Liquid Argon R&D in the UK for Future Detectors

Phil Lightfoot, Kostas Mavrokoridis, Neil Spooner
(University of Sheffield)

<u>Gary Barker</u>, Yorck Ramachers
(University of Warwick)

Joint UKNF, INO, UKIERI meeting, Warwick 3-4 April'08

Introduction

- The use of liquid argon for calorimetry and more recently for 3-D imaging with bubble-chamber precision is now a mature technology
- Recent years has seen progress in solving problems associated with making large-scale, practical detectors applicable to next generation neutrino detectors – vigorous programme underway in Europe and USA
- The Sheffield and Warwick groups believe the time is right to build on what is known and kickstart a UK R&D initiative in LAr

Liquid Argon

Charged particle traversing LAr:

- Ionisation: W_e=23.6 eV, 6000 electrons/mm for a m.i.p.
- **Scintillation**: W_{γ} =19.5 eV, UV line at λ =128nm or 9.7 eV ->largely transparent 5000 photons/mm per m.i.p.
- Some Cherenkov light
- ➤ High granularity sampling 0.02 X₀
- ➤ Tracking capability combined with timing provides true 3D imaging
- ➤ Possibility of precision dE/dx
- Also a total absorption calorimeter capable of measuring neutrino energy to $\sigma_E/E = 10\%$ or better.

ISS Conclusions

BEAM	FAR DETECTOR	R&D NEEDED
Sub GeV Beta-Beam and Super-Beam	Liquid Argon TPC (100kton)	Clarify advantage over WC?
1-5 GeV Beta-Beam and Super-Beam	Liquid Argon TPC	Long drifts and wires, LEMS etc
Neutrino Factory (20-50 GeV, 2500-7000km)	Magnetised Liquid Argon TPC	Large volume magnet Long drifts and wires, LEMS etc

☐ Baseline

☐ Beyond baseline

Physics Capability

• v_e appearance at **Superbeams**: π^0 NC background reduced to permil retaining 90% of signal

Neutrino Factories:

- •electron+ muon ID and charge recon.(B-field!) -> well suited to detection of wrong-sign (Golden) muons from (v_e-v_μ) oscillations and `platinum' $(v_\mu-v_e)$ channels
- •tau recon. (ICARUS) gives sensitivity to `silver' $(v_e v_\tau)$ oscil. channels

ICARUS

Run 308 Event 160 Collection view

270 cm

wire coordinate

- •Long term R&D project / LAr TPC with wire plane readout (few mm pitch)
- •T600 (600 ton) module taking data in CNGS beam this year
- •Developed solutions to many issues: purity,low-noise pre-amplification etc
- Proven principle of large volume LAr TPC

Promising Developments

T600 Purification Unit

- •Chemical filters (Oxysorb[™]) routinely achieve contamination levels <0.1ppb (O₂-equiv.)
- •Developments to purification system (e.g. new Sheffield/Technodyne cyrogenic pump, operation all in liquid phase)
- (A. Rubbia group) first events taken in B-field (0.55T) parallel to 15cm drift
- Working towards large-scale magnetisation -> solenoid in liquid volume (perhaps superconducting)

How do we scale up this technology to 10-100kt?

Charge Drift Region

- •Current best results (ICARUS and others) suggests that free electron lifetimes in access of 10ms are achievable
- •This limits max. drift paths to e.g. $4m(about 28 X_0)$ if charge losses of >20% are not to occur

The GLACIER Approach

100kt detector, 70m diameter LNG tank, 20m max. drift

The GLACIER Approach

- Drift distances up to 20m means electron attenuation up to a factor 150 (hep-ph/1422)
 - -> 2-phase operation (liquid+gas) with readout in gas at gain of 10³
- WARP/XENON shown that free electrons cross gas-liquid interface (for E=few kV/cm) but hint that ion build up distort/trap charge at interface
 - -> likely to be problem on GLACIER scales (await results of ARGONTUBE)

MODULAr/FLARE Approach

- Proposal for CNGS beam
- Based on T300 module
- •10kt and 4m max. drift distance

- Proposal for NUMI beam
- Segmented LNG tank volume restricts drift to<3m

Sheffield/Warwick Approach

Take best aspects of existing R+D as start point for large scale, practical, detector design

- Single phase (liquid) operation (extensive experience in Sheffield)
- Modular approach relatively short drift distances, low electron diffusion, fast readout, high purity and uniformity, low applied drift voltages, convenient/practical for production, safety against large leaks etc...
- Charge collection by TGEMS not wires (some experience in Warwick)
- Charge vs light readout develop further schemes to image UV emission (SPM experience from T2K)
- Costs loaded towards per channel readout costs develop in-house solutions at Warwick

GEM's Not Wires

ICARUS-style wire readout:

- Noisy m.i.p. in T300 already poor
- Noise will scale with length as capacitive noise increases
- Wire breaks could wipe out large portions of detector

TGEM's provide proven alternative:

TGEM Studies Sheffield/Warwick

 Results in gas confirm gain reported elsewhere

- Gain seen in gas phase above liquid and studies underway to see gain in LAr
- •Large gains not needed with m.i.p. depositing 10⁵ charges per cm

GEM Electroluminescence Light

- ELum. light originating from within the GEM holes has huge potential: of order 10² photons/primary e, fast signal, de-coupled from electronic noise/pick-up/HV
- No one really looking at ELum. light in LAr: Coimbra Group recently reported alpha track reconstruction in Ar gas with PMT's mounted below GEM plane (NIM A 581(2007)) and large gains(10⁴) from APD's below GEM foils (2007 JINST 2 P09010)
- Opens possibility of applying our experience in LAr+TGEM+SPM's to image TGEM plane using a gridwork of SPM's- first studies already underway in Sheffield

Silicon Photomultipliers(SPM) in LAr

Avalanche photodiodes running in `Geiger mode'

SPM's +amplifier test modules from SensL

•Shown to function in liquid nitrogen at T= -197C!
(P.Lightfoot)

AVALANCHE

HIGH VOLTAGE SPM's in LAr

- •Gain measured to be 2x10⁶ at T=20C
- •Drops to 61% of max. at T= -193C
- Working with SensL to understand cyrogenic functionality
- •Currently setting up to detect ELum. light at 128nm
- •Prelim. detection of ELum. light in Ar gas (Sheffield) using wavelength shifting coating TPB (128 440nm)

Readout

- Recent estimates: Euro 60 `wire to computer' MODULAr (arXiv:0704.1422) ; Euro 50/channel ArDM (A. Rubbia,CHIPP'06)
- Expected to dominate total cost of large-scale LAr expt.
- ➤ Warwick investigating new multi-channel readout vendors as well as developing inhouse (preamp+digitiser) modules for operation in liquid: aim for per channel costs < pounds 20/channel.

➤ Sparse readout of large areas by SPM's under study (\$10-20 now, in 10 years?) or direct light-to-digital devices (e.g. SensL) may well be cheaper still

Next Steps

- Sheffield and Warwick groups are planning a R&D programme for next 2-3 years aimed at constructing a 1m x 1m prototype module (25cm drift) that will test many of our ideas on LAr volumes, TGEM's, charge/light detection and readout
- We are inviting closer collaboration with other interested parties in the UK - already a nucleus of interest from within the UK T2K community where there is an obvious synergy with the proposed T2K 2km detector
- Next meeting will be in Sheffield next week