Spinning Tops: Top quark spin correlations in the dilepton channel at ATLAS (and CMS)

> Miriam Watson University of Birmingham

> > 23/05/19

Introduction to top quarks

- Discovered by CDF and DØ collaborations at the Tevatron in 1995
- A unique quark:
 - Lifetime ~5x10⁻²⁵ s
 - Decays before it hadronises
 - No bound states (mesons)

- Largest mass of any fundamental particle
- Yukawa coupling ~ 1

Top quark production at the LHC

	BR	Баскугоипа	b jets	Light jets	Leptons	Neutrinos
Fully Hadronic	High	Very high	2	4	0	0
Semi- leptonic	High	Fairly high	2	2	1	1
Dileptonic I	Low	Low	2	0	2	2

What we would like to know about top

Top pair cross-section (lepton+jets)

With b-tagging

- Jet energy scale and reconstruction uncertainties dominate
- Most backgrounds determined from data
- Larger background w/o b-tagging, but no tagging uncertainties

Top pair cross-section (dilepton)

M. Watson, Warwick week

Data-taking at ATLAS 2010-2018

Top physics summary plots: 7, 8 and 13 TeV

Top quark cross-sections

Top Quark Production Cross Section Measurements

Status: November 2018

Spin correlation: overview

- LHC (pp): top quarks produced ~unpolarised, but...
- ...expect correlations between spins of top and anti-top in the SM
- Top quarks decay before hadronisation & top lifetime shorter than decorrelation time
- Spin information passed directly to decay products
- Measure spin information from angular distributions

Spin correlation: beyond the Standard Model

- Measured spin correlation can alter due to
 - Different decays
 - Different production
- Spin correlation: test full chain from production to decay

Spin correlation: $\Delta \phi$ observable

- Highest spin analysing power: leptons from top decay
- Use dileptonic tt events
- Very clean samples
- Measure spin correlation using angular distributions of decay products (leptons here)
- Spin correlation can be inferred from the Δφ distribution:
 - Δφ: difference in azimuthal angle between the leptons, <u>lab frame</u>
- No event reconstruction required
- Excellent lepton resolution

Previous results at 7 TeV and 8 TeV

- Several measurements by ATLAS and CMS at multiple collision energies
- First exclusion of zero spin correlation at >5 σ by ATLAS at 7 TeV

PRL108 (2012) 212001

• Both experiments have observed $\Delta \phi$ to be "steeper" in predictions than the data

16

Covered by systematic uncertainties at 7 and 8 TeV

13 TeV analysis summary

Submitted to EPJC: arxiv:1903.07570

- 2015 + 2016 data (36 fb⁻¹) with a standard dilepton eµ selection:
 - Exactly 2 opposite-sign leptons (27, 25 GeV)
 - At least one b-jet; >= 2 jets pT > 25 GeV
 - No cuts on MET or on m(II)
- Fiducial particle level:
 - Same kinematic cuts as above
 - "Dressed" leptons with radiated photons
 - Anti-k_T R=0.4 jets with "ghost-matching" for b-tagging
- Parton level, full phase space:
 - Tops defined after radiation, leptons before
 - eµ channel only (no tau decays)

g \overline{t} \overline{t} W^+ ψ \overline{b} \overline{b} \overline{b} \overline{b} $W^ \psi$ Add: in lab, frame

 $\Delta \phi$: in lab. frame $|\Delta \eta|$: abs. difference in η of leptons

Measured distributions: $\Delta \phi$, $\Delta \eta$

- Inclusive selection for simple angular distributions (note: hint of disagreement)
- For $\Delta \phi$ as a function of m_{tt} :
 - Require tt <u>event reconstruction</u>
 - Use Neutrino Weighting

Event reconstruction for m_{tt} dependence

- Reconstruct dilepton tt system
 - Two unknowns: η of neutrinos
- Constrain system using values of top mass and W mass
- Test many different assumptions for η for the two neutrinos

Kinematic constraints

$$(\ell_{1,2} + \nu_{1,2})^2 = M_W^2 = 80.4^2$$

 $(\ell_{1,2} + \nu_{1,2} + b_{1,2})^2 = M_t^2 = 172.5^2$

Require 2 b-tagged jets

 $E_T^{\rm miss}$ resolution factor

Weight function

 $w_i = \exp\left(\frac{-\Delta E_x^2}{2\sigma_x^2}\right) \cdot \exp\left(\frac{-\Delta E_y^2}{2\sigma_y^2}\right)$

- Give each solutions a weight based on observed Emiss in the event
- Select solution based on highest weight ("Neutrino Weighting")
- Improving resolution:
 - M_t sampling: [171,174] GeV in 0.5 GeV steps
 - Smear jet p_T

Measured distributions in 4 mass bins

- Shape differences apparent
- **Binning determined** by statistical precision and resolution on m_{tt}, not $\Delta \phi$

Miriam Watson

0

Selected candidates

Process	Inclusive	e sele	ection	Reconst	ructe	ed selection	Recall:
	≥ 1	b-ta	g	2	<u>≥</u> 2 b-	-tags	
$t\overline{t}$	165 000	\pm	5000	75000	\pm	4000	1%
tW	8900	\pm	1400	1550	\pm	170	$\tau + \tau 2\%$
$t\bar{t}V$ and others	670	\pm	60	233	\pm	22	t+e 1%
$\operatorname{Diboson}$	580	\pm	60	15.1	\pm	2.8	ute 210/0
$Z/\gamma^* \to \tau^+ \tau^-$	420	\pm	70	26	\pm	17	"dileptons"
Fake Lepton	1800	\pm	700	630	±	250	
Expected	177 000	\pm	6000	78 000	±	4000	I
Observed	177 113			75 885			This segment

egment, and only 25% of run 2 data

e+jets 1

- Nominal tt Monte Carlo:
 - Powheg-Box next-to-leading order (NLO) matrix-element
 - Pythia8 for parton shower and fragmentation
 - NNPDF3.0 NLO parton distribution function (PDF)

Systematic uncertainties

Parton-level $\Delta \phi(l^+, \bar{l})/\pi$ [rad/ π]

General method:

unfold shifted sample with nominal response matrix, compare to nominal sample

- Detector modelling
- Background and luminosity
- Signal modelling (dominant):
 - Parton shower: Pythia8 or Herwig7
 - NLO model: Powheg or aMC@NLO
 - Initial and final state radiation
 - PDF variation

Results: $\Delta \phi$ parton level

- Clear slope in the data relative to the MC predictions: none agree well
- Relative cross-sections shift due to acceptance effects when normalising, but shape remains the same
- Systematics are dominant in most bins Miriam Watson

25

Unfolded distributions: double differential

Parton-level $\Delta \phi(l^+, l^-)/\pi [rad/\pi]$

Results: extracting spin correlation

- Fraction of SM-like spin correlation (f_{SM}) is extracted using a binned maximum likelihood fit with two templates
- With-spin template: nominal MC (Poweg+Pythia8) with SM spin → f_{SM} = 1
- No-spin template: simulated with the same MC settings, but top quarks decayed using MadSpin with spin correlations between *t* and t^- disabled $\rightarrow f_{SM} = 0$

Results: extracting spin correlation vs. m_{tt}

Separation
 between spin and
 no-spin templates
 reduces with m_{tt}

Results: extracting spin correlation vs. m_{tt}

MC parton-level distributions follow theoreretical predictions at low m_{tt}

Results: f_{SM} values

The significance of the f_{SM}, relative to the SM template, is calculated using a CL_{s+b} method (effectively the same as counting the number of s.d. away from f_{SM} = 1)

c.f. Powheg + Pythia8 with/without scale and PDF uncertainties on templates

	Region	$f_{\rm SM} \pm (\text{stat.,syst.,theory})$	Significance (excl. theory uncertainties)
	Inclusive	$1.249 \pm 0.024 \pm 0.061 \pm 0.040$	3.2 (3.8)
	$m_{t\bar{t}} < 450 \text{ GeV}$	$1.12 \pm 0.04 \ ^{+0.12}_{-0.13} \pm 0.02$	0.86 (0.87)
45	$0 \le m_{t\bar{t}} < 550 \text{ GeV}$	$1.18 \pm 0.08 \ {}^{+0.13}_{-0.14} \pm 0.08$	1.0 (1.1)
55	$0 \le m_{t\bar{t}} < 800 \text{ GeV}$	$1.65 \pm 0.19 {}^{+0.31}_{-0.41} \pm 0.22$	1.3 (1.4)
	$m_{t\bar{t}} \ge 800 \text{ GeV}$	$2.2 \pm 0.9 {}^{+2.5}_{-1.7} \pm 0.7$	0.58 (0.61)

- Slight (but insignificant) increase in f_{SM} as a function of m_{tt}
- The inclusive f_{SM} deviates significantly from the SM prediction in NLO MC

Comparison of f_{SM} values

- When interpreted as spin correlation, shows ~20% more than the spin correlation expectation of the SM (in NLO MC)
- Observed in many other results, with larger uncertainties
- Main differences here:
 - Improved MC generators
 - Improved MC tuning
 - Larger dataset to constrain systematic uncertainties

- NLO generators used here (e.g. Powheg + Pythia8):
 - NLO in production
 - Not full NLO in top quark decays
 - Use Narrow Width Approximation (NWA) to factorise production and decay: initial-final state interference effects are neglected

- NLO generators used here (e.g. Powheg + Pythia8):
 - NLO in production
 - Not full NLO in top quark decays
 - Use Narrow Width Approximation (NWA) to factorise production and decay: initial-final state interference effects are neglected
- NLO effects in the decays of the top quarks: compare the Δφ distribution with MCFM (full NLO, including NLO decays) → very close to nominal template

- NLO generators used here (e.g. Powheg + Pythia8):
 - NLO in production
 - Not full NLO in top quark decays
 - Use Narrow Width Approximation (NWA) to factorise production and decay: initial-final state interference effects are neglected

• NWA in the templates:

compare with Powheg-Box-Res bb4I for full tt+tWprocess without NWA \rightarrow no significant differences

- NLO generators used here (e.g. Powheg + Pythia8):
 - NLO in production
 - Not full NLO in top quark decays
 - Use Narrow Width Approximation (NWA) to factorise production and decay: initial-final state interference effects are neglected
 - Effect of NNLO in production:
 reweight the top p_T to match
 fixed-order NNLO predictions or
 unfolded data from several
 previous ATLAS measurements
- Deviations reduced slightly but consistent within scale uncertainties already considered

New theoretical predictions: NNLO

Behring et al. arXiv:1901.05407

- New fixed-order NNLO predictions for Δφ and Δη directly, with renormalisation and factorisation scale uncertainties
- Closer to parton-level
 unfolded data, but does not
 cover observed discrepancy

New theoretical predictions: NNLO fiducial

- The NNLO authors perform a 'fiducial' fixed order calculation, similar to ATLAS particle level, by clustering the b-jets with radiation (but not with any parton shower, hadronisation, b-decays etc)
- Larger scale uncertainties, but better agreement with data

Stat.

......

0.2

1.05

1.00

0.95

Theory Data Total

 Λ

0.8

Particle-level $\Delta \phi(I^+, I^-)/\pi [rad/\pi]$

New theoretical predictions: NNLO fiducial

- Author's conclusion: There is a problem with the extrapolation of the ATLAS data to the full phase space with NLO/LO MC
- Comment: Fiducial cuts are applied to the 'b-jets' (pT > 25 GeV, |η| < 2.5). These are unlikely to be the same for ATLAS particle level jets and fixed-order partons → could sculpt the shape

More theoretical predictions: NLO+weak effects

- NLO+weak effects: previous calculation now produced for our binning at 13 TeV
 - NLO QCD + weak corrections
 - Expanded as a ratio to fixed order
 - Less optimal <u>fixed</u> scale choice:
 µ_{R/F} = m_{top}
 - Different PDF set CT10
- Better agreement with data, but large scale uncertainties
- Gives f_{SM} = 1.03 ± 0.13 (scale)

W. Bernreuther, D. Heisler and Z.-G. Si, JHEP **12** (2015) 026
W. Bernreuther and Z.-G. Si, Nucl. Phys. B **837** (2010) 90,
W. Bernreuther and Z.-G. Si, Phys. Lett. B **725** (2013) 115,
Erratum: Phys. Lett.B744 (2015) 413

Parton level $\Delta \phi(l^+, \bar{l})/\pi$ [rad/ π]

Aside: renormalisation and factorisation scale choice

$$\begin{split} \mu_0 &\sim m_t , \quad \text{NLO+Weak} \\ \mu_0 &\sim m_T = \sqrt{m_t^2 + p_T^2} , \quad \text{PP8} \\ \mu_0 &\sim H_T = \sqrt{m_t^2 + p_{T,t}^2} + \sqrt{m_t^2 + p_{T,\bar{t}}^2} , \\ \mu_0 &\sim H_T' = \sqrt{m_t^2 + p_{T,t}^2} + \sqrt{m_t^2 + p_{T,\bar{t}}^2} + \sum_i p_{T,i} , \\ \mu_0 &\sim E_T = \sqrt{\sqrt{m_t^2 + p_{T,t}^2}} \sqrt{m_t^2 + p_{T,\bar{t}}^2} , \\ \mu_0 &\sim H_{T,\text{int}} = \sqrt{(m_t/2)^2 + p_{T,t}^2} + \sqrt{(m_t/2)^2 + p_{T,\bar{t}}^2} , \\ \mu_0 &\sim m_{t\bar{t}} , \end{split}$$

Czakon, Heymes, Mitov JHEP 1704 (2017) 071

$$\mu_0 = \begin{cases} \frac{m_T}{2} & \text{for} : p_{T,t}, \ p_{T,\bar{t}} \text{ and } p_{T,t/\bar{t}}, \\ \\ \frac{H_T}{4} & \text{for} : \text{ all other distributions} \end{cases}$$

f_{SM} with alternative templates

Generator	Inclusive	$m_{t\bar{t}} < 450 \text{ GeV}$	$450 \le m_{t\bar{t}} < 550 \text{ GeV}$	$550 \le m_{t\bar{t}} < 800 \text{ GeV}$	$m_{t\bar{t}} \ge 800 \text{ GeV}$
$f_{\rm SM}$ values					
Powheg + Pythia8	1.25	1.12	1.18	1.65	2.2
Powheg + Pythia8 (2.0 $\mu_{\rm F}$, 2.0 $\mu_{\rm R}$)	1.29	1.14	1.23	1.79	2.0
Powheg + Pythia8 (0.5 $\mu_{\rm F}$, 0.5 $\mu_{\rm R}$)	1.18	1.09	1.11	1.40	1.3
POWHEG + PYTHIA8 (PDF variations)	1.26	1.13	1.25	1.76	2.2
Powheg + Pythia 8 RadLo tune	1.29	1.15	1.23	1.79	2.0
Powheg + Herwig7	1.32	1.17	1.25	1.79	2.0
MadGraph5_aMC@NLO + Pythia8	1.20	1.06	1.18	1.40	0.7
NLO (QCD + EW expanded) [35, 81, 82]	1.03	-	-	-	-
NNLO QCD [80]	1.16	-	-	-	-

Table 7: Summary of the extracted spin correlation values in the inclusive $\Delta \phi$ observable using different hypothesis templates.

• This is not a "simple" observable: a lot of effects sculpt the $\Delta \phi$ shape:

- Choice of functional form of $\mu_{\text{R/F}}\,$ e.g. fixed or dynamic scale
- Parton shower matching/merging
- Effect of hard radiation (i.e. hdamp setting in generators like Powheg)
- Weak/EW corrections and how they are included
- Choice of PDF
- Higher-order NNLO QCD corrections and extrapolation to full phase-space
- Interplay been kinematic effects and higher order corrections
- Could also be new physics...

1/0 18

Supersymmetric top squark pair pro

Exclusion contours as a function of $m_{\tilde{\chi}_1^0}$ and $m_{\tilde{t}_1}$

- Limit is still stronger than expected because the data look very unlike SUSY
- Closes off last hiding place for "stealth stops" with $m_{ ilde{t}} \sim m_t$

Direct spin correlation measurements

Spin correlation in tt is:

$$C = \alpha_1 \cdot \alpha_2 \cdot \frac{N(\uparrow\uparrow) + N(\downarrow\downarrow) - N(\uparrow\downarrow) - N(\downarrow\uparrow)}{N(\uparrow\uparrow) + N(\downarrow\downarrow) + N(\uparrow\downarrow) + N(\downarrow\uparrow)}$$

- Where α is the "spin analysing power" of some decay particle from a top quark (~1 for charged leptons so we won't mention it again for dilepton analyses).

- There are three orthogonal bases that are most commonly used:
 - The "Helicity" basis: direction of the t in the tt rest frame.
 - The "Transverse basis": orthogonal to the plane formed by the t and beam line in tt rest frame.
 - The "R-axis": basis orthogonal to the other two.

Direct spin correlation measurements

 Sensitive observables can be readily seen by examining the double differential cross-section as a function of the angular distribution of t and t decay products:

Double diff. xsec

Polarisation (0 in SM) Spin Correlation

$$\frac{1}{\sigma} \frac{\mathrm{d}^2 \sigma}{\mathrm{d} \cos \theta^a_+ \mathrm{d} \cos \theta^b_-} = \frac{1}{4} (1 + \frac{B^a_+}{B^a_+} \cos \theta^a_+ + \frac{B^b_-}{B^b_-} \cos \theta^b_- - \frac{C(a, b)}{C(a, b)} \cos \theta^a_+ \cos \theta^b_-)$$

By measuring the cos(θ) angles (usually with leptons) we can directly extract the spin correlation parameter C:

 $B_+ = 3 \cdot \langle \cos(\theta_+) \rangle \qquad C = -9 \cdot \langle \cos(\theta_+)\cos(\theta_-) \rangle$

- ATLAS measured the spin correlation parameter, C, the polarisation parameters B, and cross-correlations (cos(θ+) and cos(θ-) using different spin analysing bases) in an 8 TeV paper: JHEP 03 (2017) 113
- But these direct measurements require full t reconstruction in dilepton events and therefore suffer from significant systematic uncertainties and resolution effects.

Jay Howarth

ATLAS spin observables at 8 TeV

- 15 observables corrected to particle and parton level
- Compared to NLO predictions
- No significant deviation from the SM

ATLAS	s = 8 TeV - 20.2 fb ⁻¹				
Spin correlations	♦ JHEP 12 (2015) 026	result ± (stat+det) ± (mod)			
C(k,k)	 ●♦	0.296 ± (0.072) ± (0.057)			
C(n,n)		0.304 ± (0.038) ± (0.047)			
C(r,r)	•	0.086 ± (0.075) ± (0.122)			
-0.2 0	0.2 0.4	0.6 0.8 Spin correlation			
Miriam Watson		48			

JHEP 03 (2017) 113

CMS spin/polarisation at 13 TeV

- Instead of SUSY contribution, use measurements to constrain the anomalous chromomagnetic dipole moment of the top quark
- Feature of many BSM models, e.g. two-Higgs-doublet models, supersymmetry, technicolor, top quark compositeness models

CMS-PAS-TOP-18-006

$$-0.07 < C_{\rm tG}/\Lambda^2 < 0.16 \ {
m TeV}^{-2}$$

Summary

- Still more to do to understand tt spin correlations and QCD!
- Interplay between kinematics, higher order corrections, PDFs and experimental techniques is complicated
- Some hints in calculations (e.g. NNLO, weak corrections, fiducial corrections) but no simple solution

MC samples

- Dilepton signal (tt):
 - Nominal sample: Powheg+Pythia8
 - Radiation high/low: Powheg+Pythia8
 - Parton shower: Powheg+Herwig7
 - Alt. NLO: aMC@NLO+Pythia8

- Backgrounds:
 - Z+jets: Sherpa 2.2.1
 - W+jets: Sherpa 2.2.1
 - Diboson: Sherpa 2.2.1 + 2.1
 - Single top: Powheg+Pythia6
 - ttW, ttZ, tWZ: aMC@NLO + Pythia8
 - tZ, ttWW, tttt: MadGraph + Pythia8
 - Fakes from MCTruthClassifier (I+jets tt, W+jets, single top, ttV, other), cross-checked with like-sign leptons

Miriam Watson

52

CMS $\mathbf{f}_{\rm SM}$ values

- Correlation term D from opening angle between leptons in parent top rest frames
- Most precise value of f_{SM}
- N.b. all f_{SM} values determined with Bernreuther-Si NLO QCD+weak predictions

CMS distributions

 NNLO corrections appear to follow data trends

 $\mathbf{2}$

 $|\Delta\eta(\ell,\bar{\ell})|$

3

0.5

0.4

0.3

0.2

0.1 0.0

OTN/OTNN 1.000

NLO/LO

 $0.975 \\ 1.1$

Miriam Watson

Inclusive

 $\sigma^{-1}d\sigma/d\Delta\eta$

