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Introduction

• In the Standard Model (SM) the
coupling of all charged leptons
(electron, muon, tauon) with W
boson is the same

• This assumption is known as
Lepton Flavour Universality
(LFU)

• The only difference between the
leptons is due to their mass
– the coupling of leptons to the Higgs 

boson is different
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LFU tests at low energy

• At low energy, the decays of tauon provide a stringent test of
LFU

• It is expressed as the ratio of coupling constants (gl1/gl2) of
leptons l1 and l2 to W boson
– gμ/ge = 1.0018 ± 0.0014  (from the ratio ⁄Γ 𝜏𝜏 → 𝜇𝜇𝜇𝜇�̅�𝜇 Γ 𝜏𝜏 → 𝑒𝑒𝜇𝜇�̅�𝜇 )
– gτ/ge = 1.0011 ± 0.0015  (from the ratio ⁄Γ 𝜏𝜏 → 𝜇𝜇𝜇𝜇�̅�𝜇 Γ 𝜇𝜇 → 𝑒𝑒𝜇𝜇�̅�𝜇 )
– gτ/gμ = 1.0018 ± 0.0014  (from the ratio ⁄Γ 𝜏𝜏 → 𝑒𝑒𝜇𝜇�̅�𝜇 Γ 𝜇𝜇 → 𝑒𝑒𝜇𝜇�̅�𝜇 )
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LFU Tests with W decays

• LFU is also tested in the decays 𝑊𝑊 → 𝑙𝑙�̅�𝜇
– The measurements are performed at LEP and at LHC (for gμ/ge)

• The uncertainty of the measurements is large, especially for
the coupling of τ
𝑔𝑔𝜇𝜇2

𝑔𝑔𝑒𝑒2
= Γ 𝑊𝑊→𝜇𝜇�𝜈𝜈

Γ 𝑊𝑊→𝑒𝑒�𝜈𝜈
= 0.996 ± 0.008  

𝑔𝑔𝜏𝜏2

𝑔𝑔𝑒𝑒2
= Γ 𝑊𝑊→𝜏𝜏�𝜈𝜈

Γ 𝑊𝑊→𝑒𝑒�𝜈𝜈
= 1.043 ± 0.024  

𝑔𝑔𝜏𝜏2

𝑔𝑔𝜇𝜇2
= Γ 𝑊𝑊→𝜏𝜏�𝜈𝜈

Γ 𝑊𝑊→𝜇𝜇�𝜈𝜈
= 1.070 ± 0.026

• There is a mild tension with 
the SM in the τ measurements
– ~2.7 σ for gτ/gμ
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LFU tests with B hadrons

• Combination of B-factories and LHCb results indicate a
possible violation of LFU in B-hadron decays

• Large discrepancy in the ratio 

𝑅𝑅 𝐷𝐷 ∗ = Br(𝐵𝐵→𝐷𝐷 ∗ 𝜏𝜏𝜈𝜈)
Br(𝐵𝐵→𝐷𝐷 ∗ 𝜇𝜇𝜈𝜈)

– Latest combination by HFLAV 
shows ~3.1σ deviation from 
the SM expectation

– Some inconsistency between the
experimental results can also 
be noticed
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Conclusive test of LFU

• A possible violation of LFU observed at LEP prompts a
task of

– Measuring the same value of 𝑅𝑅 ⁄𝜏𝜏 𝜇𝜇 as at LEP with the precision 
of ~1% would be a definitive confirmation of LFU violation

– It would be an unambiguous discovery of physics beyond the SM
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Measuring ⁄𝑅𝑅 ⁄𝜏𝜏 𝜇𝜇 = Γ 𝑊𝑊 → 𝜏𝜏�̅�𝜇 Γ 𝑊𝑊 → 𝜇𝜇�̅�𝜇
with ~1% precision



Conclusive test of LFU

• For a long time it was thought that this level of precision is
impossible to achieve at hadron colliders
– large background
– large uncertainties in the selection efficiency

The new ATLAS result, which will be presented here, 
disproves this belief
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Analysis Strategy

• The test of LFU is performed using the top quark decays
– Huge production cross section 

of 𝑡𝑡 ̅𝑡𝑡 pairs
– More than 100 million 𝑡𝑡 ̅𝑡𝑡 pairs 

are produced at 𝑠𝑠 = 13 TeV
– Selection of 𝑡𝑡 ̅𝑡𝑡 is relatively 

simple and clean

• Each top quark decays mainly
as 𝑡𝑡 → 𝑊𝑊𝑊𝑊

• there are two W bosons in each 
event
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Tag-and-probe method

• One W boson is used to select events
• The second W boson is used to measure 𝑅𝑅( ⁄𝜏𝜏 𝜇𝜇)
• We use the decay 𝜏𝜏 → 𝜇𝜇𝜇𝜇�̅�𝜇 and measure

– Br(𝜏𝜏 → 𝜇𝜇𝜇𝜇�̅�𝜇) = (17.39±0.04)% is known with small uncertainty
– the same particles (a muon) in the final state

• Many uncertainties cancel in the ratio
– jet reconstruction, flavour tagging, 
– uncertainties related to the tag W selection (trigger, efficiency, 

identification)
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Br(𝑊𝑊 → 𝜏𝜏 → 𝜇𝜇𝜇𝜇�̅�𝜇 𝜇𝜇)
Br(𝑊𝑊 → 𝜇𝜇𝜇𝜇)



Event selection

• Standard selection of 𝑡𝑡 ̅𝑡𝑡 events with both top quarks decaying
semileptonically 𝑡𝑡 → 𝑙𝑙𝜇𝜇𝑊𝑊
– require two isolated opposite charge leptons (eμ or μμ pairs)
– the tag lepton (electron or muon) is selected with a single lepton trigger
– the probe lepton must be a muon with 𝑝𝑝𝑇𝑇

𝜇𝜇 > 5 GeV
– require two b-tagged jets 
– For (μμ) events apply the Z0 veto 

• remove events with 85 < 𝑀𝑀 𝜇𝜇𝜇𝜇 < 95 GeV

• Fraction of background events is 0.9% in eμ and 8% in μμ
samples
– Larger fraction of background in μμ events is due to Drell-Yan di-muon 

production
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Muon impact parameter

• Muon impact parameter, 𝑑𝑑0
𝜇𝜇 , 

is the most essential variable 
of this analysis

• 𝑑𝑑0
𝜇𝜇 is defined as the distance of 

closest approach of a charged track to 
the beam line in the transverse plane

• For particles produced in the primary vertex (approximated by the 
beamline projection) 𝑑𝑑0

𝜇𝜇 is zero
• For the decay products of long-living particles (like muons from
𝜏𝜏 → 𝜇𝜇𝜇𝜇�̅�𝜇 decay) it is non-zero

• Measuring 𝑑𝑑0
𝜇𝜇 with respect to the beamline makes its definition

process-independent
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Separation of τ and μ

• Compared to prompt muons from W decay,
muons from τ decay have on average
– larger impact parameter 𝑑𝑑0

𝜇𝜇

– smaller transverse momentum 𝑝𝑝𝑇𝑇
𝜇𝜇

• We exploit these differences to separate τ
and μ
– perform a 2D fit of the probe muon 𝑑𝑑0

𝜇𝜇 and 𝑝𝑝𝑇𝑇
𝜇𝜇

– Extract 𝑅𝑅( ⁄𝜏𝜏 𝜇𝜇) and the total number of 𝑡𝑡 ̅𝑡𝑡 events 
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Sources of muons

• Sources of muons:
– Prompt muons from 𝑡𝑡 → 𝜇𝜇𝜇𝜇𝑊𝑊 events
– Muons from 𝑡𝑡 → 𝜏𝜏𝜇𝜇𝑊𝑊 → 𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝑊𝑊
– Muons from hadron decay
– Muons from 𝑍𝑍 → 𝜇𝜇𝜇𝜇 (tails) and 𝑍𝑍 → 𝜏𝜏𝜏𝜏

• The fractions of 𝑡𝑡 → 𝜇𝜇𝜇𝜇𝑊𝑊 and
𝑡𝑡 → 𝜏𝜏𝜇𝜇𝑊𝑊 → 𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝑊𝑊 are floating parameters
in the fit

• The fractions of 𝑍𝑍 → 𝜇𝜇𝜇𝜇 (tails) and 𝑍𝑍 → 𝜏𝜏𝜏𝜏
are measured separately

• The fraction of muons from hadron decay is
estimated using data with some input from 
MC
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Z0 background

• (𝑍𝑍 → 𝜇𝜇𝜇𝜇) + 𝑊𝑊�𝑊𝑊 events contribute to μμ sample 
even though we veto events in Z0 peak

• Normalisation of this background
is obtained from data
– Selection is the same as for the main 

analysis except we do not apply 
the Z0 veto

• Fit m(μμ) with
– BW ⊕ Gaussian for Z0 peak
– Polynomial for background

• Scale factor for this background is 
obtained as the ratio data/MC
of events in the Z0 peak: 1.36±0.01 
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Muons from hadron decay

• The most significant background at large 𝑑𝑑0
𝜇𝜇

– Mainly comes from b- and c-hadron decay

• Normalisation of this contribution is 
taken from simulation with 
an additional scale factor applied

• Scale factor is determined using 
the events with the same-sign (SS) 
leptons (eμ or μμ )
– Number of muons from hadron decay

is close in SS and opposite sign (OS)
sample (contrary to muons from 𝑡𝑡 ̅𝑡𝑡 events)

• Extrapolation from SS to OS is done
using simulation 
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Muons from hadron decay

• Contribution to SS sample comes from
– muons from hadron decay (small pT)
– prompt muons, mainly Top+V (high pT)

• Procedure to measure the scale factor
– Determine the scale factor for prompt muons 

as the ratio of data/MC events with 
𝑝𝑝𝑇𝑇
𝜇𝜇 > 30 GeV

– Subtract from the number of SS data events
the scaled contribution of prompt muons

• this gives 𝑁𝑁ℎ→𝜇𝜇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 – estimated  number
of SS muons from hadron decay in data

– Scale factor of muons from hadron decay is computed as �𝑁𝑁ℎ→𝜇𝜇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑁𝑁ℎ→𝜇𝜇𝑀𝑀𝑀𝑀

• Scale factors: 1.39 ± 0.13 (eμ channel) and 1.37 ± 0.07 (μμ)
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selection



Muons from hadron decay

• Systematic uncertainty on the scale factor comes from
– Limited size of the SS sample:        eμ – 4%; μμ – 4% 
– MC modelling:                                eμ – 8%; μμ – 3% 
– Subtraction of prompt component: eμ – 1%; μμ – 1% 
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𝑑𝑑0
𝜇𝜇 templates

• In the fit we use the 𝑑𝑑0
𝜇𝜇 templates for each 

source
– Templates for prompt muons (𝑡𝑡 → 𝜇𝜇𝜇𝜇𝑊𝑊 and 
𝑍𝑍 → 𝜇𝜇𝜇𝜇 tails) are taken from data

– Templates for muons from τ decay and from 
hadron decays are taken from simulation

– The associated systematic uncertainties are 
among the most important for the analysis
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𝑑𝑑0
𝜇𝜇 templates of prompt 

muons
• Build 𝑑𝑑0

𝜇𝜇 templates of prompt muons using 𝑍𝑍 → 𝜇𝜇𝜇𝜇 events
– These muons originate from primary vertex like muons in 𝑡𝑡 → 𝜇𝜇𝜇𝜇𝑊𝑊

decay

• 𝑍𝑍 → 𝜇𝜇𝜇𝜇 selection
– Opposite-charge muons
– No b-tagged jets
– 85 < 𝑀𝑀 𝜇𝜇𝜇𝜇 < 100 GeV
– Very high purity of prompt muons ~99.9%

• Procedure
– Determine 𝑑𝑑0

𝜇𝜇 distribution in data separately in 33 kinematic bins in 𝑝𝑝𝑇𝑇
𝜇𝜇

and 𝜂𝜂𝜇𝜇

– Subtract a small contribution of non-prompt muons (mainly 𝑍𝑍 → 𝜏𝜏𝜏𝜏) 
using MC
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𝑑𝑑0
𝜇𝜇 templates of prompt 

muons
• Considerable improvement in the agreement between data and MC

after using 𝑑𝑑0
𝜇𝜇 templates of prompt muons from 𝑍𝑍 → 𝜇𝜇𝜇𝜇 events
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Corrections to the templates

• In MC the 𝑑𝑑0
𝜇𝜇 distribution in each kinematic bin differs

between 𝑍𝑍 → 𝜇𝜇𝜇𝜇 and 𝑡𝑡 → 𝜇𝜇𝜇𝜇𝑊𝑊 events
– different hadronic environment
– small differences in kinematics within each kinematic bin

• This difference is taken as the systematic uncertainty
– separate uncertainty for the core and the tail of 𝑑𝑑0

𝜇𝜇 distribution 
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Templates for Muons from 
hadron decay

• Data and MC agree 
well both for 𝑑𝑑0

𝜇𝜇 and
𝑝𝑝𝑇𝑇
𝜇𝜇 distributions

• In the analysis, 𝑑𝑑0
𝜇𝜇

and 𝑝𝑝𝑇𝑇
𝜇𝜇 distributions 

of muons from hadron
decay are taken from 
simulation 

• The study with 
SS events gives 
confidence that these distributions are well modelled

• The modelling is additionally verified in OS events by selecting a subset of the 
signal events in a background-dominated region
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Systematic uncertainties

• Efficiency of muon reconstruction and identification is
measured in data using tag-and-probe method
– together with the corresponding systematic uncertainties

• Obtained scale factors are pT-dependent and affect
differently prompt muons and 𝜏𝜏 → 𝜇𝜇

• MC generator uncertainties are 
obtained by varying different 
generator components
– Amount of initial state radiation
– Factorisation and renormalisation scales
– Powheg hdamp parameter
– NNLO reweighting
– Parton shower and hadronisation
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Fit Model

• 𝑅𝑅 ⁄𝜏𝜏 𝜇𝜇 is obtained from the profile likelihood fit in 2D
– Three bins in 𝑝𝑝𝑇𝑇

𝜇𝜇: [5, 10, 20, 250] GeV
– Eight bins in 𝑑𝑑0

𝜇𝜇 : [0., 0.01, 0.02, 0.03, 0.04, 0.06, 0.09, 0.15, 0.50] mm
– Two channels (eμ and μμ) are fitted simultaneously
– 48 bins in total

• Two free parameters in the fit
– a constant scaling factor applied to prompt muons and 𝜏𝜏 → 𝜇𝜇 from 𝑡𝑡 ̅𝑡𝑡

and 𝑊𝑊𝑡𝑡 events
– 𝑅𝑅 ⁄𝜏𝜏 𝜇𝜇 applied to 𝜏𝜏 → 𝜇𝜇 component
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Results: post-fit eμ

• Excellent agreement between data and MC after the fit
– Larger background of muons from hadron decay at small 𝑝𝑝𝑇𝑇

𝜇𝜇

– Higher sensitivity to 𝑅𝑅 ⁄𝜏𝜏 𝜇𝜇 at large 𝑝𝑝𝑇𝑇
𝜇𝜇
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Results: post-fit μμ

• Excellent agreement between data and MC after the fit
– Larger background of muons from hadron decay at small 𝑝𝑝𝑇𝑇

𝜇𝜇

– Higher sensitivity to 𝑅𝑅 ⁄𝜏𝜏 𝜇𝜇 at large 𝑝𝑝𝑇𝑇
𝜇𝜇

29 October 2020 G. Borissov, Test of LFU with the ATLAS detector 27



Result

• The measured value is

– good agreement with the SM
– does not agree to the LEP measurement

• The most precise measurement of this ratio to date
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𝑹𝑹 ⁄𝝉𝝉 𝝁𝝁 = 𝟎𝟎.𝟗𝟗𝟗𝟗𝟗𝟗 ± 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎 𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬 ± 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎(𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬)



Uncertainties
• The systematic uncertainty is dominating
• Main contributions:

– 𝑑𝑑0
𝜇𝜇 template

– 𝑡𝑡 ̅𝑡𝑡 modelling
– modelling of μ from hadron decay
– Muon reconstruction

and identification
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Consistency checks

• Several consistency checks were performed by repeating
the analysis in different sub-samples
– different years (2015-16, 2017, 2018)
– eμ or μμ channels
– individual 𝑝𝑝𝑇𝑇

𝜇𝜇 bins
– Separately for each muon charge

• In all cases, good consistency
is observed
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Conclusions

• A new technique of
measurement, a huge statistics
collected in Run 2, and an
excellent work of ATLAS
allowed measuring 𝑅𝑅 ⁄𝜏𝜏 𝜇𝜇
with the world best precision

• Resolved the old discrepancy
with the SM remained from the
LEP era

• (regretfully) beautiful 
confirmation of the SM
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