Relic neutrinos at accelerator experiments

Jack Shergold
& Martin Bauer; 2104.12784
Phys. Rev. D 104 (2021), 083039
Contents

- What is the $C_{\nu B}$?
- PTOLEMY(-on-a-beam)
- Resonant neutrino capture
- Experimental challenges
Contents

● What is the $C\nu B$?

● PTOLEMY(-on-a-beam)

● Resonant neutrino capture

● Experimental challenges
What is the CνB?
What is the CvB?
What is the CvB?

- Electrons and photons are kept in equilibrium through EM interactions:

\[e + \gamma \rightarrow e + \gamma \quad \text{and} \quad e^+ + e^- \leftrightarrow \gamma \]
What is the CνB?

- Electrons and photons are kept in equilibrium through EM interactions:

\[e + \gamma \rightarrow e + \gamma \quad \text{and} \quad e^+ + e^- \leftrightarrow \gamma \]

- Neutrinos and electrons are kept in equilibrium through weak interactions:

\[\nu + e \rightarrow \nu + e \quad \text{and} \quad \nu + \bar{\nu} \leftrightarrow e^+ + e^- \]
What is the CνB?
What is the CvB?

Neutrino Decoupling

$\left(e, \gamma, \nu \right)$

T_{SM}

1s
What is the CvB?

- Freeze-out happens when:

\[\Gamma_\nu = H \]
What is the CvB?

- Freeze-out happens when:
 \[\Gamma_{\nu} = H \]

- Neutrino interaction rate is \(\Gamma_{\nu} \propto \sigma_{\nu} n_{\nu} \)
What is the CvB?

- Freeze-out happens when:
 \[\Gamma_\nu = H \]

- Neutrino interaction rate is \(\Gamma_\nu \propto \sigma_\nu n_\nu \)

\[\sigma_\nu \propto G_F^2 T_{SM}^2 \]
What is the CvB?

- Freeze-out happens when:

\[\Gamma_\nu = H \]

- Neutrino interaction rate is \(\Gamma_\nu \propto \sigma_\nu n_\nu \)

\[\sigma_\nu \propto G_F^2 T_{SM}^2 \]

\[n_\nu \propto \int \frac{d^3 p_\nu}{e^T_{\nu} + 1} \propto T_{SM}^3 \]
What is the CvB?

- Freeze-out happens when:
 \[\Gamma_\nu = H \]

- Neutrino interaction rate is
 \[\Gamma_\nu \propto G_F^2 T_{SM}^5 \]
What is the CvB?

- Freeze-out happens when:

\[\Gamma_\nu = H \]

- Neutrino interaction rate is

\[\Gamma_\nu \propto G_F^2 T_{SM}^5 \]

- Hubble parameter scales as

\[H^2 \propto G_N \rho \]
What is the CνB?

- Freeze-out happens when:

\[\Gamma_\nu = H \]

- Neutrino interaction rate is \(\Gamma_\nu \propto G_F^2 T_{SM}^5 \)

- Hubble parameter scales as \(H^2 \propto G_N \rho \)

\[
\rho \propto \sum_{e,\gamma,\nu} \int \frac{p_i \, d^3 p_i}{e^{\frac{p_i}{T_i}} \pm 1} \propto T_{SM}^A
\]
What is the CvB?

- Freeze-out happens when:
 \[\Gamma_\nu = H \]

- Neutrino interaction rate is \(\Gamma_\nu \propto G_F^2 T_{SM}^5 \)

- Hubble parameter scales as \(H^2 \propto G_N T_{SM}^4 \)
What is the CνB?

- Freeze-out happens when:

\[G_F^2 T_{\text{dec}}^5 \approx \sqrt{G_N} T_{\text{dec}}^2 \]
What is the CvB?

- Freeze-out happens when:

\[G_F^2 T_{\text{dec}}^5 \approx \sqrt{G_N} T_{\text{dec}}^2 \]

\[\implies T_{\text{dec}} \sim \left(\frac{\sqrt{G_N}}{G_F^2} \right)^{\frac{1}{3}} \sim 1 \text{ MeV} \]
What is the CvB?

- Freeze-out happens when:

\[G_F^2 T_{\text{dec}}^5 \simeq \sqrt{G_N} T_{\text{dec}}^2 \]

\[\implies T_{\text{dec}} \sim \left(\frac{\sqrt{G_N}}{G_F^2} \right)^{\frac{1}{3}} \sim 1 \text{ MeV} \]

\[t_{\text{dec}} = \frac{1}{2H} \sim 1 \text{ s} \]
What is the CvB?

Neutrino Decoupling

T_{SM}

(e, γ, ν)

1s
What is the CνB?
What is the CvB?

Neutrino Decoupling

(e, γ, ν)

T_{SM}

ν

T_{SM}

$e^+ e^- \rightarrow \gamma$

Inflation, EW, QCD

1_s
What is the CvB?

- $E_{\gamma} \geq 1.02\text{ MeV}:

$$e^+ + e^- \leftrightarrow \gamma$$
What is the CvB?

- $E_\gamma \geq 1.02$ MeV:

 \[e^+ + e^- \leftrightarrow \gamma \]

- $E_\gamma < 1.02$ MeV:

 \[e^+ + e^- \rightarrow \gamma \]
What is the $C\nu B$?

- $E_\gamma \geq 1.02$ MeV:
 \[e^+ + e^- \leftrightarrow \gamma \]

- $E_\gamma < 1.02$ MeV:
 \[e^+ + e^- \rightarrow \gamma \]

- This process changes the photon temperature!
What is the CνB?

- In a comoving volume, total entropy is conserved:

\[
\frac{dS}{dt} = 0
\]
What is the CvB?

• In a comoving volume, total entropy is conserved:

\[
\frac{dS}{dt} = 0
\]

• Entropy before and after annihilation needs to be the same:
What is the CvB?

- In a comoving volume, total entropy is conserved:
 \[
 \frac{dS}{dt} = 0
 \]

- Entropy before and after annihilation needs to be the same:
 \[
 g_s^*(T_{SM}) T_{SM}^3 = g_s^*(T_\gamma) T_\gamma^3
 \]
What is the CvB?

- In a comoving volume, total entropy is conserved:
 \[
 \frac{dS}{dt} = 0
 \]

- Entropy before and after annihilation needs to be the same:
 \[
 g_s^*(T_{SM}) T_{SM}^3 = g_s^*(T_\gamma) T_\gamma^3
 \]

- In general:
 \[
 g_s^*(T) = \sum_{\text{bosons}} g_i + \frac{7}{8} \sum_{\text{fermions}} g_i
 \]
What is the CvB?

- Before annihilation:

\[g_s^* (T_{SM}) = 2 \gamma + \frac{7}{8} \left(2 \times 2 \right) \]
What is the C\nuB?

- Before annihilation:

\[
g_s^*(T_{SM}) = \frac{11}{2}
\]
What is the CνB?

- Before annihilation:
 \[g_s^*(T_{SM}) = \frac{11}{2} \]

- After annihilation:
 \[g_s^*(T_\gamma) = 2 \]
What is the CvB?

- Photon temperature satisfies:

\[\frac{11}{2} T_{SM}^3 = 2 T_{\gamma}^3 \]
What is the CvB?

- Photon temperature satisfies:

\[\frac{11}{2} T_{SM}^3 = 2 T_\gamma^3 \]

- Recalling that the neutrinos are still at \(T_{SM} \):
What is the CvB?

- Photon temperature satisfies:
 \[\frac{11}{2} T_{SM}^{3} = 2 T_{\gamma}^{3} \]

- Recalling that the neutrinos are still at \(T_{SM} \):

\[
T_{\nu} = \left(\frac{4}{11} \right)^{\frac{1}{3}} T_{\gamma}
\]
What is the CvB?

Neutrino Decoupling

T_{SM}

(e, γ, ν)

$e^+e^- \rightarrow \gamma$

T_{SM}

(e, γ)

1_s

t
What is the CvB?
What is the CvB?
What is the CνB?

Neutrino Decoupling

(e, γ, ν)

T_{SM}

$e^+ e^- \rightarrow \gamma$

T_{SM}

T_{γ}

1 s 1 m 10^5 y

Inflation, EW, QCD
What is the CvB?
The CMB today

- Redshifted to temperature:

\[T_{\nu,0} = \left(\frac{4}{11} \right)^{\frac{1}{3}} T_{\text{CMB}} \]
The CνB today

- Redshifted to temperature:

\[T_{\nu,0} = 0.168 \text{ meV} \]
The CνB today

- Redshifted to temperature:

\[T_{\nu,0} = 0.168 \text{ meV} \]

- At least two neutrino states are non-relativistic!
The CνB today

- Redshifted to temperature:
 \[T_{\nu,0} = 0.168 \text{ meV} \]

- At least two neutrinos states are non-relativistic!

- Exist today as freely propagating mass eigenstates
The CvB today

- Expect these to follow a Fermi-Dirac distribution with:

\[n_\nu = 56 \text{ cm}^{-3} \]
The CvB today

- Expect these to follow a Fermi-Dirac distribution with:

\[n_\nu = 56 \text{ cm}^{-3} \]

- These should all be left helicity states
The CvB today

- Expect these to follow a Fermi-Dirac distribution with:

\[n_\nu = 56 \text{ cm}^{-3} \]

- These should all be left helicity states

- ...but neutrinos have mass!
The CvB today

- Expect these to follow a Fermi-Dirac distribution with:
 \[n_\nu = 56 \text{ cm}^{-3} \]
- These should all be left helicity states
- ...but neutrinos have mass!
- This may lead to CDM profile, overdensities, helicity mixing etc.
Why detect the CνB?

- The CMB is the furthest we can currently look back through time
Why detect the CνB?

- The CMB is the furthest we can currently look back through time
- A rare source of non-relativistic neutrinos!
Why detect the CνB?

- The CMB is the furthest we can currently look back through time
- A rare source of non-relativistic neutrinos!
- Perhaps they’re not there at all
Why detect the $C\nu B$?
So...why haven’t we detected them yet?

- Neutrinos are notoriously hard to look for...

\[\sigma_\nu \sim G_F^2 E_\nu^2 \sim 5 \cdot 10^{-50} \left(\frac{E_\nu}{1 \text{ keV}} \right)^2 \text{ cm}^2 \]
So...why haven’t we detected them yet?

- Neutrinos are notoriously hard to look for...

\[\sigma_\nu \sim G_F^2 E_\nu^2 \sim 5 \cdot 10^{-50} \left(\frac{E_\nu}{1 \text{ keV}} \right)^2 \text{ cm}^2 \]

- Compare this to a typical EM process:

\[\sigma_{e\mu} = \frac{4\pi \alpha^2}{3s} \sim 10^{-25} \left(\frac{1 \text{ MeV}}{E_e} \right)^2 \text{ cm}^2 \]
So... why haven’t we detected them yet?

- Neutrinos are notoriously hard to look for...

\[\sigma_{\nu} \sim G_F^2 E_{\nu}^2 \sim 5 \cdot 10^{-50} \left(\frac{E_{\nu}}{1 \text{ keV}} \right)^2 \text{ cm}^2 \]

- Compare this to a typical EM process:

\[\sigma_{e\mu} = \frac{4\pi \alpha^2}{3s} \sim 10^{-25} \left(\frac{1 \text{ MeV}}{E_e} \right)^2 \text{ cm}^2 \]

- Existing neutrino detection experiments have thresholds:

\[\bar{\nu}_e + p + (1.8 \text{ MeV}) \rightarrow e^- + n \]
But...there is hope!
How might we detect the CνB?

- **Threshold:**
 - Remove it completely!
 - Find some way to bridge it
How might we detect the $C\nu B$?

- **Threshold:**
 - Remove it completely!
 - Find some way to bridge it

- **Event rate:**
 - Use a huge number of targets
 - Increase the cross section
How might we detect the CνB?

- **Threshold:**
 - Remove it completely!
 - Find some way to bridge it

- **Event rate:**
 - Use a huge number of targets
 - Increase the cross section
Contents

- What is the $\text{C_{\nu B}}$?
- PTOLEMY(-on-a-beam)
- Resonant neutrino capture
- Experimental challenges
The PTOLEMY experiment

- Proposed by Weinberg in 1962 [1]:

\[\nu_e + ^3\text{H} \rightarrow e^- + ^3\text{He}^+ \]

The PTOLEMY experiment

- Proposed by Weinberg in 1962 [1]:
 \[\nu_e + ^3\text{H} \rightarrow e^- + ^3\text{He}^+ \]
- This process has no threshold

The PTOLEMY experiment

- Proposed by Weinberg in 1962 [1]:
 \[\nu_e + ^3\text{H} \rightarrow e^- + ^3\text{He}^+ \]
- This process has no threshold
- Tritium already well understood from neutrino mass experiments

The PTOLEMY experiment

![Graph showing relative number of events vs electron kinetic energy]
The PTOLEMY experiment

- Neutrino capture cross section [2]:

\[
\langle \sigma \beta_\nu \rangle \propto G_F^2 E_e p_e \sim 10^{-45} \text{ cm}^2
\]

The PTOLEMY experiment

- Neutrino capture cross section [2]:

\[\langle \sigma \beta_\nu \rangle \propto G_F^2 E_e p_e \sim 10^{-45} \text{ cm}^2 \]

- Giving an event rate for 100g of tritium:

\[R = N_T n_\nu \langle \sigma \nu_\nu \rangle \sim 4 \text{ y}^{-1} \]

The PTOLEMY experiment

- Neutrino capture cross section [2]:

\[\langle \sigma \beta_\nu \rangle \propto G_F^2 E_e p_e \sim 10^{-45} \text{ cm}^2 \]

- Giving an event rate for 100g of tritium:

\[R = N_T n_\nu \langle \sigma \nu_\nu \rangle \sim 4 \text{ y}^{-1} \]

- This event rate is doubled for Majorana neutrinos

What’s the catch?

- Extreme sensitivity required to detect signal:

\[\Delta \leq 2m_\nu \]
What’s the catch?

- Extreme sensitivity required to detect signal:

 \[\Delta \leq 2m_\nu \]

- Obtaining and storing 100g of tritium
What’s the catch?

- Extreme sensitivity required to detect signal:
 \[\Delta \leq 2m_\nu \]

- Obtaining and storing 100g of tritium

- cf. KATRIN, uses \(\sim 300\mu g \) of tritium [3]

Can we do better?

- Recall the cross section:

\[\langle \sigma \beta_\nu \rangle \propto G_F^2 E_e p_e \]
Can we do better?

- Recall the cross section:

\[\langle \sigma \beta_\nu \rangle \propto G_F^2 E_e p_e \]

- This scales quadratically with energy!

\[E_e = m_e + |Q_H| + E_\nu \]

\[p_e = \sqrt{(E_\nu + |Q_H|)(E_\nu + 2m_e + |Q_H|)} \]
Can we do better?

- Recall the cross section:

\[\langle \sigma \beta_\nu \rangle \propto G_F^2 E_e p_e \]

- This scales quadratically with energy!

\[E_e = m_e + |Q_H| + E_\nu \]

\[p_e = \sqrt{(E_\nu + |Q_H|)(E_\nu + 2m_e + |Q_H|)} \]

- We can increase our neutrino energy by using a beam
Setup

- Accelerate (tritium) ions on a beam
Setup

- Accelerate (tritium) ions on a beam
- Treat neutrinos as at rest in lab frame:

\[E_\nu \simeq m_\nu \]
Setup

- Accelerate (tritium) ions on a beam

- Treat neutrinos as at rest in lab frame:
 \[E_\nu \approx m_\nu \]

- Relevant beam rest frame quantities:
 \[\tilde{E}_\nu \approx \frac{m_\nu}{M} E \quad \tilde{\phi} = \gamma \phi \quad \tilde{t} = \frac{t}{\gamma} \quad \tilde{R} = \gamma R \]
Setup

- In the beam rest frame:

\[\langle \sigma \tilde{\beta}_\nu \rangle \propto G_F^2 \tilde{E}_e \tilde{p}_e \]

\[\tilde{E}_e = m_e + |Q_H| + \tilde{E}_\nu \]

\[\tilde{p}_e = \sqrt{(\tilde{E}_\nu + |Q_H|)(\tilde{E}_\nu + 2m_e + |Q_H|)} \]
In the beam rest frame:

\[
\langle \sigma \beta_\nu \rangle \propto G_F^2 \tilde{E}_e \tilde{p}_e
\]

\[
\tilde{E}_e = m_e + |Q_H| + \tilde{E}_\nu
\]

\[
\tilde{p}_e = \sqrt{(\tilde{E}_\nu + |Q_H|)(\tilde{E}_\nu + 2m_e + |Q_H|)}
\]

Quadratic enhancement begins when:

\[
\tilde{E}_\nu > 2m_e \implies E \gtrsim 3 \text{ PeV}
\]
Difficulties

- Huge energy requirements
Difficulties

- Huge energy requirements
- Still need a large amount of tritium
Difficulties

- Huge energy requirements
- Still need a large amount of tritium
- Almost no way to recover a signal
Difficulties

- Huge energy requirements
- Still need a large amount of tritium
- Almost no way to recover a signal
- ...but, large energy presents an opportunity!
Large energy allows us to use the inverse process:

\[^3\text{He}^{++} + \bar{\nu}_e \rightarrow ^3\text{H}^+ + e^+ \]
In “Inverse PTOLEMY-on-a-beam”

- Large energy allows us to use the inverse process:

\[{^3\text{He}^{++} + \bar{\nu}_e} \rightarrow {^3\text{H}^+ + e^+} \]

- Positron energy given by:

\[\tilde{E}_e = m_e - Q_{\text{He}} + \tilde{E}_\nu \]

\[\tilde{p}_e = \sqrt{(\tilde{E}_\nu - Q_{\text{He}})(\tilde{E}_\nu + 2m_e - Q_{\text{He}})} \]
- Large energy allows us to use the inverse process:

\[^3\text{He}^{++} + \bar{\nu}_e \rightarrow ^3\text{H}^+ + e^+ \]

- Positron energy given by:

\[
\tilde{E}_e = m_e - Q_{\text{He}} + \tilde{E}_\nu
\]

\[
\tilde{p}_e = \sqrt{ (\tilde{E}_\nu - Q_{\text{He}})(\tilde{E}_\nu + 2m_e - Q_{\text{He}}) }
\]

- This process has a ‘unique’ signal
“Inverse PTOLEMY-on-a-beam”

- Large energy allows us to use the inverse process:
 \[^3\text{He}^{++} + \bar{\nu}_e \rightarrow ^3\text{H}^+ + e^+ \]

- Positron energy given by:
 \[
 \tilde{E}_e = m_e - Q_{\text{He}} + \tilde{E}_\nu
 \]
 \[
 \tilde{p}_e = \sqrt{(\tilde{E}_\nu - Q_{\text{He}})(\tilde{E}_\nu + 2m_e - Q_{\text{He}})}
 \]

- This process has a ‘unique’ signal

- Signal is now unstable
“Inverse PTOLEMY-on-a-beam”
Can we do better?

- Not really...
Can we do better?

- Not really...

- Cross section still tiny at huge energies:

\[\langle \sigma \beta_\nu \rangle \propto G_F^2 E_e p_e \]
Can we do better?

- Not really...

- Cross section still tiny at huge energies:

 \[\langle \sigma \tilde{\beta}_\nu \rangle \propto G_F^2 E_e p_e \]

- But we have learnt some lessons!
Contents

- What is the $C\nu B$?
- PTOLEMY(-on-a-beam)
- Resonant neutrino capture
- Experimental challenges
Resonant neutrino capture

- Tiny cross sections → use a resonance!
Resonant neutrino capture

- Tiny cross sections → use a resonance!

- Tunable beam energy naturally invites resonances
Resonant neutrino capture

- Tiny cross sections → use a resonance!
- Tunable beam energy naturally invites resonances
- e.g. Z-resonance: \(\nu + \bar{\nu}_{C\nu_B} \rightarrow Z \rightarrow ? \)
Resonant neutrino capture

- Tiny cross sections → use a resonance!

- Tunable beam energy naturally invites resonances

- e.g. Z-resonance: \(\nu + \bar{\nu}_{C_{\nu B}} \rightarrow Z \rightarrow ? \)

- Vastly larger cross section: \(\sigma \propto \frac{1}{M_Z^2} \propto G_F \)
Resonant neutrino capture

- Resonant electron capture (REC):

\[
\frac{A}{Z}P + e^- (\text{bound}) + \bar{\nu}_e \rightarrow \frac{A}{Z-1}D
\]
Resonant neutrino capture

- Resonant electron capture (REC):
 \[\frac{A}{Z}P + e^- (\text{bound}) + \bar{\nu}_e \rightarrow \frac{A}{Z-1}D \]

- Resonant bound beta decay (RB\(\beta\)):
 \[\frac{A}{Z}P + \nu_e \rightarrow \frac{A}{Z+1}D + e^- (\text{bound}) \]
Resonant neutrino capture

- Resonant electron capture (REC):
 \[\frac{A}{Z} P + e^- (\text{bound}) + \bar{\nu}_e \rightarrow \frac{A}{Z-1} D \]

- Resonant bound beta decay (RB\(\beta\)):
 \[\frac{A}{Z} P + \nu_e \rightarrow \frac{A}{Z+1} D + e^- (\text{bound}) \]

- Parent ionised down to one s-shell electron (REC) or completely ionised (RB\(\beta\))
Resonant neutrino capture

- Cross section for resonant neutrino capture [4]:

\[\sigma \propto \frac{1}{\tilde{E}_\nu^2} \left[\frac{\Gamma^2/4}{(\tilde{E}_\nu - Q)^2 - \Gamma^2/4} \right] \text{Br}(D \rightarrow P) \]

Resonant neutrino capture

- Cross section for resonant neutrino capture [4]:

\[
\sigma \propto \frac{1}{\tilde{E}_\nu^2} \left[\frac{\Gamma^2/4}{(\tilde{E}_\nu - Q)^2 - \Gamma^2/4} \right] \text{Br}(D \to P)
\]

1, \tilde{E}_\nu = Q

Resonant neutrino capture

- Cross section for resonant neutrino capture [4]:

\[
\sigma \propto \frac{1}{\tilde{E}_\nu^2} \left[\frac{\Gamma^2/4}{(\tilde{E}_\nu - Q)^2 - \Gamma^2/4} \right] \text{Br}(D \to P)
\]

\[
\sigma_{\text{peak}} \propto \frac{1}{Q^2} \text{Br}(D \to P)
\]

Resonant neutrino capture

- Cross section for resonant neutrino capture [4]:

\[
\sigma \propto \frac{1}{\tilde{E}_\nu^2} \left[\frac{\Gamma^2/4}{(\tilde{E}_\nu - Q)^2 - \Gamma^2/4} \right] \text{Br}(D \to P) \mathcal{O}(1)
\]

\[
\sigma_{\text{peak}} \propto \frac{1}{Q^2} \text{Br}(D \to P)
\]

Resonant neutrino capture

- Cross section for resonant neutrino capture [4]:

\[\sigma \propto \frac{1}{\tilde{E}_\nu^2} \left[\frac{\Gamma^2/4}{(\tilde{E}_\nu - Q)^2 - \Gamma^2/4} \right] \text{Br}(D \to P) \]

\[\sigma_{\text{peak}} \propto \frac{1}{Q^2} \text{Br}(D \to P) \]

- Peak cross section is independent of \(G_F \)!

Resonant neutrino capture

- Cross section for resonant neutrino capture [4]:

\[\sigma \propto \frac{1}{\tilde{E}_\nu^2} \left[\frac{\Gamma^2/4}{(\tilde{E}_\nu - Q)^2 - \Gamma^2/4} \right] \text{Br}(D \to P) \]

\[\sigma_{\text{peak}} = 2.5 \cdot 10^{-15} \left(\frac{1 \text{ keV}}{Q} \right)^2 \text{Br}(D \to P) \text{ cm}^2 \]

- Peak cross section is independent of \(G_F \)!

Resonant neutrino capture

- Capture rate per target given by:

\[
\frac{R}{N_T} = \int_Q^{\infty} d\tilde{E}_\nu \sigma(\tilde{E}_\nu) \frac{d\phi}{d\tilde{E}_\nu}
\]
Resonant neutrino capture

- Capture rate per target given by:

$$\frac{R}{N_T} = \int d\tilde{E}_\nu \sigma(\tilde{E}_\nu) \frac{d\phi}{d\tilde{E}_\nu}$$

- For narrow resonances:

$$\left[\frac{\Gamma^2/4}{(\tilde{E}_\nu - Q)^2 - \Gamma^2/4} \right] \rightarrow \pi \Gamma \delta(\tilde{E}_\nu - Q)$$
Resonant neutrino capture

- Capture rate per target given by:

\[
\frac{R}{N_T} = \frac{\pi}{2} \sigma_{\text{peak}} \Gamma \frac{d\phi}{d\tilde{E}_\nu} \bigg|_{\tilde{E}_\nu=Q}
\]
Resonant neutrino capture

- Capture rate per target given by:

\[
\frac{R}{N_T} = \frac{\pi}{2} \sigma_{\text{peak}} \Gamma \frac{d\phi}{d\tilde{E}_\nu} \bigg|_{\tilde{E}_\nu = Q}
\]

- Assuming Gaussian distribution:

\[
\frac{R}{N_T} \propto \frac{\Gamma}{Q^2} \frac{\phi}{\tilde{\Delta}_E} \text{Br}(D \rightarrow P)
\]
Accounting for the finite width of the CνB

\[\text{Neutrino Flux} \left(10^{6} \text{ cm}^{-2} \text{s}^{-1} \text{meV}^{-1}\right) \]

- \[2\Delta_{\nu} \approx 0.7 \text{ meV}\]

- \[\Delta_{b}\]

\[E - \Delta_{b} \quad E \quad E + \Delta_{b}\]
Accounting for the finite width of the CVB
Accounting for the finite width of the CvB

- Treating widths of distributions as uncertainty:

\[\tilde{\Delta}_E = \sqrt{\left(\Delta_{\nu} \frac{\partial\tilde{E}_{\nu}}{\partial\nu} \right)^2 + \left(\Delta_{b} \frac{\partial\tilde{E}_{\nu}}{\partial p} \right)^2} \]
Treating widths of distributions as uncertainty:

\[\tilde{\Delta}_E = \sqrt{\left(\Delta_{\nu} \frac{\partial \tilde{E}_\nu}{\partial p_{\nu}} \right)^2 + \left(\Delta_b \frac{\partial \tilde{E}_\nu}{\partial p} \right)^2} \]

For non-relativistic neutrinos, relativistic beam:

\[\tilde{\Delta}_E = Q \sqrt{\delta_{\nu}^2 + \delta_b^2} \]
Accounting for the finite width of the CvB

- Total capture rate per target:

\[
\frac{R}{N_T} \propto \frac{\Gamma}{Q^3} \frac{\phi}{\sqrt{\delta^2_{\nu} + \delta^2_b}} \text{Br}(D \rightarrow P)
\]
Accounting for the finite width of the CvB

- Total capture rate per target:

\[\frac{R}{N_T} \propto \frac{\Gamma}{Q^3} \frac{\phi}{\sqrt{\delta^2_{\nu} + \delta^2_b}} \text{Br}(D \rightarrow P) \]

- More convenient to introduce quality factor:

\[R_\tau = \frac{\gamma R}{\Gamma N_T} = 1.7 \cdot 10^{-17} \frac{\text{Br}(D \rightarrow P)}{\sqrt{\delta^2_{\nu} + \delta^2_b}} \left[\frac{0.1 \text{eV}}{m_\nu} \right] \left[\frac{1 \text{keV}}{Q} \right]^2 \]
2-state systems

- Resonant electron capture:

\[P \xleftarrow{\text{REC}} B_\beta \xrightarrow{\text{REC}} D \xrightarrow{C_\beta} P^+ \]
2-state systems

- Resonant electron capture:

\[P \xrightarrow{\text{REC}} D \xrightarrow{\text{C}_{\beta}} P^+ \]

- Resonant bound beta decay:

\[P \xrightarrow{\text{RB}_{\beta}} D \xrightarrow{\text{EC}} P \]
2-state systems

![Graph showing bound beta decay fraction vs. Q (keV) for different values of Z. The graph has logarithmic scales on both axes, with curves for Z = 1, Z = 10, and Z = 50.](image_url)
2-state systems

- Number of states on the beam:

\[
\frac{dN_P}{d\tilde{t}} = -\gamma \frac{R}{N_T} N_P(\tilde{t}) + \frac{\text{Br}(D \rightarrow P)}{\tau_D} N_D(\tilde{t})
\]
2-state systems

- Number of states on the beam:

\[
\frac{dN_P}{d\tilde{t}} = -\gamma \frac{R}{N_T} N_P(\tilde{t}) + \frac{\text{Br}(D \to P)}{\tau_D} N_D(\tilde{t})
\]

- Working in terms of dimensionless variables:

\[
x = \frac{t}{\gamma \tau_D} = \frac{m_\nu}{Q} \frac{t}{\tau_D} \quad R_\tau = \gamma \frac{R}{\Gamma N_T} = \gamma \tau_D \frac{R}{N_T}
\]
2-state systems

- Number of states on the beam:

\[
\frac{dN_P}{dx} = -R_\tau N_P(x) + \text{Br}(D \rightarrow P) N_D(x)
\]
2-state systems

- Number of states on the beam:

\[
\frac{dN_P}{dx} = -R_\tau N_P(x) + \text{Br}(D \rightarrow P) N_D(x)
\]

\[
\frac{dN_D}{dx} = R_\tau N_P(x) - N_D(x)
\]
2-state systems

- Number of states on the beam:

\[
\frac{dN_P}{dx} = -R_\tau N_P(x) + \text{Br}(D \to P) N_D(x)
\]

\[
\frac{dN_D}{dx} = R_\tau N_P(x) - N_D(x)
\]

- Number of daughter states reaches an equilibrium value!
2-state systems

- Number of states on the beam:

\[N_D(x) = N_0 R_\tau (1 - e^{-x}) + \mathcal{O}(R_\tau^2) \]
2-state systems

- Number of states on the beam:

\[N_D(x) = N_0 R_{\tau} (1 - e^{-x}) + O(R_{\tau}^2) \]

- 2-state systems are limited to converting small fraction of the beam
2-state systems

- Number of states on the beam:

\[N_D(x) = N_0 R_\tau (1 - e^{-x}) + \mathcal{O}(R_\tau^2) \]

- 2-state systems are limited to converting small fraction of the beam

- Can we do better?
3-state systems

- Introduce a third, stable signal state:
3-state systems

- 3-state resonant electron capture:

\[P \xrightarrow{\text{REC}} D \xrightarrow{\text{EC}} F \]

\[P \xleftarrow{\text{BB}} D \]

\[D \xrightarrow{\text{CB}} P^+ \]
3-state systems

- 3-state resonant electron capture:

 \[P \xrightarrow{\text{REC}} D \xleftarrow{\text{B}\beta} P \]

 \[D \xrightarrow{\text{C}\beta} P^+ \]

- 3-state bound beta decay:

 \[P \xrightarrow{\text{RB}\beta} D \xleftarrow{\text{EC}} P \]

 \[D \xrightarrow{\text{C}\beta} F^+ \]

 \[D \xrightarrow{\text{B}\beta} F \]

 \[F \xrightarrow{\text{EC}} F^+ \]
3-state systems

- Number of states on the beam:

\[\frac{dN_P}{dx} = -R_\tau N_P(x) + \text{Br}(D \rightarrow P) N_D(x) \]
3-state systems

- Number of states on the beam:

\[
\frac{dN_P}{dx} = -R_\tau N_P(x) + \text{Br}(D \rightarrow P)N_D(x)
\]

\[
\frac{dN_D}{dx} = R_\tau N_P(x) - N_D(x)
\]
3-state systems

- Number of states on the beam:

\[
\frac{dN_P}{dx} = -R_\tau N_P(x) + \text{Br}(D \rightarrow P) N_D(x)
\]

\[
\frac{dN_D}{dx} = R_\tau N_P(x) - N_D(x)
\]

\[
\frac{dN_F}{dx} = \text{Br}(D \rightarrow F) N_D(x)
\]
3-state systems

- Number of states on the beam:

\[
\frac{dN_P}{dx} = -R_\tau N_P(x) + \text{Br}(D \to P)N_D(x)
\]

\[
\frac{dN_D}{dx} = R_\tau N_P(x) - N_D(x)
\]

\[
\frac{dN_F}{dx} = \text{Br}(D \to F)N_D(x)
\]

- Number of final (F) states increases monotonically!
3-state systems

- Now able to convert a significant fraction of the beam:

\[
\lim_{x \to \infty} N_F(x) = \frac{N_0 \text{Br}(D \to F)}{1 - \text{Br}(D \to P)} \gg N_0 R_\tau
\]
3-state systems

- Now able to convert a significant fraction of the beam:

\[
\lim_{x \to \infty} N_F(x) = \frac{N_0 \text{Br}(D \to F)}{1 - \text{Br}(D \to P)} \gg N_0 R_\tau
\]

- We now have a stable, clean signal with a large cross section!
3-state systems
Real world examples

- 2-state system:

\[^{157}\text{Gd} \xrightarrow{RB\beta} ^{157}\text{Tb} \]
Real world examples

- 2-state system:

\[^{157}\text{Gd} \xrightarrow{\text{RB}^\beta} ^{157}\text{Tb} \]

\[\frac{E}{A} \approx 100 \text{ TeV} \]

\[\frac{N_D}{N_0} \approx 10^{-24} \]
Real world examples

• 2-state system:

\[^{157}\text{Gd} \xrightarrow{\text{RB}_\beta} ^{157}\text{Tb} \quad \frac{E}{A} \approx 100 \text{ TeV} \quad \frac{N_D}{N_0} \approx 10^{-24} \]

• 3-state system:

\[^{106}\text{Cd} \xrightarrow{\text{REC}} ^{106}\text{Ag} \xrightarrow{\text{EC}} ^{106}\text{Pd} \]
Real world examples

- 2-state system:

\[^{157}\text{Gd} \xrightarrow{\text{RB}^\beta} ^{157}\text{Tb} \quad \frac{E}{A} \approx 100 \text{ TeV} \quad \frac{N_D}{N_0} \approx 10^{-24} \]

- 3-state system:

\[^{106}\text{Cd} \xrightarrow{\text{REC}} ^{106}\text{Ag} \xrightarrow{\text{EC}} ^{106}\text{Pd} \]

\[\frac{N_D + N_F}{N_0} \approx 10^{-23} \quad \frac{E}{A} \approx 2 \text{ PeV} \]
Contents

- What is the C_νB?
- PTOLEMY(-on-a-beam)
- Resonant neutrino capture
- Experimental challenges
Experimental challenges

- Large energy requirements → appropriate choice of target, use an excited state
Experimental challenges

- Large energy requirements \rightarrow appropriate choice of target, use an excited state

- Require knowledge of the neutrino mass \rightarrow KATRIN, beam broadening
Experimental challenges

- Large energy requirements → appropriate choice of target, use an excited state
- Require knowledge of the neutrino mass → KATRIN, beam broadening
- Large number of targets required → reduce threshold, purpose built experiment
Strategy

- Seek processes with small threshold
 - Increased cross section
 - Shorter ‘effective’ resonance lifetime
 - Lower energy requirements
Strategy

- Seek processes with small threshold
 - Increased cross section
 - Shorter ‘effective’ resonance lifetime
 - Lower energy requirements

- Try to find a 3-state system
 - Stable, clean signal
 - Possibility to convert huge fraction of the beam
Summary

- Resonant neutrino capture has huge cross sections
Summary

- Resonant neutrino capture has huge cross sections
- Capture cross section is independent of G_F
Summary

- Resonant neutrino capture has huge cross sections
- Capture cross section is independent of G_F
- Able to perform this experiment with $\mathcal{O}(\text{TeV})$ energies!
Summary

- Resonant neutrino capture has huge cross sections
- Capture cross section is independent of G_F
- Able to perform this experiment with $\mathcal{O}(\text{TeV})$ energies!
- Great deal of parameter space left to be explored
Thank you! Questions?
Neutrino mass uncertainty

- Assuming wrong neutrino mass → incorrectly centred beam energy

\[\delta_m = \frac{m_{\nu,\text{true}} - m_{\nu,\text{pred}}}{m_{\nu,\text{true}}} \]

\[R_{\tau,\text{eff}} = R_\tau (1 - \delta_m)^2 e^{-\frac{\delta_m^2}{2(\delta_\nu^2 + \delta_b^2)}} \]

- Only capturing neutrinos from tail end of spectrum

- Partially rectifiable by appropriate choice of \(\delta_b \)
Neutrino mass uncertainty