

Matthew Barrett Dept of Electronic and Computer Engineering Brunel HEP group Brunel University

Outline of Talk

- The BaBar Experiment.
- $B \rightarrow \tau v$ Why is it interesting?
- How to study $B \rightarrow \tau v$.
- Current Measurements from BaBar and Belle.
- Improving the measurements with new statistical techniques.
- The future for BaBar and beyond...

13th March 2008

- BaBar started data taking: 1999
- Will finish on April 7 2008.
- After running on Y(3S) and Y(2S).
- Off Peak: 40 MeV below Y(4S).
- No B mesons produced.
- Mass of $Y(3S) = 10.355 \text{GeV/c}^2$.

As of 2008/03/13 00:00)0:00

Why Study $B \rightarrow \tau v$?

Physics motivated by one equation:

$$\mathcal{B}(B^- \to \ell^- \bar{\nu}) = \frac{G_F^2 m_B}{8\pi} m_l^2 \left(1 - \frac{m_l^2}{m_B^2}\right)^2 f_B^2 |V_{ub}|^2 \tau_B$$

- Parameters of Note:
 - $f_{_{B}} B$ meson decay constant.
 - Can only access via purely leptonic B decays.
 - Current value from Lattice QCD:

 $f_{\rm B} =$ (189 ± 27) MeV

Why Study $B \rightarrow \tau v$?

Physics motivated by one equation:

$$\mathcal{B}(B^- \to \ell^- \bar{\nu}) = \frac{G_F^2 m_B}{8\pi} m_l^2 \left(1 - \frac{m_l^2}{m_B^2}\right)^2 f_B^2 |V_{ub}|^2 \tau_B$$

- Parameters of Note:
 - Mass of daughter lepton m_c
 - Leads to helicity suppression:

$$\tau : \mu : e$$

1:5×10⁻³:10⁻⁷

Why Study $B \rightarrow \tau v$?

Physics motivated by one equation:

$$\mathcal{B}(B^- \to \ell^- \bar{\nu}) = \frac{G_F^2 m_B}{8\pi} m_l^2 \left(1 - \frac{m_l^2}{m_B^2}\right)^2 f_B^2 |V_{ub}|^2 \tau_B$$

- Parameters of Note:
 - *V*_{ub} CKM matrix element.
 - Current PDG value: $|V_{ub}| = (4.31 \pm 0.30) \times 10^{-3}.$

• *B* meson oscillation frequency: $\Delta m_d \propto f_B^2 |V_{td}|^2$.

•
$$\mathcal{B}(B \to \tau v) / \Delta m_{d} \propto |V_{ub}|^{2} / |V_{td}|^{2}$$

And Beyond the Standard Model?

Additional Feynman diagram from Higgs boson:

And Beyond the Standard Model?

Additional Feynman diagram from Higgs boson:

 Two Higgs Doublet Model (2HDM) and Minimal Supersymmetry (MSSM) lead to modified Branching fraction:

$$\mathcal{B}^{2HDM} = \mathcal{B}^{SM} \left(1 - \frac{m_B^2 \tan^2 \beta}{m_{H^{\pm}}^2} \right)^2 \text{ w.s.Hou PRD 48 2342 (1993)}$$
$$\mathcal{B}^{MSSM} = \mathcal{B}^{SM} \left(1 - \left(\frac{m_B^2}{m_{H^{\pm}}^2}\right) \frac{\tan^2 \beta}{1 + \epsilon \tan \beta} \right)^2$$

• tan β – ratio of vacuum expectation values.

13th March 2008

- Experimentally challenging:
 - Two or Three neutrinos in final state.

 e^+

- Only reconstruct τ daughters.
- Lack of kinematic constraints.

Signal

Final

State

e

- Recoil Analysis technique:
- Fully Reconstruct the other B B_{reco}. This constrains the signal B – B_{recoil}. Signal recoil Two different types: e^+ e Final Hadronic tag: В State reco $B \rightarrow DX$ (X = Hadrons $-\pi^{\pm}, \pi^{0}, K^{\pm}, K_{s}$) **Fully Reconstruct** SemiLeptonic tag*: $B \rightarrow D \ell v X$ (X = γ , π^0 , or nothing) *fully reconstruct except the neutrino.

- Recoil Analysis technique:
- Fully Reconstruct the other B B_{reco}. This constrains the signal B – B_{recoil}. Signal recoil Two different types: e^+ e Final Hadronic tag: В State reco $B \rightarrow DX$ (X = Hadrons $-\pi^{\pm}, \pi^{0}, K^{\pm}, K_{s}$) **Fully Reconstruct** SemiLeptonic tag*: $B \rightarrow D \ell v X$ (X = γ , π^0 , or nothing) *fully reconstruct except the neutrino.

- τ is reconstructed in five modes:
- $\tau \rightarrow e^{-} \nu_{e} \nu_{\tau}$
- $\tau \rightarrow \mu^{-} \nu_{\mu} \nu_{\tau}$
- $\tau^- \rightarrow \pi^- v_{\tau}$
- $\tau^- \rightarrow \rho^- (\pi^- \pi^0) \nu_{\tau}$
- $(\tau^- \rightarrow a_1^- (\pi^+ \pi^- \pi^-) v_{\tau})$

a, is only used in most recent analysis.

13th March 2008

- Most discriminating variable available.
- Sum of Energy deposited in Calorimeter, that is not attributed to any reconstructed particle.
- Should be (close to) zero for true signal events.
- Background typically much higher.
- Moreover used to define signal box.

Current Results

Phys. Rev. D 76, 052002 (2007)

Semileptonic Tags

- Used 383 x 10⁶ BB pairs.
- Carry out Likelihood fit to yield in four tau channels.
- $\mathcal{B}(B \rightarrow \tau v) = (0.9 \pm 0.6(\text{stat}) \pm 0.1(\text{syst})) \times 10^{-4}.$
- 90% CL UL: $\mathcal{B}(B \to \tau v) < 1.7 \times 10^{-4}$.

au	Expected background	Observed events
decay mode	events	in on-resonance data
$\tau^+ \rightarrow e^+ \nu \overline{\nu}$	44.3 ± 5.2	59
$\tau^+ \to \mu^+ \nu \overline{\nu}$	39.8 ± 4.4	43
$\tau^+ \to \pi^+ \overline{\nu}$	120.3 ± 10.2	125
$\tau^+ \to \pi^+ \pi^0 \overline{\nu}$	17.3 ± 3.3	18
All modes	221.7 ± 12.7	245

Hadronic Tags

- Also uses 383 x 10⁶ BB pairs.
- Measured Branching fraction:
- $\mathcal{B}(B^+ \to \tau^+ \nu) = 1.8^{+1.0}_{-0.9}(\text{stat.+bkg}) \pm 0.3(\text{syst.})) \times 10^{-4}.$
- 90% CL Upper Limit: $\mathcal{B}(B \rightarrow \tau v) < 3.4 \times 10^{-4}.$
- \mathcal{B} also calculated from likelihood ratio fit to the individual tau channel yields.
- $f_B \cdot |V_{ub}| = (10.1^{+2.8}_{-2.5}(\text{stat.}) \pm 0.8(\text{syst.})) \times 10^{-4} \text{ GeV}$

τ decay mode Expected background Observed			
$\tau^+ \to e^+ \nu \overline{\nu}$	1.47 ± 1.37	4	
$\tau^+ \to \mu^+ \nu \overline{\nu}$	1.78 ± 0.97	5	
$\tau^+ \to \pi^+ \overline{\nu}$	6.79 ± 2.11	10	
$\tau^+ \to \pi^+ \pi^0 \overline{\nu}$	4.23 ± 1.39	5	
All modes	14.27 ± 3.03	24	

- Combine semileptonic and hadronic results.
- Statistically independent.
- Extend likelihood ratio technique used in both to determine combined result.
- Central value:

PRL 97, 251802 (2006)

 $\mathcal{B}(B^+ \to \tau^+ \nu) = (1.20^{+0.40}_{-0.38} (\text{stat.})^{+0.29}_{-0.30} (\text{bkg syst.}) \pm 0.22 (\text{syst.})) \times 10^{-4},$ 2.6\sigma significance including uncertainty on background. (3.2 σ if this is omitted.)

- Belle result: $\mathcal{B} = (1.79^{+0.56}_{-0.49}) \times 10^{-4}$
- SM prediction: 1.6×10^{-4}

13th March 2008

Constraint on Unitarity Triangle

- Combine $B \rightarrow \tau v$ with Δm_d measurements to constrain CKM ratio $|V_{ub}|/|V_{td}|$.
- $f_{_B}$ cancels least well known value.
- Shown as a graphical constraint on Unitarity Triangle.
- Consistent with SM.

Implications for New Physics

- Exclusions in m_{μ} tan β plane.
 - m<sub>_H Charged Higgs mass.
 </sub>
 - tan β ratio of v.e.v. of 2HD.
- Plots shown for region above direct search limit from LEP.
- Can be combined with measurement of $b \rightarrow s\gamma$.
- $B \rightarrow \tau v$ more useful at higher values of tan β .

Multivariate Analysis

13th March 2008

Multivariate Analysis

- Use a combination of many variables to select events.
- Make use of correlations between variables.
- Use combination of weakly classifying variables that could not be cut on.
 - Examples of Multivariate Classifiers include: Fisher Discriminant, Neural Net Boosted Decision Tree, Random Forest
- Increase signal efficiency and/or background rejection.

Multivariate Analysis Packages

- Two packages commonly used in Particle Physics.
- **TMVA**

Toolkit for MultiVariate Analysis:

- http://tmva.sourceforge.net/
- Developed mainly at CERN.
- Incorporated in recent releases of ROOT (5.11+).
- StatPatternRecognition:
 - https://sourceforge.net/projects/statpatrec
 - Developed by Ilya Narsky (Caltech).
 - Fully compatible with ROOT.

General Strategy for MVA

- The chosen classifier must be trained.
- Three steps divide available data (typically Monte-Carlo) into three datasets.
 - Training
 - Validation check, and optimise training parameters.
 - Testing realistic evaluation of performance.
- Example division of data: 50%:25%:25%.
- Separate samples reduces danger of over-training.
- Testing sample used for all performance plots shown.

Decision Tree

Boosted Decision Tree

- Boosting over a specified number of cycles: increase weight of misclassified events decrease weight of correctly classified events.
- Increases predictive power.
- Boosted decision tree can no longer be easily visualised.
- Advantages:
 - Can cope with very correlated variables and useless inputs.
 - No "Curse of dimensionality".

Bagging and Random Forests

- Bagging Bootstrap AGGregatING.
- Bootstrapping sampling with replacement.
- Train classifiers on bootstrap replicas of training data.
- Overall response is average of each classifier training.
- Bootstrapping the input dimensions (variables) as well is called a Random Forest.
 - "De-correlates" variables.
- Important training parameters are Leaf size, and number of input dimensions to sample.

Using a Boosted Decision Tree for $B \rightarrow \tau v$

- Use a BDT to classify events.
- Train for each τ mode.
- Use many weakly discriminating variables such as:
 - ρ, a₁ candidate mass,
 - Momentum of τ daughter,
 - COS θ_{miss}...
- Use 11-18 variables in training (τ mode dependent).

• E_{Extra} is not used, so it can be analysed separately. 13th March 2008 M. Barrett - Brunel University

Using a Boosted Decision Tree for $B \rightarrow \tau v$

- Raw signal/background distribution not most useful.
- Calculate Signal Efficiency and Background rejection for different cuts.
- Plot Signal Efficiency against Background rejection.
- Very high background rejection can be obtained: At cost of lower signal efficiency.

Using a Boosted Decision Tree for $B \rightarrow \tau v$

- Standard cuts perform very well in electron mode – very difficult to beat with MVA.
- The other τ decay modes show some promise of improvement using MVA.

Visualisation of Parameters

- Multi-dimensional problems are difficult to visualise.
- More dimensions \rightarrow More Difficult to visualise.
- Parallel Coordinates are a visualisation method.
 - One (parallel) axis for each variable.
 - Each event is represented by a line.
- Background types represented by a different colours.
- Colour Scheme used in plots: Signal uds cc B⁰B⁰ B⁺B⁻
- Available in ROOT 5.17 (and above).
- Example is shown for variables for π mode.

13th March 2008

Example for π Variables

Signal Only

Light Continuum (uds) Only

35

All MC types

13th March 2008

Prospects

- BaBar has collected its full dataset of Y(4S) decays.
- The next sets of analyses carried out aim to be the definitive BaBar analyses.
- Work is ongoing to incorporate as many improvements as possible during this intense analysis period.
- B→τν will continue to be a subject of great interest at potential at the next generation of proposed B-factories: SuperB and SuperKEKB.

Summary

- The decay $B \rightarrow \tau v$ can be used to measure parameters unavailable to other B decays, and to constrain the Unitarity Triangle.
- It can also put constraints on New Physics Charged Higgs sector.
- Babar and Belle have seen evidence of this decay.

 $\mathcal{B}(B^+ \to \tau^+ \nu) = (1.20^{+0.40}_{-0.38} (\text{stat.})^{+0.29}_{-0.30} (\text{bkg syst.}) \pm 0.22 (\text{syst.})) \times 10^{-4},$

$$\mathcal{B} = (1.79^{+0.56}_{-0.49} \ ^{+0.39}_{-0.46}) imes 10^{-4}$$

New methods could hopefully move this closer to a discovery.

Back-Up Slides

13th March 2008

- Taken 30fb⁻¹ at Y(3S) resonance, ~90M Y(3S) events.
- ~10× the previous largest sample.
- Take 20fb⁻¹ at the Y(2S) resonance, ~140M events.
- Standard Model:
 - Search for new states;
 - Bottomonium Spectroscopy.
- Beyond the Standard Model:
 - Low mass Higgs.
 - Lepton Flavour violation.
 - Low mass Dark Matter

13th March 2008

Y(nS) Physics - Bottomonium

- Solid lines: Discovered.
- Dashed lines: Predicted.
- Most predicted states accessible.
- Known states have few measured branching fractions.

Y(nS) Physics – Light Higgs

 Recent work in NMSSM interested in low mass CP-odd Higgs (a).

 e^+

- Avoids direct LEP constraints.
- Would decay to ττ, light hadrons or charmed hadrons depending on mass.
- e^{-} 35 Y(1S)

- Hiller, hep-ph/0404220
- Dermisek, Gunion, McElrath, hep-ph/0612031

Y(nS) Physics - Leptons

- Measure leptonic decays of Y(nS).
- Different rates for e.g. B(Y(nS))→ τ⁺τ⁻ and B(Y(nS))→ μ⁺μ⁻ would be departure from Lepton Universality.
- Could be caused by low mass Higgs.
- Also search for lepton flavour violation, e.g. $\mathcal{B}(Y(3S)) \rightarrow \tau^+ \mu^-$.

Belle *B*→τv

13th March 2008

Unitarity Triangle

- Weak eigenstates ≠ Flavour eigenstates (Strong, EM).
- Two generations of quarks described by Cabibbo matrix: $\begin{pmatrix} d' \\ s' \end{pmatrix} = \begin{pmatrix} \cos \theta_c & \sin \theta_c \\ -\sin \theta_c & \cos \theta_c \end{pmatrix} \begin{pmatrix} d \\ s \end{pmatrix}$
- CKM matrix describes quark mixing with 3 generations.
- Apply Unitary condition V⁺V = I.
- 9 equations, e.g.

 $V_{ud}V_{ud}^* + V_{us}V_{us}^* + V_{ub}V_{ub}^* = 1.$

 $V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$

- Gives Unitarity Triangle.
- Measure angles α, β, and γ and lengths of sides.

13th March 2008

$$V_{\rm CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

MVA method comparison

 Summary Slide by Ilya Narsky.

Boosted and Neural Trees SVM RBF MARS k-NN VAB Net (CART) bagged trees Predictive power Ability to deal with irrelevant inputs \bigcirc Interpretability Curse of \bigcirc dimensionality Computational scalability with \bigcirc adding new dimensions \bigcirc \bigcirc Training stability \bigcirc \bigcirc ()Response time horrible SPR homepage: good 🔵 fair poor

http://www.hep.caltech.edu/~narsky/spr.html

Part of talk

available on