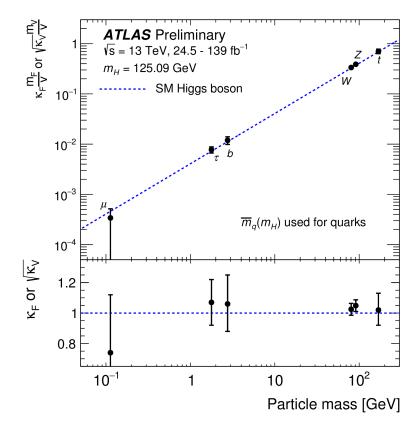


Test of Lepton Flavour Universality with ATLAS

G. Borissov, Lancaster University, UK


Seminar at Warwick, 29 October 2020

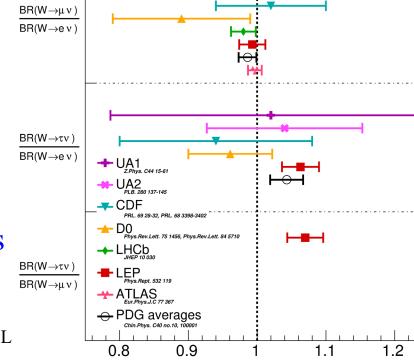
Introduction

- In the Standard Model (SM) the coupling of all charged leptons (electron, muon, tauon) with *W* boson is the same
- This assumption is known as Lepton Flavour Universality (LFU)
- The only difference between the leptons is due to their mass
 - the coupling of leptons to the Higgs boson is different

LFU tests at low energy

- At low energy, the decays of tauon provide a stringent test of LFU
- It is expressed as the ratio of coupling constants (g_{ll}/g_{l2}) of leptons *l1* and *l2* to *W* boson
 - $g_{\mu}/g_e = 1.0018 \pm 0.0014$ (from the ratio $\Gamma(\tau \to \mu \nu \bar{\nu}) / \Gamma(\tau \to e \nu \bar{\nu})$)
 - $g_{\tau}/g_e = 1.0011 \pm 0.0015$ (from the ratio $\Gamma(\tau \to \mu \nu \bar{\nu}) / \Gamma(\mu \to e \nu \bar{\nu})$)
 - $g_{\tau}/g_{\mu} = 1.0018 \pm 0.0014$ (from the ratio $\Gamma(\tau \to e\nu\bar{\nu})/\Gamma(\mu \to e\nu\bar{\nu})$)

LFU Tests with W decays



- LFU is also tested in the decays $W \rightarrow l\bar{\nu}$
 - The measurements are performed at LEP and at LHC (for g_{μ}/g_e)
- The uncertainty of the measurements is large, especially for the coupling of τ ATLAS Preliminary $\sqrt{s} = 13$ TeV. 139 fb

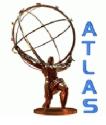
$$\frac{g_{\mu}^{2}}{g_{e}^{2}} = \frac{\Gamma(W \to \mu \overline{\nu})}{\Gamma(W \to e \overline{\nu})} = 0.996 \pm 0.008$$
$$\frac{g_{\tau}^{2}}{g_{e}^{2}} = \frac{\Gamma(W \to \tau \overline{\nu})}{\Gamma(W \to e \overline{\nu})} = 1.043 \pm 0.024$$
$$g_{\tau}^{2} = \Gamma(W \to \tau \overline{\nu})$$

 $\frac{g_{\overline{\tau}}}{g_{\mu}^2} = \frac{\Gamma(W \to \tau \overline{\nu})}{\Gamma(W \to \mu \overline{\nu})} = 1.070 \pm 0.026$

• There is a mild tension with the SM in the τ measurements $- \sim 2.7 \sigma$ for g_{τ}/g_{μ}

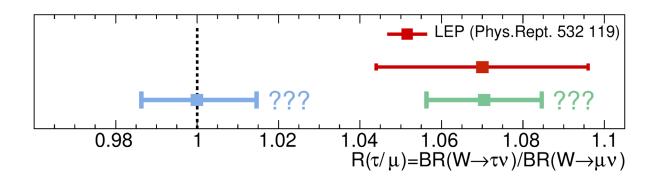
29 October 2020

G. Borissov, Test of L



LFU tests with B hadrons

- Combination of *B*-factories and LHCb results indicate a possible violation of LFU in *B*-hadron decays
- Large discrepancy in the ratio $R(D^{(*)}) = \frac{Br(B \to D^{(*)}\tau\nu)}{Br(B \to D^{(*)}\mu\nu)}$
 - $\ Latest \ combination \ by \ HFLAV \\ shows \sim 3.1\sigma \ deviation \ from \\ the \ SM \ expectation$
 - Some inconsistency between the experimental results can also be noticed


Conclusive test of LFU

• A possible violation of LFU observed at LEP prompts a task of

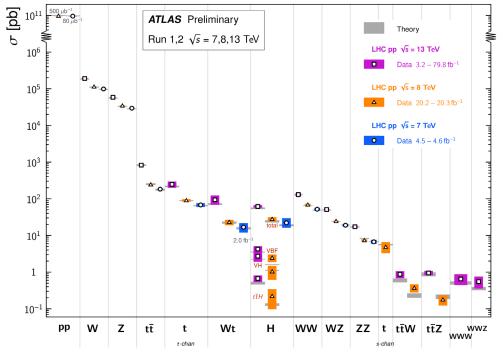
Measuring $R(\tau/\mu) = \Gamma(W \to \tau \bar{\nu}) / \Gamma(W \to \mu \bar{\nu})$ with ~1% precision

- Measuring the same value of $R(\tau/\mu)$ as at LEP with the precision of ~1% would be a definitive confirmation of LFU violation
- It would be an unambiguous discovery of physics beyond the SM

Conclusive test of LFU

- For a long time it was thought that this level of precision is impossible to achieve at hadron colliders
 - large background
 - large uncertainties in the selection efficiency

The new ATLAS result, which will be presented here, disproves this belief



Analysis Strategy

- The test of LFU is performed using the top quark decays
 - Huge production cross section of $t\bar{t}$ pairs
 - More than 100 million $t\bar{t}$ pairs are produced at $\sqrt{s} = 13$ TeV
 - Selection of $t\overline{t}$ is relatively simple and clean
- Each top quark decays mainly as $t \rightarrow Wb$
- there are two *W* bosons in each event

Standard Model Total Production Cross Section Measurements Status: May 2020

Tag-and-probe method

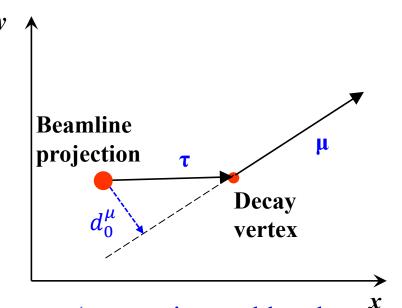
- One *W* boson is used to select events
- The second *W* boson is used to measure $R(\tau/\mu)$
- We use the decay $\tau \rightarrow \mu \nu \bar{\nu}$ and measure

 $Br(W \to \tau (\to \mu \nu \bar{\nu}) \nu)$

$Br(W \to \mu \nu)$

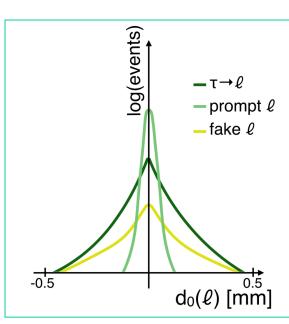
- Br($\tau \rightarrow \mu \nu \bar{\nu}$) = (17.39±0.04)% is known with small uncertainty
- the same particles (a muon) in the final state
- Many uncertainties cancel in the ratio
 - jet reconstruction, flavour tagging,
 - uncertainties related to the tag *W* selection (trigger, efficiency, identification)

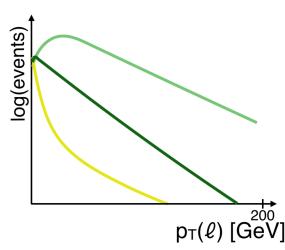
Event selection


- Standard selection of $t\bar{t}$ events with both top quarks decaying semileptonically $t \rightarrow l\nu b$
 - require two isolated opposite charge leptons ($e\mu$ or $\mu\mu$ pairs)
 - the tag lepton (electron or muon) is selected with a single lepton trigger
 - the probe lepton must be a muon with $p_T^{\mu} > 5 \text{ GeV}$
 - require two *b*-tagged jets
 - For $(\mu\mu)$ events apply the Z⁰ veto
 - remove events with $85 < M(\mu\mu) < 95 \text{ GeV}$
- Fraction of background events is 0.9% in $e\mu$ and 8% in $\mu\mu$ samples
 - Larger fraction of background in $\mu\mu$ events is due to Drell-Yan di-muon production

Muon impact parameter

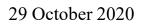
- Muon impact parameter, d_0^{μ} , is the most essential variable of this analysis
- d^µ₀ is defined as the distance of closest approach of a charged track to the beam line in the transverse plane

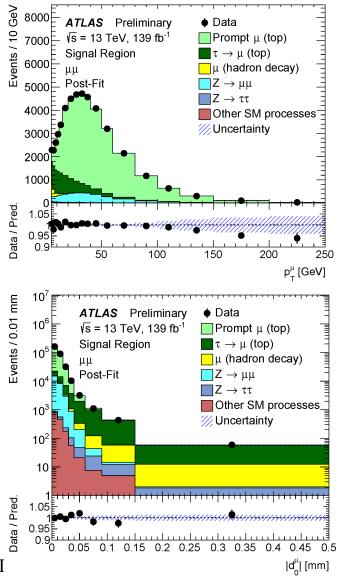

- For particles produced in the primary vertex (approximated by the beamline projection) d_0^{μ} is zero
- For the decay products of long-living particles (like muons from $\tau \rightarrow \mu v \bar{v}$ decay) it is non-zero
- Measuring d_0^{μ} with respect to the beamline makes its definition process-independent

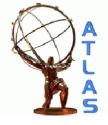


Separation of τ and μ

- Compared to prompt muons from W decay, muons from τ decay have on average
 - larger impact parameter d_0^{μ}
 - smaller transverse momentum p_T^{μ}
- We exploit these differences to separate τ and μ
 - perform a 2D fit of the probe muon $\left| d_0^{\mu} \right|$ and p_T^{μ}
 - Extract $R(\tau/\mu)$ and the total number of $t\bar{t}$ events

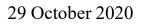


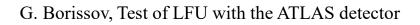

Sources of muons



• Sources of muons:

- Prompt muons from $t \rightarrow \mu \nu b$ events
- Muons from $t \rightarrow \tau \nu b \rightarrow \mu \nu \nu \nu b$
- Muons from hadron decay
- Muons from $Z \rightarrow \mu\mu$ (tails) and $Z \rightarrow \tau\tau$
- The fractions of t → μvb and
 t → τvb → μvvvb are floating parameters
 in the fit
- The fractions of $Z \rightarrow \mu\mu$ (tails) and $Z \rightarrow \tau\tau$ are measured separately
- The fraction of muons from hadron decay is estimated using data with some input from MC



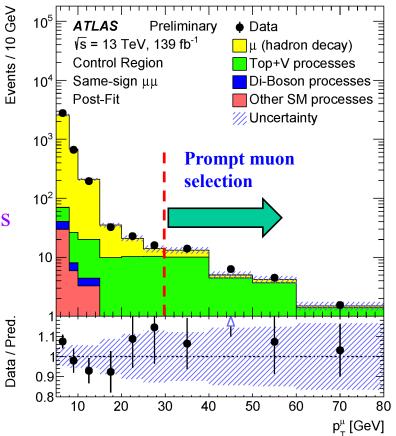

Z⁰ background

- $(Z \rightarrow \mu\mu) + b\overline{b}$ events contribute to $\mu\mu$ sample even though we veto events in Z⁰ peak
- Normalisation of this background is obtained from data
 - Selection is the same as for the main analysis except we do not apply the Z⁰ veto
- Fit $m(\mu\mu)$ with
 - BW \oplus Gaussian for Z^0 peak
 - Polynomial for background
- Scale factor for this background is obtained as the ratio data/MC of events in the Z⁰ peak: 1.36±0.01

29 October 2020

15

- The most significant background at large $|d_0^{\mu}|$
 - Mainly comes from *b* and *c*-hadron decay
- Normalisation of this contribution is taken from simulation with an additional scale factor applied
- Scale factor is determined using the events with the same-sign (SS) leptons (*eµ* or *µµ*)
 - Number of muons from hadron decay is close in SS and opposite sign (OS) sample (contrary to muons from $t\bar{t}$ events)
- Extrapolation from SS to OS is done using simulation



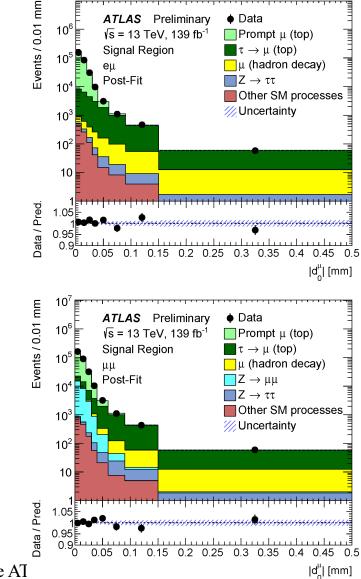
Muons from hadron decay

- Contribution to SS sample comes from
 - muons from hadron decay (small p_T)
 - prompt muons, mainly Top+V (high p_T)
- Procedure to measure the scale factor
 - Determine the scale factor for prompt muons as the ratio of data/MC events with $p_T^{\mu} > 30 \text{ GeV}$
 - Subtract from the number of SS data events
 the scaled contribution of prompt muons
 - this gives $N_{h \rightarrow \mu}^{data}$ estimated number of SS muons from hadron decay in data



Lancaster University

- Scale factor of muons from hadron decay is computed as $N_{h \to \mu}^{data} / N_{h \to \mu}^{MC}$
- Scale factors: 1.39 ± 0.13 (*eµ* channel) and 1.37 ± 0.07 (*µµ*)



- Systematic uncertainty on the scale factor comes from
 - Limited size of the SS sample: $e\mu 4\%$; $\mu\mu 4\%$
 - MC modelling: $e\mu 8\%; \mu\mu 3\%$
 - Subtraction of prompt component: $e\mu 1\%$; $\mu\mu 1\%$

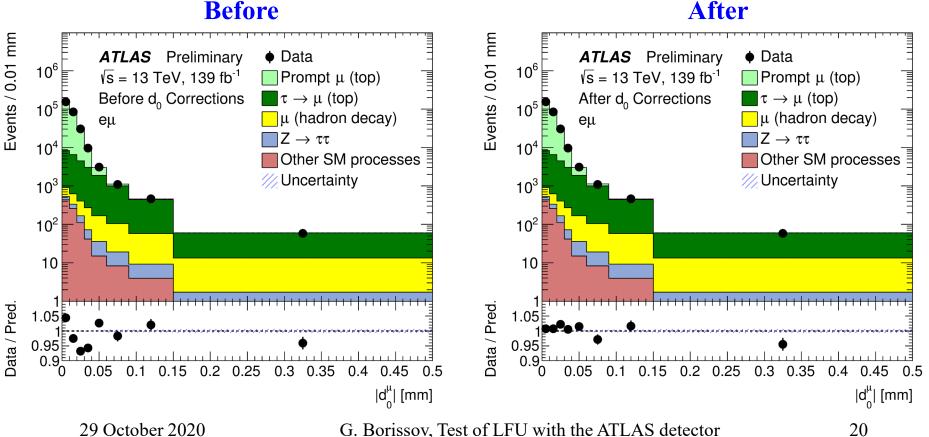
d_0^{μ} templates

- In the fit we use the d_0^{μ} templates for each source
 - Templates for prompt muons $(t \rightarrow \mu \nu b$ and $Z \rightarrow \mu \mu$ tails) are taken from data
 - Templates for muons from τ decay and from hadron decays are taken from simulation
 - The associated systematic uncertainties are among the most important for the analysis

d_0^{μ} templates of prompt muons

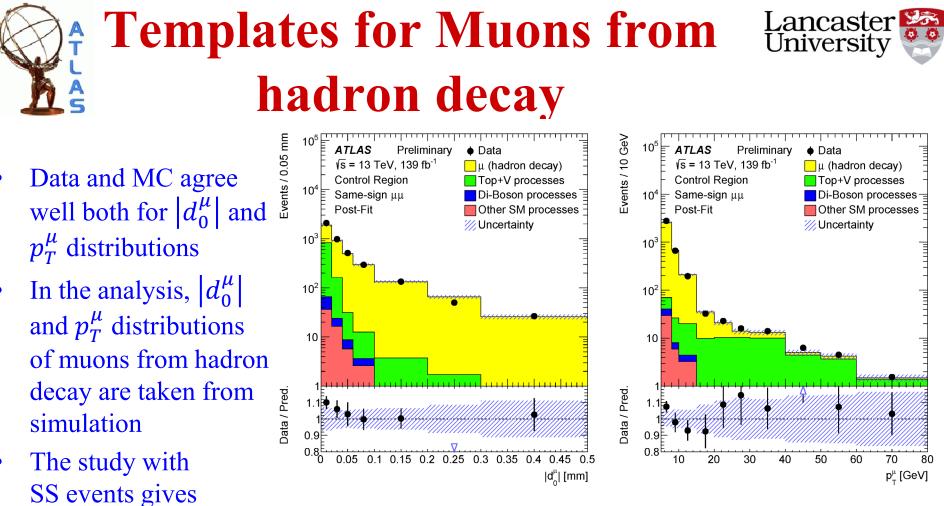
- Build d_0^{μ} templates of prompt muons using $Z \rightarrow \mu \mu$ events •
 - These muons originate from primary vertex like muons in $t \rightarrow \mu \nu b$ decay
- $Z \rightarrow \mu\mu$ selection
 - Opposite-charge muons
 - No *b*-tagged jets
 - $-85 < M(\mu\mu) < 100 \text{ GeV}$
 - Very high purity of prompt muons ~99.9%
- Procedure ٠

29 October 2020

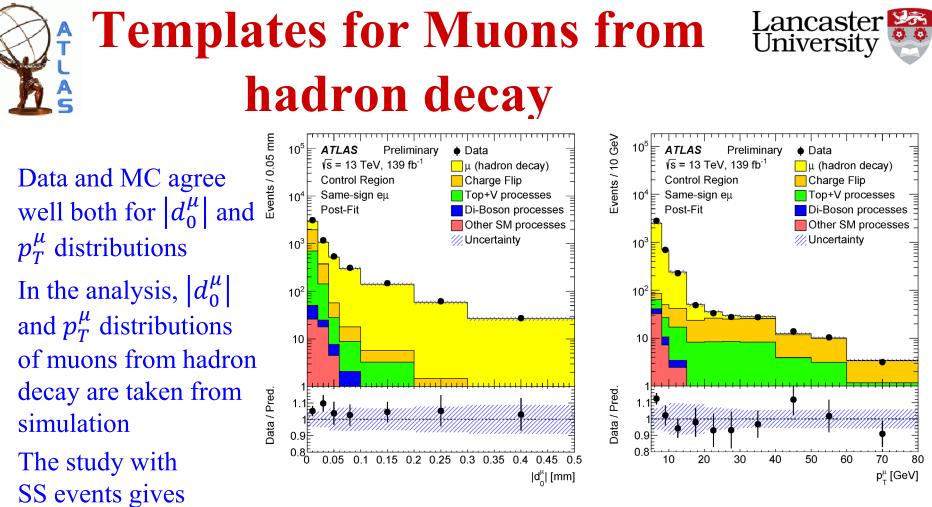

- Determine d_0^{μ} distribution in data separately in 33 kinematic bins in p_T^{μ} and $|\eta^{\mu}|$
- Subtract a small contribution of non-prompt muons (mainly $Z \rightarrow \tau \tau$) using MC

d_0^{μ} templates of prompt **muons**

Considerable improvement in the agreement between data and MC after using d_0^{μ} templates of prompt muons from $Z \rightarrow \mu \mu$ events


Lancaster University

Before

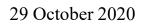


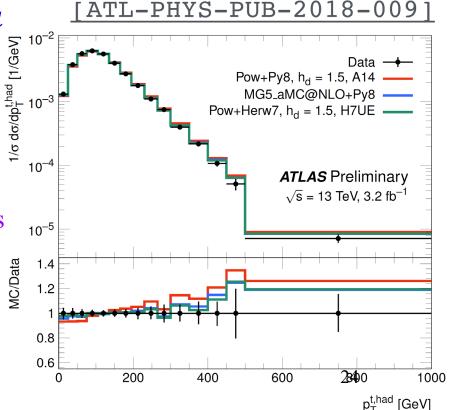
- In MC the d_0^{μ} distribution in each kinematic bin differs between $Z \rightarrow \mu\mu$ and $t \rightarrow \mu\nu b$ events
 - different hadronic environment
 - small differences in kinematics within each kinematic bin
- This difference is taken as the systematic uncertainty
 - separate uncertainty for the core and the tail of d_0^{μ} distribution

confidence that these distributions are well modelled

• The modelling is additionally verified in OS events by selecting a subset of the signal events in a background-dominated region

confidence that these distributions are well modelled

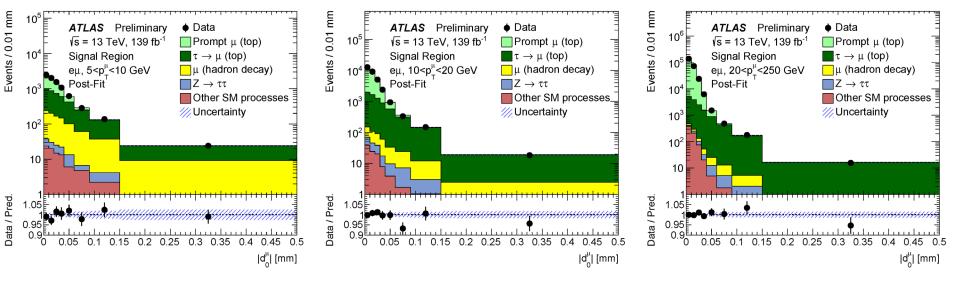

• The modelling is additionally verified in OS events by selecting a subset of the signal events in a background-dominated region


Systematic uncertainties

- Efficiency of muon reconstruction and identification is measured in data using tag-and-probe method
 - together with the corresponding systematic uncertainties
- Obtained scale factors are $p_{\rm T}$ -dependent and affect differently prompt muons and $\tau \rightarrow \mu$ [ATL-PHYS-PUB-20]
- MC generator uncertainties are obtained by varying different generator components
 - Amount of initial state radiation
 - Factorisation and renormalisation scales
 - Powheg h_{damp} parameter
 - NNLO reweighting
 - Parton shower and hadronisation

G. Borissov, Test of Ll

Fit Model


- $R(\tau/\mu)$ is obtained from the profile likelihood fit in 2D
 - Three bins in p_T^{μ} : [5, 10, 20, 250] GeV
 - Eight bins in $|d_0^{\mu}|$: [0., 0.01, 0.02, 0.03, 0.04, 0.06, 0.09, 0.15, 0.50] mm
 - Two channels ($e\mu$ and $\mu\mu$) are fitted simultaneously
 - 48 bins in total
- Two free parameters in the fit
 - a constant scaling factor applied to prompt muons and $\tau \rightarrow \mu$ from $t\bar{t}$ and Wt events
 - $R(\tau/\mu)$ applied to $\tau \rightarrow \mu$ component

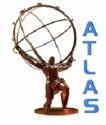
Results: post-fit eµ

- Excellent agreement between data and MC after the fit
 - Larger background of muons from hadron decay at small p_T^{μ}
 - Higher sensitivity to $R(\tau/\mu)$ at large p_T^{μ}

29 October 2020

G. Borissov, Test of LFU with the ATLAS detector

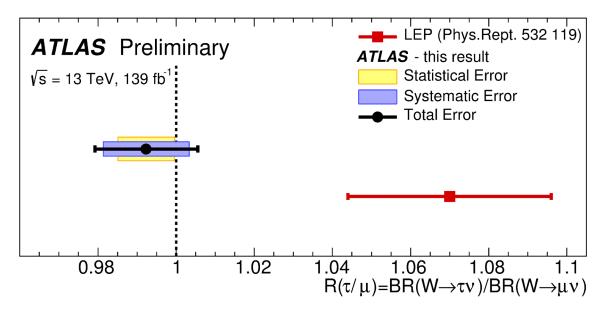
Results: post-fit µµ



- Excellent agreement between data and MC after the fit
 - Larger background of muons from hadron decay at small p_T^{μ}
 - Higher sensitivity to $R(\tau/\mu)$ at large p_T^{μ}

29 October 2020

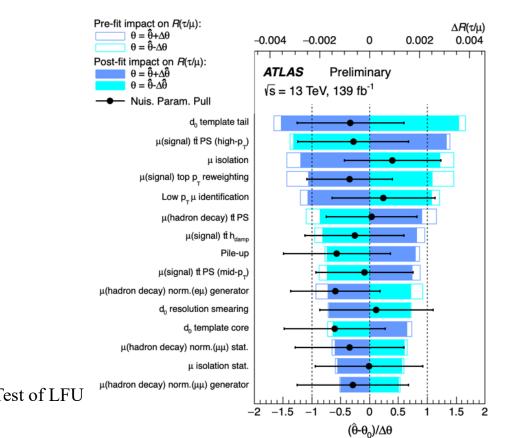
G. Borissov, Test of LFU with the ATLAS detector


Result

• The measured value is

 $R(\tau/\mu) = 0.992 \pm 0.007(\text{stat}) \pm 0.011(\text{syst})$

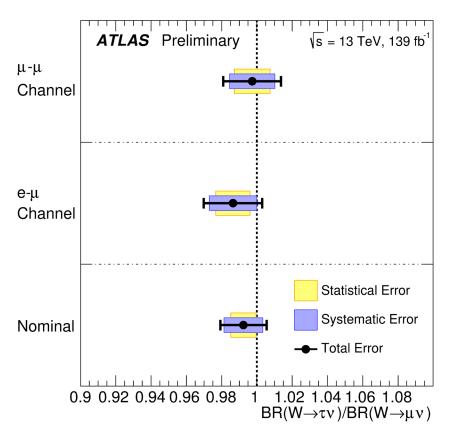
- good agreement with the SM
- does not agree to the LEP measurement
- The most precise measurement of this ratio to date



Uncertainties

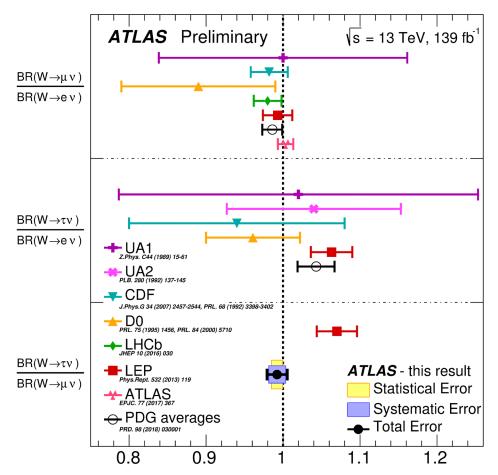
- The systematic uncertainty is dominating
- Main contributions:
 - $|d_0^{\mu}|$ template
 - $t\bar{t}$ modelling
 - modelling of μ from hadron decay
 - Muon reconstruction and identification

Uncertainty group	$\Delta R(\tau/\mu)$
Data statistics	0.007
Systematics total	0.011
- Data-driven backgrounds	0.005
- Theory	0.006
- Instrumental	0.007
- Normalisation factors	< 0.001
- Limited MC statistics	0.002
$-BR(W \to \tau \nu \to \mu \nu \nu \nu)$	0.002
Total uncertainty	0.013



Consistency checks

- Several consistency checks were performed by repeating the analysis in different sub-samples
 - different years (2015-16, 2017, 2018)
 - $e\mu$ or $\mu\mu$ channels
 - individual p_T^{μ} bins
 - Separately for each muon charge
- In all cases, good consistency is observed



Conclusions

- A new technique of measurement, a huge statistics collected in Run 2, and an excellent work of ATLAS allowed measuring $R(\tau/\mu)$ with the world best precision
- Resolved the old discrepancy with the SM remained from the LEP era
- (regretfully) beautiful confirmation of the SM

