Investigating $\boldsymbol{B} \rightarrow \boldsymbol{\tau} \boldsymbol{V}_{\tau}$ at $\mathcal{B a B a r}$ with New Statistical Techniques

Matthew Barrett
Dept of Electronic and Computer Engineering
$\mathcal{B r u n e}(\mathcal{H E} \mathcal{P}$ group
Brunel $\mathcal{I n i v e r s i t y}$

Outline of Talk

- The BaBar Experiment.
- $B \rightarrow \tau v$ - Why is it interesting?
- How to study $B \rightarrow \tau v$.
- Current Measurements from BaBar and Belle.
- Improving the measurements with new statistical techniques.
- The future for BaBar and beyond...

BABAR Experiment

BABAR Experiment

IFR - Instrumented
Flux Return

- Centre of Mass Energy = 10.58 GeV .
- Mass of $Y(4 S)$.

DIRC - Detector of Internally Reflected Cherenkov radiation

SVT - Silicon
Vertex Tracker
e^{+}
3.1 GeV

- Just above threshold for BB production.
- B mesons almost at rest.
- $\beta \gamma=0.56$
M. Barrett - Brunel University
- BaBar started data taking: 1999.
- Will finish on April 72008.
- After running on $Y(3 S)$ and $Y(2 S)$.
- Off Peak: 40 MeV below Y(4S).
- No B mesons produced.
- Mass of $Y(3 S)=$ $10.355 \mathrm{GeV} / \mathrm{c}^{2}$.

13th March 2008

M. Barrett - Brunel University

Why Study $B \rightarrow$ TV?

- Physics motivated by one equation:

$$
\mathcal{B}\left(B^{-} \rightarrow \ell^{-} \bar{\nu}\right)=\frac{G_{F}^{2} m_{B}}{8 \pi} m_{l}^{2}\left(1-\frac{m_{l}^{2}}{m_{B}^{2}}\right)^{2} f_{B}^{2}\left|V_{u b}\right|^{2} \tau_{B}
$$

- Parameters of Note:
- $f_{B}-B$ meson decay constant.
- Can only access via purely leptonic B decays.
- Current value from Lattice QCD:

$$
f_{\mathrm{B}}=(189 \pm 27) \mathrm{MeV}
$$

Why Study $B \rightarrow \tau V ?$

- Physics motivated by one equation:

$$
\mathcal{B}\left(B^{-} \rightarrow \ell^{-} \bar{\nu}\right)=\frac{G_{F}^{2} m_{B}}{8 \pi} m_{l}^{2}\left(1-\frac{m_{l}^{2}}{m_{B}^{2}}\right)^{2} f_{B}^{2}\left|V_{u b}\right|^{2} \tau_{B}
$$

- Parameters of Note:
- Mass of daughter lepton m_{i}
- Leads to helicity suppression:

$$
\begin{array}{ll}
\tau: \mu & : e \\
1: 5 \times 10^{-3} & : 10^{-7}
\end{array}
$$

Why Study $B \rightarrow T V ?$

- Physics motivated by one equation:

$$
\mathcal{B}\left(B^{-} \rightarrow \ell^{-} \bar{\nu}\right)=\frac{G_{F}^{2} m_{B}}{8 \pi} m_{l}^{2}\left(1-\frac{m_{l}^{2}}{m_{B}^{2}}\right)^{2} f_{B}^{2}\left|V_{u b}\right|^{2} \tau_{B}
$$

- Parameters of Note:
- $V_{u b}$ - CKM matrix element.
- Current PDG value:

$$
\left|V_{u b}\right|=(4.31 \pm 0.30) \times 10^{-3}
$$

- B meson oscillation frequency: $\Delta \mathrm{m}_{\mathrm{d}} \propto \mathrm{f}_{\mathrm{B}}{ }^{2}\left|\mathrm{~V}_{\mathrm{td}}\right|^{2}$.
- $\mathcal{B}(B \rightarrow \tau v) / \Delta \mathrm{m}_{\mathrm{d}} \propto\left|V_{\mathrm{ub}}\right|^{2} /\left|V_{\mathrm{td}}\right|^{2}$

And Beyond the Standard Model?

- Additional Feynman diagram from Higgs boson:

And Beyond the Standard Model?

- Additional Feynman diagram from Higgs boson:

- Two Higgs Doublet Model (2HDM) and Minimal Supersymmetry (MSSM) lead to modified Branching fraction:

$$
\begin{aligned}
\mathcal{B}^{2 H D M} & =\mathcal{B}^{S M}\left(1-\frac{m_{B}^{2} \tan ^{2} \beta}{m_{H}^{2}}\right)^{2} \text { w.s.Hou PRD } \\
\mathcal{B}^{M S S M} & =\mathcal{B}^{S M}\left(1-\left(\frac{m_{B}^{2}}{m_{H^{ \pm}}^{2}}\right) \frac{\tan ^{2} \beta}{1+\epsilon \tan \beta}\right)^{2}
\end{aligned}
$$

$$
\text { W.S.Hou PRD } 482342 \text { (1993) }
$$

- $\tan \beta$ - ratio of vacuum expectation values.

How to look for $B \rightarrow$ TV

- Experimentally challenging:
- Two or Three neutrinos in final state.
- Only reconstruct τ daughters.
- Lack of kinematic constraints.

${ }^{-}$

Signal
Final
State

How to look for $B \rightarrow T V$

- Recoil Analysis technique:
- Fully Reconstruct the other B - B
- Two different types:
- Hadronic tag:
$B \rightarrow D X(X=$ Hadrons
$\left.-\pi^{ \pm}, \pi^{0}, K^{ \pm}, K_{s}\right)$
- SemiLeptonic tag*:
$B \rightarrow \operatorname{Div} X\left(X=\gamma, \pi^{0}\right.$, or nothing $)$
$*_{\text {fully }}$ reconstruct except the neutrino.

How to look for $B \rightarrow T V$

- Recoil Analysis technique:
- Fully Reconstruct the other B - B
- Two different types:
- Hadronic tag:
$B \rightarrow D X(X=$ Hadrons
$\left.-\pi^{ \pm}, \pi^{0}, K^{ \pm}, K_{s}\right)$
- SemiLeptonic tag*:
$B \rightarrow \operatorname{Div} X\left(X=\gamma, \pi^{0}\right.$, or nothing $)$
$*_{\text {fully }}$ reconstruct except the neutrino.

How to look for $\mathcal{B} \rightarrow$ TV

- τ is reconstructed in five modes:
- $\tau^{-} \rightarrow \mathrm{e}^{-} \nu_{\mathrm{e}} \nu_{\tau}$
- $\tau^{-} \rightarrow \mu^{-} \nu_{\mu} \nu_{\tau}$
- $\tau^{-} \rightarrow \pi^{-} \nu_{\tau}$
- $\tau^{-} \rightarrow \rho^{-}\left(\pi^{-} \pi^{0}\right) \nu_{\tau}$
- $\left(\tau^{-} \rightarrow \mathrm{a}_{1}^{-}\left(\pi^{+} \pi^{-} \pi^{-}\right) \nu_{\tau}\right)$

a_{1} is only used in most recent analysis.
- Most discriminating variable available.
- Sum of Energy deposited in Calorimeter, that is not attributed to any reconstructed particle.
- Should be (close to) zero for true signal events.
- Background typically much higher.
- Moreover - used to define signal box.

Current Results

Semileptonic Lags

- Used 383×10^{6} BB pairs.
- Carry out Likelihood fit to yield in four tau channels.
- $\mathcal{B}(B \rightarrow \tau v)=(0.9 \pm 0.6$ (stat) \pm

τ	Expected background	Observed events in on-resonance data
decay mode	events	in
$\tau^{+} \rightarrow e^{+} \nu \bar{\nu}$	44.3 ± 5.2	59
$\tau^{+} \rightarrow \mu^{+} \nu \bar{\nu}$	39.8 ± 4.4	43
$\tau^{+} \rightarrow \pi^{+} \bar{\nu}$	120.3 ± 10.2	125
$\tau^{+} \rightarrow \pi^{+} \pi^{0} \bar{\nu}$	17.3 ± 3.3	18
All modes	221.7 ± 12.7	245

- 90% CL UL: $\mathcal{B}(B \rightarrow \tau v)<1.7 \times 10^{-4}$.

- Also uses 383×10^{6} BB pairs.
- Measured Branching fraction:
- $\mathcal{B}\left(B^{+} \rightarrow \tau^{+} \nu\right)=1.8_{-0.9}^{+1.0}($ stat. + bkg $) \pm 0.3($ syst. $\left.)\right) \times 10^{-4}$.
- 90\% CL Upper Limit:
$\mathcal{B}(B \rightarrow \tau v)<3.4 \times 10^{-4}$.
τ decay mode Expected background Observed

$\tau^{+} \rightarrow e^{+} \nu \bar{\nu}$	1.47 ± 1.37	4
$\tau^{+} \rightarrow \mu^{+} \nu \bar{\nu}$	1.78 ± 0.97	5
$\tau^{+} \rightarrow \pi^{+} \bar{\nu}$	6.79 ± 2.11	10
$\tau^{+} \rightarrow \pi^{+} \pi^{0} \bar{\nu}$	4.23 ± 1.39	5
All modes	14.27 ± 3.03	24

Combined Result

- Combine semileptonic and hadronic results.
- Statistically independent.
- Extend likelihood ratio technique used in both to determine combined result.
- Central value:

$$
\mathcal{B}\left(B^{+} \rightarrow \tau^{+} \nu\right)=\left(1.20_{-0.38}^{+0.40}(\text { stat. })_{-0.30}^{+0.29}(\text { bkg syst. }) \pm 0.22(\text { syst. })\right) \times 10^{-4},
$$

2.6σ significance including uncertainty on background.
(3.2 σ if this is omitted.)

- Belle result: $\mathcal{B}=\left(\begin{array}{ll}1.79_{-0.49}^{+0.56} & { }_{-0.46}^{+0.39}\end{array}\right) \times 10^{-4}$

PRL 97, 251802 (2006)

- SM prediction: 1.6×10^{-4}

Constraint on Unitarity Triangle

- Combine B $\rightarrow \tau v$ with Δm_{d}

$$
\mathcal{B}\left(B^{-} \rightarrow \ell^{-} \bar{\nu}\right)=\frac{G_{F}^{2} m_{B}}{8 \pi} m_{l}^{2}\left(1-\frac{m_{l}^{2}}{m_{B}^{2}}\right)^{2} f_{B}^{2}\left|V_{u b}\right|^{2}{ }^{2}
$$ measurements to constrain CKM ratio $\left|V_{u b}\right| / / V_{\text {td }} \mid$.

- f_{B} cancels - least well known value.
- Shown as a graphical constraint on Unitarity Triangle.
- Consistent with SM.

Implications for Nerw Physics

- Exclusions in $\mathrm{m}_{\mathrm{H}}-\tan \beta$ plane.
- m_{H} - Charged Higgs mass.
- $\tan \beta$ - ratio of v.e.v. of 2HD.
- Plots shown for region above direct search limit from LEP.
- Can be combined with measurement of $b \rightarrow s \gamma$.
- $B \rightarrow \tau v$ more useful at higher values of $\tan \beta$.
21

Multivariate $\mathfrak{A n a l y s i s}$

Multivariate Analysis

- Use a combination of many variables to select events.
- Make use of correlations between variables.
- Use combination of weakly classifying variables that could not be cut on.
- Examples of Multivariate Classifiers include: Fisher Discriminant, Neural Net Boosted Decision Tree, Random Forest
- Increase signal efficiency and/or background rejection.

Multivariate Analysis Packages

- Two packages commonly used in Particle Physics.
- TMVA Toolkit for MultiVariate Analysis:
- http://tmva.sourceforge.net/
- Developed mainly at CERN.
- Incorporated in recent releases of ROOT (5.11+).
- StatPatternRecognition:
- https://sourceforge.net/projects/statpatrec
- Developed by Ilya Narsky (Caltech).
- Fully compatible with ROOT.

General Strategy for MVA

- The chosen classifier must be trained.
- Three steps - divide available data (typically MonteCarlo) into three datasets.
- Training
- Validation - check, and optimise training parameters.
- Testing - realistic evaluation of performance.
- Example division of data: 50\%:25\%:25\%.
- Separate samples reduces danger of over-training.
- Testing sample used for all performance plots shown.

Decision Iree

- Decision tree performs many cuts on input variables.
- Separate events into "nodes": signal-like or background-like.
- Keep splitting, until no new nodes can be created.

Boosted Decision Iree

- Boosting - over a specified number of cycles: increase weight of misclassified events decrease weight of correctly classified events.
- Increases predictive power.
- Boosted decision tree can no longer be easily visualised.
- Advantages:
- Can cope with very correlated variables and useless inputs.
" No "Curse of dimensionality".

Bagging and Random Forests

- Bagging - Bootstrap AGGregatING.
- Bootstrapping - sampling with replacement.
- Train classifiers on bootstrap replicas of training data.
- Overall response is average of each classifier training.
- Bootstrapping the input dimensions (variables) as well is called a Random Forest.
- "De-correlates" variables.
- Important training parameters are Leaf size, and number of input dimensions to sample.

Uling a Boosted Decision Iree for $B \rightarrow \tau V$

- Use a BDT to classify events.
- Train for each τ mode.
- Use many weakly discriminating variables such as:
- ρ, a_{1} candidate mass,
- Momentum of τ daughter,
- $\cos \theta_{\text {miss }}$..

- Use 11-18 variables in training (τ mode dependent).
- $E_{\text {Extra }}$ is not used, so it can be analysed separately.
- Raw signal/background

Efficiency vs. Background Rejection

Uling a Boosted Decision Iree for $B \rightarrow \tau V$

- Standard cuts perform very well in electron mode - very difficult to beat with MVA.
- The other τ decay modes show some promise of improvement using MVA.

Efficiency vs. Background Rejection

Visualisation of Parameters

- Multi-dimensional problems are difficult to visualise.
- More dimensions \rightarrow More Difficult to visualise.
- Parallel Coordinates are a visualisation method.
- One (parallel) axis for each variable.
- Each event is represented by a line.
- Background types represented by a different colours.
- Colour Scheme used in plots: Signal uds cc $B^{0} B^{0} B^{+} B^{-}$
- Available in ROOT 5.17 (and above).
- Example is shown for variables for π mode.

Example for π Variables

13th March 2008
M. Barrett - Brunel University

Signal Only

13th March 2008
M. Barrett - Brunel University

Cight Continuum (uds) Onfy

13th March 2008
M. Barrett - Brunel University

All MC types

Prospects

- BaBar has collected its full dataset of $Y(4 S)$ decays.
- The next sets of analyses carried out aim to be the definitive BaBar analyses.
- Work is ongoing to incorporate as many improvements as possible during this intense analysis period.
- B $\rightarrow \tau v$ will continue to be a subject of great interest at potential at the next generation of proposed B-factories: SuperB and SuperKEKB.

Sumimaty

- The decay $B \rightarrow \tau v$ can be used to measure parameters unavailable to other B decays, and to constrain the Unitarity Triangle.
- It can also put constraints on New Physics - Charged Higgs sector.
- Babar and Belle have seen evidence of this decay.

$$
\begin{aligned}
& . \mathcal{B}\left(B^{+} \rightarrow \tau^{+} \nu\right)=\left(1.20_{-0.38}^{+0.40}(\text { stat. })_{-0.30}^{+0.29}(\text { bkg syst. }) \pm 0.22(\text { syst. })\right) \times 10^{-4}, \\
& \mathcal{B}=\left(1.79_{-0.49}^{+0.56}{ }_{-0.46}^{+0.39}\right) \times 10^{-4}
\end{aligned}
$$

- New methods could hopefully move this closer to a discovery.

Back-Ilp Slides

Y(nS) Physics

- Taken $30 \mathrm{fb}^{-1}$ at $\mathrm{Y}(3 \mathrm{~S})$ resonance, $\sim 90 \mathrm{M} Y(3 \mathrm{~S})$ events.
- $\sim 10 \times$ the previous largest sample.
- Take $20 \mathrm{fb}^{-1}$ at the $\mathrm{Y}(2 \mathrm{~S})$ resonance, $\sim 140 \mathrm{M}$ events.
- Standard Model:
- Search for new states;
- Bottomonium Spectroscopy.
- Beyond the Standard Model:
- Low mass Higgs.
- Lepton Flavour violation.
- Low mass Dark Matter

Y(nS) Pfysics - Bottomonium

- Solid lines: Discovered.
- Dashed lines: Predicted.
- Most predicted states accessible.
- Known states have few measured branching fractions.

Y(nS) Pfysics - Light Jiggs

- Recent work in NMSSM interested in low mass CP-odd Higgs (a).
- Avoids direct LEP constraints.
- Would decay to $\tau \tau$, light hadrons or charmed hadrons depending on mass.

Y(1S)

- Hiller, hep-ph/0404220
- Dermisek, Gunion, McElrath, hep-ph/0612031

Y(nS) Physics - Leptons

- Measure leptonic decays of $Y(n S)$.
- Different rates for e.g. $\mathcal{B}(Y(n S)) \rightarrow \tau^{+} \tau^{-}$and $\mathcal{B}(\mathrm{Y}(\mathrm{nS})) \rightarrow \mu^{+} \mu^{-}$would be departure from Lepton Universality.
- Could be caused by low mass Higgs.
- Also search for lepton flavour violation, e.g. $\mathcal{B}(\mathrm{Y}(3 \mathrm{~S})) \rightarrow \tau^{+} \mu^{-}$.

Belle B-ov

- Comparison of BaBar and Belle exclusions from $B \rightarrow \tau v$.

Unitarity Iriangle

- Weak eigenstates \neq Flavour eigenstates (Strong, EM).
- Two generations of quarks described by Cabibbo matrix: $\quad\left(s^{\prime}\right)=\left(\begin{array}{ll}-\sin \theta_{c} & \cos \theta_{c}\end{array}\right)\binom{s}{s}$
- CKM matrix describes quark mixing with 3 generations.
- Apply Unitary condition $\mathrm{V}^{\dagger} \mathrm{V}=\mathrm{I}$.
- 9 equations, e.g.

$$
V_{\mathrm{CKM}}=\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)
$$

$$
\begin{aligned}
& V_{u d} V_{u d}^{*}+V_{u s} V_{u s}^{*}+V_{u b} V_{u b}^{*}=1 . \\
& V_{u d} V_{u b}^{*}+V_{c d} V_{c b}^{*}+V_{t d} V_{t b}^{*}=0
\end{aligned}
$$

- Gives Unitarity Triangle.
- Measure angles α, β, and γ and lengths of sides.
- Summary Slide by Ilya Narsky.
- Part of talk available on SPR homepage:

	Neural Net	RBF	SVM	Trees (CART)	Boosted and bagged trees	MARS	k-NN	VAB
Predictive power								

