^2/2 \\ -A\lambda^2 \end{pmatrix}$ $\begin{pmatrix} A\lambda^3 (\rho-i\eta) \\ A\lambda^2 \\ 1 \end{pmatrix} + O(\lambda^4)$
2) Exploit unitarity (1st and 3rd col.) $V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$
3) $V_{ud}V_{ub}^*$ $\begin{pmatrix} V_{td}V_{tb}^* \end{pmatrix}$ $\phi_1 = \beta = \arg\left(-\frac{V_{cd}V_{cb}^*}{V_{td}V_{tb}^*}\right)$

University of Warwick Seminar 9/10/18

25

 $\simeq \arg\left(\frac{1}{1-\rho-i\eta}\right)$

 $V_{cd}V_{cb}^*$

 γ

β

Belle

- Operation from 1999 to 2010
- $e^+e^- \rightarrow \Upsilon(4S) \rightarrow B\overline{B}$ for CKM measurements
- Asymmetric energy to allow time-dependent measurements
- Coherent production of $B^0 \overline{B^0}$
- Low multiplicity
- Detectors with good tracking, PID and calorimetry
 - plus hermeticity for full event reconstruction/tagging

In SM $S_f = \sin 2\beta$ and $C_f = 0$ when no CPV in f

University of Warwick Seminar 9/10/18

Time-dependent CPV violation

Over constraint

Tree level only

University of Warwick Seminar 9/10/18

From Abi Soffer: HEPMAD 1800 1st dark searches Nobel prize to KM / 1600 Decisive confirmation of CKM picture Observation of direct 1400 CP violation in B $\rightarrow \pi^+\pi^-$ Excess in 1200 $\bar{B} \rightarrow D^{(*)} \tau \bar{\nu}$ Observation of

Integrated Luminosity in fb⁻¹ Time reversal asymmetry Observation of 1000 $b \rightarrow d\gamma$ Evidence for CP violation in D⁰ mixing B-meson system 800 Evidence for B→τv Observation of 600 B → K(*)II Evidence for direct 400 CP violation in B \rightarrow K⁺ π ⁻ Measurements of mixing-induced 200 CP violation in $B \rightarrow \phi K_s, \eta' K_s, ...$ Exotic hadrons С 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 Year >100 unique CPV results ~350 papers published after shutdown, 21 in 2018

Belle achievements

Belle II: can never have too much of a good thing (x 50 Belle)

• But isn't LHCb doing this already?

Property	LHCb	Belle II	
$\sigma_{b\bar{b}}$ (nb)	~150,000	~1	
$\int L dt$ (fb ⁻¹) by ~2024	~25	~50,000	
Background level	Very high	Low	
Typical efficiency	Low	High	
π^0 , K_S reconstruction	Inefficient	Efficient	
Initial state	Not well known	Well known	
Decay-time resolution	Excellent	Very good	
Collision spot size	Large	Tiny	
Heavy bottom hadrons	<i>B_s, B_c, b</i> -baryons	Partly B _s	
au physics capability	Limited	Excellent	
B-flavor tagging efficiency	3.5 - 6%	36%	

"Moore's" Law of Luminosity

The path to higher luminosity

Brute force: Increase beam currents by a factor of 5-10! Increase the beam-beam parameter by a factor of a few (crab cavities). Too hard, too expensive (power, melt beam pipes)

The path to higher luminosity

(1) Smaller β_{y}^{*} (20 x)

(2) Increase beam currents (~2-3x)

SUPERKEKB

Schedule and status

Phase 2 goals:

- · Progress toward high luminosity
- Progress toward stable operation

Achievements:

- $L = 5.5 \times 10^{33} \,\mathrm{cm}^{-2} \mathrm{s}^{-1}$
- Collected ~0.5 fb⁻¹ for commissioning & calibration

Ohnishi-san eeFACT, HKUST Super KEKB performance

 $\sigma = 4.5 \text{ mm}$

σ = 550 µm

measurement at Belle II

Ohnishi-san eeFACT, HKUST Super KEKB performance

Belle II Collaboration

University of Warwick Seminar 9/10/18

Belle II - TOP

Simulation of a 2 GeV pion and kaon interacting in a quartz bar.

Belle II - TOP

Channel Vs. time for 3GeV pions/kaons with beam test serup

At 3 GeV <u>Timing at the ~100 ps level is</u> needed to separate pion and Kaon

222

At 3 GeV Timing at the ~100 ps level is needed to separate pion and Kaon

ToP signature of kaon identified kinematically via $D^{*+} \rightarrow D^0 \pi_*^+; D^0 \rightarrow K^- \pi^+$

is visibly more consistent with being a kaon than a pion or proton

University of Warwick Seminar 9/10/18

SVD performance

Belle a factor two worse than Belle II

Stand alone SVD track finding efficiency good for K_s finding (30% over Belle) and slow π from D*

Charm meson reconstruction

Many charm decays seen including CP eigenstates used in CP violation measurements – reasonable agreement with expectations

- We are on the Y(4S) resonance and recording B anti-B pairs with ~99% efficiency.
- Not so obvious: When we change accelerator optics, we remain on Y(4S).

B meson reconstruction

 $B \rightarrow D^{(*)}h \ (h=\pi,\rho) \text{ and } B \rightarrow J/\psi K^{(*)}$ Reconstructed > 200 B events Jniversity of Warwick Seminar 9/10/18

A FEW PHYSICS PROSPECTS

 $B \rightarrow K^*(892)l^+l^-$

- This is a rare flavour changing neutral current process
- The four-body final state allows differential distributions to be probed
 - Large new physics contributions possible as they appear via interference c.f. forward-backward asymmetries in e⁺e⁻
- Also variation with the invariant mass of the l⁺l⁻ system q²

$B \rightarrow K^*(892)l^+l^-$ nomenclature

- Goal is to measure this 4D differential distribution and extract the coefficients from data to compare to the SM predictions
- Much work on defining observables with minimal theoretical uncertainties
- Let us focus on S₅ which get normalized as $P_5' = \frac{S_5}{\sqrt{F_L(1-F_L)}}$ to minimize form factor uncertainties

LHCb

Exp.: R. Aaij et al., JHEP 02 (2016) 104 Theory: S. Descotes-Genon et al., JHEP 12 (2014) 125

3.7 σ disagreement with Standard Model

Other analyses of the data also show inconsistency i.e. RH currents at large q² A. Karan et al. arXiv:1603.04355 [hep-ph]

Belle

PRL118, 111801 (2017)

Lepton Universality Violation (LUV)

2-3 standard deviations for H = K and K*

Belle II predictions

Semi-tauonic decays

• Tree level in the SM but allows lepton universality tests

 Measure ratios to reduce theoretical and experimental uncertainties

$$R(D) = \frac{\Gamma(\overline{B} \to D\tau \nu)}{\Gamma(\overline{B} \to D\ell\nu)} \qquad R(D^*) = \frac{\Gamma(\overline{B} \to D^*\tau\nu)}{\Gamma(\overline{B} \to D^*\ell\nu)}$$

 Babar reported an anomalous result PRL 109, 101802 (2012) much activity since

Belle results

- Tag signal by fully reconstructing or identifying a semileptonic (SL) decay of the other B
- Then use residual energy in ECL, missing mass, multivariates and/or lepton momentum to separate signal
- Example: Phys. Rev. D 94, 072007 (2016) – SL tag

Phys. Rev. Lett. 115, 111803 (2015)

LHCb also in the game using their vertexing prowess

61

More modes for tagging Full Event Interpretation

Belle II predictions projection for 50 ab⁻¹

Many other measurements

- CKM metrology
 - ϕ_3/γ 1.5 degrees
 - Same from LHCb
 - V_{ub}-1.2%
- Other rare decays
 - B→τν 1.5-2.0%
 - B→µν 5%
 - $B \rightarrow X_s |^+|^- R_x 3-5\%$
 - $b \rightarrow s \tau \tau$, $b \rightarrow s \nu \nu$ and LFV versions
- CPV gluonic penguins
 - $B \rightarrow \eta' K_{s}^{0} \sin 2\phi_{1}$ to 0.02
- LFV $\tau \rightarrow \mu \gamma$ 10⁻⁹ limit at 90% C.L
- + charm, XYZ spectroscopy, dark photon

64

Conclusion

- Particle physics is tackling its problems on three complementary frontiers
 - 1. Energy
 - 2. Cosmic
 - 3. Intensity
- Flavour physics has played a significant role in the development of the Standard Model
- **Belle II** is a project that will continue flavour physics at the intensity frontier until the middle of the next decade along with LHCb
 - First collisions this year much more to come..