\ersion Control Walkthrough with ’) glt

Mark Slater based on slides from Ben Morgan

THE UNIVERSITY OF UNIVERSITYOF

WA _W/I CK BIRMINGHAM

A Version Control Walkthrough with Git

* We haven't actually written anything yet, and this is the perfect time to get
mpags-cipher under version control so you can use it through the whole
course. We'll be using git as our version control system, with github.com
acting as a central repository.

* This will allow us to to use the ‘Github Classrooms’ feature which will mean
you will have a clean repo to start each day from. You can then apply your
changes to this and we can add comments, changes, etc. directly in github.

* Aims of the walkthough:

* Create a repo from the Github Assignment, get a working copy into Visual
Studio Code, add files, commit changes and make tags

* Show diffs and logs for the commits we’ve made

* Push our local changes to the central repo, Pull changes from another
repo

O Features Business Explore Marketplace Pricing

Built for
developers

GitHub is a development platform inspired by
the way you work. From open source to
business, you can host and review code,
manage projects, and build software alongside
millions of other developers.

Tools you'll need

Sign in or Sign up

Username

IPick a username

Email

you@example.com

Password

Create a password

Use at least one letter, one numeral, and seven
characters.

Sign up for GitHub

By clicking "Sign up for GitHub", you agree to our terms
of service and privacy policy. We’ll occasionally send you
account related emails.

docker

o1t

1. Creating a Github Account

Whilst git is completely distributed, to help with working in several locations and to supply solutions, you'll create a
repository to be an authoritative one. This will be created for you when you go to the link for each assignment on
each day. However, before you can do anything in Github, you need to sign up for an account.

O Features Business Explore Marketplace Pricing Sign in or Sign up NOteS

Other hosting services exist
: _ for git, though github is
BUl ‘t for e eermane currently the most popular.

Email

developers

Username

s Similar hosting services

GitHub is a development platform inspired by .
Create a password eX|St fOr Other VCSS

the way you work. From open source to

Use at least one letter, one numeral, and seven

business, you can host and review code, ——

manage projects, and build software alongside
. Sign up for GitHub
millions of other developers.

By clicking "Sign up for GitHub", you agree to our terms
of service and privacy policy. We’ll occasionally send you
account related emails.

2. Creating Your mpags-cipher Repository

You can create repositories in github in a number of ways: Creating one from scratch on Github, pushing an already
existing local repo, forking an existing repo on Github, etc. However, for this course, the base repo that you'll be
working from each day will be created for you from a template repo created by us. This will also include the docker

container definition that will provide all the tools we’ll need. To create the repo for Day one, go to the link on the
course Day 1 page.

GitHub Classroom

Notes
MPAGS C++ Course

{@cpp-pa-mpaags

Though you will be creating a

"MPAGS C++ Day 1" has been created! x '
new repository for each day of
the course, the previous repos
& MPAGS C++ Day 1 £} Assignment settings . .
will be kept until at least the end
o of the course for you to refer
https:ﬂclas:room.github.comfassignment-inuitations;’dcﬁ?fichEbeeDEfEH dfded5haBcB185 Ea Copy invitation link baCk to -

"MPAGS C++ Day 1" does not have any repositories.

Share the invitation link with your students to get started.

3. Your mpags-cipher Repository
After accepting the invitation to the classroom assignment, you should be sent a link to the repository you'll use for

today (there will be new links for the other days!). This will be stored in the MPAGS-CPP group but you're welcome
to 'fork’ it to your own account at a later date if you want!

Notes

& MPAGS-CPP-2020 / mpags-day-1-drmarkwslater Private ® Unwatct

generated from cpp-pg-mpags/Day-1-Starter-Repo

<> Code @ Issues i Pull requests (») Actions [T] Projects (1) Security [~ Insights 1 Settings Though you don’t need to for thIS
course, you Can create repos

¥ master ~ P 1branch > 0 tags Go to file Add file ~ ¥ Code ~ o .
B from scratch within github or from

*'é. drmarkwslater Initial commit 25763d8 6 minutes ago Y 1 commits the Com man d | | n e (US| ng gi t
[.devcontainer Initial commit 6 minutes ago ini t) and then pUSh to glthUb
[.gitignore Initial commit 6 minutes ago
[LICENSE Initial commit 6 minutes ago
[README.md Initial commit 6 minutes ago
README.md Va

mpags-cipher

A simple command line tool for encrypting/decrypting text using classical ciphers

4: Accessing Your Repo with VS Code and Docker

To access your repo through the container, start Visual Studio Code and select ‘View — Command Palette’. In the
dialog that pops up, start typing ‘clone repository’ and then select ‘Clone Repository in Container Volume'. In the next
box, paste the URL of your repo and then select ‘Create Unique Volume'.

Note that if you just want to clone a repository from the command line, use:

& MPAGS-CPP-2020 / mpags-day-1-drmarkwslater Private

generated from cpp-pg-mpags/Day-1-Starter-Repo

<> Code (D) Issues i Pull requests (*) Actions [71] Projects (1) Security

& Unwatcl

[~ Insights {5t Settings

¥ master ~ ¥ 1branch © 0 tags Go to file Add file ~

"i’. drmarkwslater Initial commit

' .devcontainer Initial commit
Y .gitignore Initial commit
[LICENSE Initial commit

[README.md Initial commit
README.md

mpags-cipher

A simple command line tool for encrypting/decrypting text using classical ciphers

25763d8 6 minutes ago Y 1 commits

6 minutes ago
6 minutes ago
6 minutes ago

6 minutes ago

V4

Notes

We'll use the https protocol to
clone the repository as we
haven't setup SSH keys yet and
github has stopped supporting

username+password
authentication. The URL for
cloning your GitHub repo can be
found on the right hand side of its
front page, as shown on the left.
Click on the ‘https’ tab and copy
the URL there.

5. Command Line Git: Getting Help

With the repo in place and the container started, we can now start working with git. In VSC, you can access the
Terminal of the container by going to ‘View — Terminal’. This will operate just as a normal Linux terminal — try doing
the following to get help on git:

S git help

root@8ed499d163f: /workspaces/mpags—-day-1-drmarkwslater# git help
usage: git [--version] [--help] [-C <path>] [-c <name>=<value>]
[-—exec-path[=<path>]] [—html-path] [-—man-path] [--info-path]
[-p | ——paginate | -P | ——no-pager] [-—no-replace-objects] [--barel O eS
[——git-dir=<path>] [—work-tree=<path>] [-—namespace=<name>]
<command> [<args>]

These are common Git commands used in various situations:

start a working area (see also: git help tutorial) As the Output of glt help nOteS, 1(0)

clone Clone a repository into a new directory

init Create an empty Git repository or reinitialize an existing one get he|p on a SpeCifiC Command
work on the current change (see also: git help everyday) Slmply append |tS name tO glt

add Add file contents to the index

mv Move or rename a file, a directory, or a symlink he|p |t W||| Open d man Style

reset Reset current HEAD to the specified state

rm Remove files from the working tree and from the index page for the Command (S|mp|y

examine the history and state (see also: git help revisions) (! - -
bisect Use binary search to find the commit that introduced a bug use q tO eXIt th|S).
grep Print lines matching a pattern
log Show commit logs
show Show various types of objects

status Show the working tree status Of course aISO refer tO teXt
grow, mark and tweak your common history bOOkS and On”ne resources SUCh

branch List, create, or delete branches

checkout Switch branches or restore working tree files i

commit Record changes to the repository as g|t'Scm.C0m.
diff Show changes between commits, commit and working tree, etc

merge Join two or more development histories together

rebase Reapply commits on top of another base tip

tag Create, list, delete or verify a tag object signed with GPG

6. Repository Structure

If not there already, change into your repository’s directory and run 1s -larth to see all the files. Apart from the
files you'll have seen on the original GitHub site, there’s an extra directory, .git. This is git's “database” holding
the complete history of changes plus configuration information. It’s this holding of the complete project history that
allows the distributed version control

Note that in the images | have run: alias 1ls='ls --color' so directories are in blue

root@8ed499d163f: /workspaces/mpags—-day-1-drmarkwslater# ls -larth

total 28K

-rw-r——r—— 1 root root 97 Oct 11:29 README.md NOteS
—-rw-r—r—— 1 root root 1.1K Oct 11:29 LICENSE

—rw-r—r—— 1 root root 348 Oct 11:29 .gitignore

drwxr-xr-x 8 root root 4.0K Oct 11:29
drwxr-xr-x 2 root root 4.0K Oct 11:29

drwxr-xr-x 4 root root 4.0K Oct 11:29 AS thIS direCtOI'y hOldS a” Of your

drwxr-xr-=x 3 root root 4.0K Oct 11:36

root@8ed499d163f: /workspaces/mpags-day-1-drmarkwslater# | ChangeS, be Very Carer| nOt tO
delete it!

We won't dig into the content or
structure of .git in this course. If
you're interested in learning more
about this, the main Git
references cover it in detail.

7 Viewing Repository Status

As we add and edit files, it's useful to keep track of the repository status without changing anything. With git, simply
use the status command to view the current repository status:

S glit status

root@b8ed499d163f: /workspaces/mpags—day-1-drmarkwslater# git status
On branch master
Your branch is up to date with 'origin/master’. O eS

nothing to commit, working tree clean
root@b8ed499d163f:/workspaces/mpags—day-1-drmarkwslater# [}

Of course at the moment, there’s
not much to report as we have
not made any changes yet

Get into the habit of running git
status regularly to see what
you've changed.

8. Configuring Git
Before we start to use gi t, it's useful to configure it with the details to record in commit messages, an editor to use

to write messages and to display changes using colour markup. The conf£ig command sets parameters, <key>,
that gi t knows about to required values

S git config --global <key> <value>

root@8ed499d163f:$ git config ——global user.name "Mark Slater"
root@h8ed499d163f:$ git config ——global user.email "mslater@cern.ch" }-i. t

root@8ed499d163f:$ git config ——global core.editor nano

root@b8ed499d163f:$ git config ——global color.ui true

root@8ed499d163f:$ git config ——global color.diff true

root@8ed499d163f:$ git config ——global color.status true

root@b8ed499d163f:$ git config ——global -1

credential.helper=!f() { /root/.vscode-server/bin/e790b931385d72cf5669fcefc51cdf65990efa5d
/node /tmp/vscode-remote-containers-f228lel241ae7fec202a379c2d6eafe35fc70133.js $x; }; f

user.name=Mark Slater Git can use the EDITOR

user.email=mslater@cern.ch

core.editor=nano environment variable rather than
color.ui=true .

color.diff=true core.editor
color.status=true

root@8ed499d163f:$ |

You can configure git options
globally (--global) or locally
In a repository (--l1ocal)

Also see the
and try out some options!

http://git-scm.com/book/en/Customizing-Git-Git-Configuration

9: Improving the README file

We're going to start our project by improving the README for mpags-ciphecr. This is a file that sits in the top
level of the project and provides some basic information about the project, how to install it, and other details such as

author/copyright/license details. Our README is in plain text, using Markdown formatting. We use Markdown
because it is human readable but easily convertible to other formats.

In the ‘Explorer’ tab, click on ‘README . md' to open it. Edit the file and then save it.

= README.md — mpags-day-1-drmarkwslater [Dev Container: C++] N O te S
“ @ =XPLORER README.md X W om o

> OPEN EDITORS README.md > # mpags-cipher
v MPAGS-DAY-1-DRMARKWSLATER [DEV ...

S AEvEemEEs A simple command line tool for encrypting/decrypting text using classical ciphers

.gitignore

foiee— Add a bit more detail about the
project, and create placeholder
sections for “How to Install” and
“Authors”. Use the link above for
a format guide

marks major sections, and

those with ‘## are subsections.
TERMINAL DEBUG CONSOLE PROBLEMS OUTPUT 1: bash v + @M @ ~ X .
ST e g When we upload our project to

github, we'll see how these are

credential.helper=!f() { /root/.vscode-server/bin/e790b931385d72cf5669fcefc51cdf65990efasd/node /tmp/vscode-remote-co
ntainers-f2281el24lae7fec202a379c2d6eafe35fc70133.js $x; }; f

user.name=Mark Slater

user.email=mslater@cern.ch

core.editor=nano

'
» CURE color.ui=true d|Sp|ayed
> TIMELINE color.diff=true .
Q)] color.status=true

> NPM SCRIPTS root@b8ed499d163f:$ []
X Dev Container: C++ $®* master <& ®O0AO0 Ln1, Col1 Spaces:4 UTF-8 LF Markdown & [}

http://daringfireball.net/projects/markdown/

10: Staging Changes for Commit

Having saved README . md, if you run git status again, git can see it's been changed. However, git marks
these changes as “unstaged’, i.e not yet ready to be committed to its database. To tell git we want to “stage” the

changes, use the git add command on the file(s):

$ git add README.md

root@b8ed499d163f:$ git status
On branch master
Your branch is up to date with 'origin/master’. NOteS

Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git checkout —— <file>..." to discard changes in working directory)

“staged” files
no changes added to commit (use "git add" and/or "git commit -a") .
root@b8ed499d163f:$ git add README.md - Ready to be commited
root@b8ed499d163f:$ git status

On branch master “unStaQEd” fileS

Your branch is up to date with 'origin/master’.
Changes to be committed: = Changed but not Staged
(use "git reset HEAD <file>..." to unstage) .
“untracked” files
root@b8ed499d163f:$ | - Not tracked by git yet
“deleted” files

- Deleted by git and ready for
removal

11: Committing Changes

You'll have noticed that when youran git status after adding README . md it only says “Changes to be
committed”. Git stages changes before committing them to the repository. To store the changes we use the
commi t command with a message describing the changes:

S git commit -m “Improve README”

root@8ed499d163f:$ git status
On branch master

Your branch is up to date with 'origin/master'. NOteS

Changes to be committed:
(use "git reset HEAD <file>..." to unstage)

The staging area Is a place to
[naster 7964381 Inprove README @ o queue up (or remove) changes
rooTEbeaaONaI e aTt Status before they are committed. This
Sgugrzggzcﬂaige;head of 'origin/master' by 1 commit. iS USGfUl When we Start tO deal
(use "git push" to publish your local commits) W|th ChangeS 2CroSS mU|t|p|e ﬁleS

nothing to commit, working tree clean
root@b8ed499d163f:$ |

A “commit” is a snapshot of the
repository. After the commit,
status shows that we're
ahead of where we cloned from
(GitHub).

12: Making Further Changes

Now we've staged and committed README . md, we can continue to make changes. So edit your README . md,
for example, add an empty section “Documentation”. Save the file and run git status again. As before, git
recognises we've made changes, but these are not yet staged. To actually update the repository, we run git add
again to stage the change then git commai t to update the repository. This cycle of staging and committing is the
basic git workflow.

root@8ed499d163f:$ git status
On branch master

Your branch is ahead of 'origin/master' by 1 commit. T ThIS
(use "git push" to publish your local commits)

Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git checkout —— <file>..." to discard changes in working directory)

Make a few more edits to

no changes added to commit (use "git add" and/or "git commit -a") README . md and use glt
root@8ed499d163f:$ git add README.md . .
root@8ed499d163f:$ git commit -m "Add section for documentation. To be completed." add and glt commit for
[master 4d324el] Add section for documentation. To be completed.

1 file changed, 1 insertion(+) each to get into the feel of
root@b8ed499d163f:$ git status

On branch master staging and committing.

Your branch is ahead of 'origin/master' by 2 commits.
(use "git push" to publish your local commits)

nothing to commit, working tree clean

root@b8ed499d163f:$ [Rememberto use git
status regularly to see what’s
happening!

13: Unstaging Changes

So you've staged a change, and then you realise it either breaks something or you want to add something else. As
you may have noticed, git status actually tells you what to do in this case. So, make a change, stage it up and then
use git reset to unstage it:

S git reset HEAD README.md

root@h8ed499d163f:$ git status
On branch master

Your branch is ahead of 'origin/master' by 2 commits. NOteS
(use "git push" to publish your local commits)

Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git checkout —- <file>..." to discard changes in working directory)

If you have a change staged

no changes added to commit (use "git add" and/or "git commit -a") then make further ChangeS,
root@h8ed499d163f:$ git add README.md

root@b8ed499d163f:$ git status jUSt use glt add to append

On branch master

Your branch is ahead of 'origin/master' by 2 commits. these tO the Staging area.

(use "git push" to publish your local commits)

Changes to be committed:
(use "git reset HEAD <file>..." to unstage)

Note that you need to do this if
root@b8ed499d163f:$ git reset HEAD README.md yOU ve Staged a flle then made

Unstaged changes after reset: further ChangeS to It.
M README . md

root@8ed499d163f:$ |

14: Adding New Files

Staging/committing new files is the same as working with existing files. Create a new file named mpags-
cipher.cpp withasingleline *// mpags-cipher.cpp” and saveit. Rungit status again, and git
recognises a new “Untracked” file, so just use git add to track it:

S git add mpags-cipher.cpp

root@8ed499d163f:$ git status

On branch master .

Your branch is ahead of 'origin/master' by 2 commits. T ThIS
(use "git push" to publish your local commits) rTy,

Untracked files:
(use "git add <file>..." to include in what will be committed)

Once staged, git recognises
nothing added to commit but untracked files present (use '"git add" to track)

root@8ed499d163f:$ git add mpags—cipher.cpp mpags—cipher . CPP daS a
root@8ed499d163f:$ git status

On branch master ‘new file’. HOWGVGF, the

Your branch is ahead of 'origin/master' by 2 commits.

(use "git push" to publish your local commits) next commit Step IS identiCal, SO
Changes to be committed: jUSt commit as normall

(use "git reset HEAD <file>..." to unstage)

root@8ed499d163f:$ git commit -m "Add placeholder for main program" CommitS can Contain bOth new

[master ca9b2eb] Add placeholder for main program

1 file changed, 1 insertion(+) files and modifications to existing
create mode 100644 mpags—-cipher.cpp

root@b8ed499d163f:$ || ones. Note that you canrun git
add with multiple files at once.

15: Removing Files

Files can also be removed, but note that git's rm command removes the file(s) from both the repository and local
disk! Git regards a deletion as a change, so rm also stages the deletion for commit (though the physical file has
been deleted). Try removing the mpags-cipher. cpp file:

S git rm mpags-cipher.cpp

root@bh8ed499d163f:$ git status

On branch master '

Your branch is ahead of 'origin/master' by 3 commits. Try ThIS
(use "git push" to publish your local commits)

nothing to commit, working tree clean
root@b8ed499d163f:$ 1s
LICENSE mpags—-cipher.cpp README.md
root@8ed499d163f:$ git rm mpags—cipher.c ' .
rm 'm;:sag.;s-cj.pher.cpp(:;l PRgsTemp P After usinggit rm, make the
root@bh8ed499d163f:$ git status .
On branch master commit.
Your branch is ahead of 'origin/master' by 3 commits.

(use "git push" to publish your local commits)

Changes to be committed:

(use "git reset HEAD <file>..." to unstage) AS W|th a” ChangeS, yOU can
stage deletions along with

root@h8edd99d163f:$ 1s additions and modifications.
LICENSE README.md

root@b8ed499d163f:$ git commit -m "Remove main program temporarily"

[master eel95fc] Remove main program temporarily

1 file changed, 1 deletion(-) - . .

delete mode 100644 mpags—cipher.cpp lee glt add/ glt rm

sl can be run with several files at

root@b8ed499d163f: $
[] once.

16: Viewing Logs
We've now made a few commits to our repository, so how do we go back and see what we've done and why? Just
use the Log command!

S git log

root@b8ed499d163f:$ git log

commit eel95fcf5a7346165ca207799906b751af9b327b (.
Author: Mark Slater <mslater@cern.ch> Try ThIS
Date: Wed Oct 7 13:34:26 2020 +0000

Remove main program temporarily

commit ca9b2eba59e15644276eedle8eb5144321924f1c
Author: Mark Slater <mslater@cern.ch> Plain |Og diSpIayS everything' TO

Date: Wed Oct 7 13:32:36 2020 +0000
get the N most recent commits,

Add placeholder for main program

commit 4d324elcf143cbb2e5200b2f2abec521dc50adaa usegit log -nN.
Author: Mark Slater <mslater@cern.ch>
Date: Wed Oct 7 13:28:14 2020 +0000

Add section for documentation. To be completed. YOU can a|SO use glt lOg
commit 7e964387b0bb272425ae861ea2e532625f648ebd --summary tO get 3 more

Author: Mark Slater <mslater@cern.ch>

Date: Wed Oct 7 13:26:16 2020 +0000 detailed overview though it

Improve README doesn’t show much as we've only

commit 25763d8eb4fc7e2e73d516f15461242d1c64bd4c (: .
Author: Mark Slater <mslater@cern.ch> worked with one file,
Date: Wed Oct 7 11:57:39 2020 +0100

Initial commit
root@8ed499d163f:$ |

17: Viewing Changes
The basic log command shows the timeline of changes, but not what changed. To see what actually changed

between commits, we can use git log -p orthe dif£ command. Without any arguments, it shows a diff
between the last commit and any unstaged changes:

S git diff

root@b8ed499d163f:$ git diff
diff ——git a/README.md b/README.md

index 20c9a70..322b6ef 100644
Notes

+++ b/README.md

mpags—-cipher
A simple command line tool for encrypting/decrypting text using classical ciphers

Git shows difference using the
for
Documentation additions/removals. On the lefft,
root@b8ed499d163f:$ | additions are in green, removals
In red.

Depending on the default
configuration, the diff may be
output to a pager, in which case
use ‘q' to quit.

http://en.wikipedia.org/wiki/Diff

18: Changes between Commits

As you'll have seen in using git log, git labels commits using a 40 character hash code. You can use these
labels to view differences between any two commits, though because hashes are unique, you don'’t have to type out
80 characters, e.qg:

S git diff 7e96 ca9b

root@b8ed499d163f:$ git diff 7e96 cadb
diff ——git a/README.md b/README.md .
index 6d8b309..20c9a70 100644 T ThIS
——= a/README . md ry
+++ b/README .md

A simple command line tool for encrypting/decrypting text using classical

cipher

Author: Mark Slater . S
The commit specifier needs to

diff --git a/mpags-cipher.cpp b/mpags-cipher.cpp contain enough characters to

new file mode 100644

index 0000000..c1d9f8c uniquely identify the commit.
-—= /dev/null

+++ b/mpags-cipher.cpp Note that your hashes will differ!

root@b8ed499d163f:$ |
The arguments to git diff can take
a variety of forms. See man
gitrevisions for more
details, or the more helpful
| Try some of these
out.

http://git-scm.com/book/en/Git-Tools-Revision-Selection

19: Writing Good Commit Messages

Our edits so far have been simple and confined to one file. In these cases, a single line commit message using git
commit -m “commit message” is completely sufficient (e.g. “Fixed typographic errors”). As we start to

make more involved commits involving several files, then we need to provide more detail. Because of the way git
works with patches and email, it tends to recommend the specific style of commit message listed below.

Contributing
Writing Good Commit Messages
Capitalized, short (50 chars or less) summary

More detailed explanatory text, if necessary. Wrap it to about 72
characters or so. In some contexts, the first line is treated as the
subject of an email and the rest of the text as the body. The blank
line separating the summary from the body is critical (unless you omit
the body entirely); tools like rebase can get confused if you run the
two together.

Write your commit message in the imperative: "Fix bug" and not "Fixed bug"
or "Fixes bug." This convention matches up with commit messages generated
by commands like git merge and git revert.

t Further paragraphs come after blank lines.
- Bullet points are okay, too

- Typically a hyphen or asterisk is used for the bullet, followed by a
i single space, with blank lines in between, but conventions vary here

- Use a hanging indent

Please enter the commit message for your changes. Lines starting
with "#' will be ignored, and an empty message aborts the commit.
On branch DaylBranch

Your branch is ahead of 'origin/DaylBranch' by 5 commits.

(use "git push" to publish your local commits)

#

-- INSERT --

Why?

There’s a good example in the
text on the left (taken from

).

If you “fixed a bug” you should
say which bug, and how it was
fixed. You might also say (and
include in the commit) that a test
has been added to check for the
bug in the future.

http://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html

20: The .gitignore File

When you run git status, git will report any files it doesn't track (“‘untracked”). In some cases we'll have files
that we don'’t want git to track, for example files generated by the build or text editor temporaries, but we may
accidentally add them to the repository (e.g. by git add .).

Git uses the .gitignore file in our repository (provided by upstream) to determine what to ignore. This contains a list of
filename patterns that git should ignore and already contains patterns for C++ compiled objects. Have a look at
the .gitignore provided in the repository and make sure it looks like below:

.gitignore

Notes

You can also have a global
ignores file. You could have a file
named

.global gitignoresin
your HOME directory. Git can be
made aware of this file by setting
the core.excludesfile
variable to point to it in the global
git config

.DS_Store?

21: Tagging
We've seen that in git, commits are described by a 40 character hash. At certain points in development, we'll want to

mark a commit as a usable, stable piece of work. The hashes aren't an easy way of marking these points, so instead
we create a “tag”. Current tags are listed via:

S git tag

root@8ed499d163f:$ git status

On branch master '

Your branch is ahead of 'origin/master' by 5 commits. Try ThIS
(use "git push" to publish your local commits)

nothing to commit, working tree clean

root@h8ed499d163f:$ git tag

root@8ed499d163f:$ git tag —a v0.1.0 -m "mpags—-cipher 0.1.0: End of git walkthrough"
root@b8ed499d163f:$ git tag

v0.1.0 Follow the steps on the left to tag
root@8ed499d163f:$ git show v0.1.0 .

tag v0.1.0 your repository,

Tagger: Mark Slater <mslater@cern.ch>

Date: Wed Oct 7 13:47:04 2020 +0000

mpags—cipher 0.1.0: End of git walkthrough TagS can have any name bUt glt
J
commit a36c77bec44dafe9d7e35e5633c3859ed1190716a (, tag: v0.1.0)

Author: Mark Slater <mslater@cern.ch> prOJeC’[S tend to use

Date: Wed Oct 7 13:46:08 2020 +0000 : :
vMAJOR.MINOR.PATCH’ for

Some more README improvements . 7 "

version numbers. “Annotated

diff --git a/README.md b/README.md .

index 20c9a70..322b6ef 100644 tags are the best to use to begin

—— a/README .md . .

+++ b/README . nd with, as they can take extra info

mpags-cipher about the tag. Use show to see

A simple command line tool for encrypting/decrypting text using classical ciphers th' . f
IS INTO.

22: Sharing Changes between Repositories

Whilst we've made commits to our repository, these are all local as we work on a copy of the repository. If you go
back to the GitHub page for your project and refresh the browser, you'll see that this is still in its original state. The
distributed nature of git means it can track a set of repositories, which we can view with the remote command:

S git remote -v

root@b8ed499d163f:$ git status

On branch master
Your branch is ahead of 'origin/master' by 5 commits. NOteS
(use "git push" to publish your local commits)

nothing to commit, working tree clean

root@b8e d lick
origin (emd + click) -pp_2020,/mpags-day-1-drmarkwslater.git (fetch)

191 h ://github. /MPAGS—-CPP-2020/ —day-1-d kws 1 .git (h) :
FootEb3eddotaTE S TRRSER e e LA RS Because we cloned from Github,
the default “origin” remote points

toit.

The “-v” flag gets git to show the
full URLSs.

As we'll see, we can have
multiple remotes.

23: Preparing to Send your Repository to github

We now want to send our changes to github. However, to do this we need to generate an ssh key consisting of a
public part and a private part. You send the public part to github and keep the private part on your machine and
using using the combination, github can authenticate you. To generate the key, run the following:

S ssh-keygen -t ed25519

root@98c7fce9651d: /workspaces# ssh-keygen -t ed25519 NOteS
Generating public/private ed25519 key pair.

Enter file in which to save the key (/root/.ssh/id_ed25519):

Enter passphrase (empty for no passphrase):

Enter same passphrase again:
Your identification has been saved in /root/.ssh/id_ed25519.

Your public key has been saved in /root/.ssh/id_ed25519.pub. DUI’Ing thIS process you Wl" be
The key fingerprint is: .

SHA256: dul/ fwRP5xGbob+31icHjK11KHIzwHWy3XUk LLOGi9+U root@98c7fce9651d asked to prOVIde d

The key's randomart image is:

SIEED RS passphrase. This will ‘unlock’
" the ssh key when you push to
github.

e Though this is not sent over

root@98c7fce9651d: /workspaces# | the internet and |S useless
without the private part of the
key, you should still ensure it’s
not easily guessable!

24: Adding the Public SSH Key Part to Github

You now have two additional files: ~/ . ssh/id ed25519 and ~/.ssh/id ed25519.pub. The second
of these is the public part which you can freely give out — DON'T GIVE OUT THE PRIVATE PART! To provide this

fo github, go to:

https://github.com/settings/keys
And copy and paste the contents of ~/ . ssh/id ed25519.pub file as well as giving it a title.

Notes

O Search or jump to... / Pull requests Issues Marketplace Explore L +~ 6?

You can store many keys on
VSR osrsmsvse (1 github S0 if you are using

several machines, you can
either copy the private and

Account settings SSH keyS New SSH key

Profile . ') ' ' . .
_— This is a list of SSH keys associated with your account. Remove any keys that you do not recognize. pu bl Ic parts to the d Iffe rent
Appearance ST machines or generate different

SHA256:85pfcfwzhNz4RJiKX0gauqYDBHKAdq18+ivg6xhKAks

Account security

keys for each.

:"""g_&:"ans D You will have to create a new
ecurity log ur guide generating SSH keys or troubleshoot common SSH problems

ety & analyes key for each day of the course
Sponsorship log GPG keyS Sk as We use a different image

Emails There are no GPG keys associated with your account. eaCh ti me. Don,t fO rget tO
P Tore earn how to generate a GPG key and add it to your account. delete the old ones from your
github account!

https://github.com/settings/keys

25: Changing the remote URL

We need to make one more change — when we downloaded the repo we used ‘https’ but we want to push our changes using
ssh. To change this, we will change the URL or the ‘origin’ remote:

S git remote set-url origin <remote-url>

The URL you need can be found by just replacing the ‘https://github.com/’ part to ‘git@github.com?’, e.g.
https://github.com/MPAGS-CPP-2021/mpags-day-1-drmarkwslater.git — git@github.com:MPAGS-CPP-2021/mpags-day-1-drmarkwslater.qgit

root@e6a331bd2fcb: /workspaces/mpags—day—-1-drmarkws later# git remote set-url origin git@github.com:MPA
GS-CPP-2021/mpags—day-1-drmarkwslater.git O e S
root@e6a331lbd2fcb: /workspaces/mpags—-day-1-drmarkwslater# git remote -v
origin git@github.com:MPAGS-CPP-2021/mpags—day-1-drmarkwslater.git (fetch)
origin git@github.com:MPAGS-CPP-2021/mpags—day-1-drmarkwslater.git (push)
root@e6a331bd2fcb: /workspaces/mpags-day-1-drmarkwslater# |

You can also find the URL from
the gihub interface for your
repository. Go to ‘Code’ and

select ‘'SSH’. The URL can be
copied from there.

Along with generating a new SSH
key for each day, you will also
need to change the remote URL
each time as well.

https://github.com/
mailto:git@github.com
https://github.com/MPAGS-CPP-2021/mpags-day-1-drmarkwslater.git

26: Pushing your Repository to Github

We're now ready to to send our changes to github. To do this, we use git push. This can be supplied with the
name of the remote to push to (‘origin' usually), and the “refspec” or branch we want to share. In our case though,

we can just use the defaults (origin and the current branch - Day1Branch):

S gilit push

root@8ed499d163f:$ git push

Enumerating objects: 15, done.
Counting objects: 100% (15/15), done. NOteS
Delta compression using up to 2 threads

Compressing objects: 100% (12/12), done.
Writing objects: 100% (13/13), 1.30 KiB | 1.30 MiB/s, done.

Total 13 (delta 6), reused @ (delta Q)
remote: Resolving deltas: 100% (6/6), completed with 1 local object. We Won’t cover Branching bUt
J

To https://github.com/MPAGS-CPP-2020/mpags—day-1-drmarkwslater.git

oot aloRsedecTTy naster > master they can be thought of as
separate sequences of commits.
They're used to partition
development, such as
implementing new functionality,

without interfering with others.

27: Viewing Changes on GitHub

After running git push, go back to your browser and refresh the page for your repository. You should now see
that it's updated with the commits you’ve made up to the point you pushed.

It provides a very nice interface for browsing changes, so explore the viewing options and see how these map to the
git command line arguments.

& MPAGS-CPP-2020 / mpags-day-1-drmarkwslater Private @® Unwatc N Ote S

generated from cpp-pg-mpags/Day-1-Starter-Repo

<> Code () Issues 1 Pull requests (*) Actions [) Projects (1) Security |~ Insights 51 Settings

¥ master ~ F 1branch © 0 tags Go to file Add file ~ NOW we Can see the advantage
of using Markdown format, as

e drmarkwslater Some more README improvements a36c77b 5 minutes ago Y 6 commits Glthub haS rendered |t nICG|y for

[0 .devcontainer Initial commit 3 hours ago US

[.gitignore Initial commit 3 hours ago

[% LICENSE Initial commit 3 hours ago

[READMEmd Some more README improvements 5 minutes ago We could have used other
markup styles as well.

README.md V4

mpags-cipher

A simple command line tool for encrypting/decrypting text using classical ciphers

Author

28: Pushing Tags
Like any other repository “refspec”, tags can be pushed to a remote repository. However, push does not push

tags by default (you can see this as Github does not list your tag yet under “releases”). To do this, we have to either
specify the tag name or use the —-tags argument:

S git push origin v0.1.0

root@b8ed499d163f:$ git tag
v0.1.0

root@b8ed499d163f:$ git push origin v0.1.0 NOteS

Enumerating objects: 1, done.

Counting objects: 100% (1/1), done.

Writing objects: 100% (1/1), 184 bytes | 184.00 KiB/s, done.

Total 1 (delta @), reused @ (delta @)

To https://github.com/MPAGS-CPP-2020/mpags—day-1-drmarkwslater.git

[tagl 0.1.0 — v0.1.0
ro0t@b8eddsad163F s | ' You should always push tags so
they appear when others pull
from your remote repo (including

you!).

If you look on your github
repository, you should see a ‘1’
next to the “releases”. Clicking on
this will take you an interface
where you can download a
source archive for your code at
the tag!

29: Pulling Changes from Github

At present we're only working with a single copy of our GitHub repo. Later you may obtain other copies, e.g. on your
Laptop or another Location, so commits will get pushed to Github that other copies don't yet have. To update the

current copy of the repo, we can use git pull:

S git pull origin

root@b8ed499d163f:$ git status

On branch master I y |
Your branch is up to date with 'origin/master’. T ThIS

nothing to commit, working tree clean
root@bh8ed499d163f:$ git pull

remote: Enumerating objects: 5, done.

remote: Counting objects: 100% (5/5), done.
remote: Compressing objects: 100% (3/3), done. . .
remote: Total 3 (delta 2), reused @ (delta @), pack-reused 0 USIng the web editor on

Unpacking objects: 100% (3/3), done. .
From https://github.com/MPAGS-CPP-2020/mpags—day-1-drmarkwslater glthUb,COm, make d Change tO

a36¢c77b..f183033 master -> origin/master .
Updating a36c77b..f183033 your README file. Return to
Fast-forward . .

README.md | 3 your main copy, then git

1 file changed, 3 insertions(+)

root@b8ed499d163f:$ | pull to get those changes. Git
will report what changes have
been made.

Note that git pull is two steps: i)
Fetch changes, ii) Merge
changes.

30: Git Conflicts

Git is very smart at merging content changes in files, but it is not infallible - e.g. if a single word has changed on the
same line, which one should be preferred? When conflicts occurs, git will warn us about them, and git status can be
used to review them. Make an edit to README.md from github and then alter the same line in a different way in your
local copy of the repo. After committing, pull the changes from the remote repository. git status will say there
are conflicts that can't be automatically dealt with. We need to edit the file(s) to resolve the conflict, then add/commit
just as we did for any other edit.

root@b8ed499d163f:$ git add README.md

root@b8ed499d163f:$ git commit

[master 884d00a]l Demonstrate conflicts NOteS
1 file changed, 1 insertion(+), 1 deletion(-)
root@b8ed499d163f:$ git status

On branch master

Your branch is ahead of 'origin/master' by 1 commit.

(use "git push" to publish your local commits)

nothing to commit, working tree clean ConﬂiCtS dare mOSt common in

Femote: Enumerating sbjects: 5, done. collaborative development, but

remote: Counting objects: 100% (5/5), done. .
remote: Compressing objects: 100% (3/3), done. can also happen In your own

remote: Total 3 (delta 2), reused @ (delta @), pack-reused 0 ey .
Unpacking objects: 100% (3/3), done. WOI’k, so it's worth |earn|ng how
From https://github.com/MPAGS—CPP-2020/mpags—day—-1-drmarkwslater '
£183033..977e8fc master —> origin/master to resolve them!
Auto-merging README.md
CONFLICT (content): Merge conflict in README.md
Automatic merge failed; fix conflicts and then commit the result.
root@b8ed499d163f:$ |

31: Viewing Conflicts

Git marks conflicts in files using a special markup block showing the conflicting content

ccc<<<s HEAD The HEAD block shows our local content.

local content " divides the sections, and after this is shown
B the conflicting content. This ends with the “refspec” of
>>>>>>> refspec the commit causing the conflict

README.md > # <<<<<<< HEAD

A simple command line tool for encrypting/decrypting text using S NOteS
classical ciphers

Mark Slater There may be more than

one conflict block in a file!

Takes input and runs a variety of classical ciphers to produce output

Accept Current Change | Accept Incoming Change | Accept Both Changes | Compare Changes ThlS |S Where haVIﬂg a gOOd

<<<<<<< HEAD (Current Change) '

License info is included in the contained LICENSE file Syntax aware teXt edltor
helps. Add-ons are usually

See included LICENSE file in repo . L o

>>>>>>> 977e8fc5a21d582f657e262a388bFf00bb4c646 (Incoming Change) available specifically to
highlight and handle git
syntax like the conflict
block. Visual Studio Code

highlight them by default.

32: Resolving Conflicts

The content of the conflict has to be resolved manually, and is up to you (it may be a simple merge, choosing one or
the other, or more complex). Once you've done this, remove the git markup (<<<<<<< HEAD, ======= and
>>>>>>> refspec)and save the file. Using git status will still show it as unmerged, but we can now
use git add to stage it, followed by git commit to commitit and all the other changes brought in. Finally,
push the changes to your repository!

root@8ed499d163f:$ git add README.md

root@8ed499d163f:$ git commit -m "Resolving conflict"

[master 7el4f7a] Resolving conflict NOteS
root@8ed499d163f:$ git status

On branch master

Your branch is ahead of 'origin/master' by 2 commits.
(use "git push" to publish your local commits)

nothing to commit, working tree clean

root@b8ed499d163f:$ || Don't be frightened of conflicts,
git provides all the tools to help
you resolve them!

Though you are unlikely to
encounter conflicts in this course
as you will be using your own
repo, it's good to know how to
deal with them.

33: And we're done

That about covers the basic usage of git and github. All of the techniques are applicable to other VCSs you may
work with, of particular importance being the writing of good commit messages so you (and your collaborators)
know not only what changes were done, but why!

Through the course, remember to commit your work regularly when you have got something working
(NEVER commit code that doesn’t work for you!). Push to GitHub regularly. Use tags to mark feature/task
completion, again, the tag should work!

& MPAGS-CPP-2020 / mpags-day-1-drmarkwslater Pprivate ® Unwatc

generated from cpp-pg-mpags/Day-1-Starter-Repo

Don't Forget Resources

<> Code (1) Issues 1l Pull requests (») Actions [} Projects (1) Security [~ Insights 51 Settings

Powerfid Technigues for Centralized and
Distribued Project Management

¥ master ~ F 1branch 1 tag Go to file Add file ~ Version Control with

";’. drmarkwslater Resolving conflict 7e14f7a 2 minutes ago) 10 commits
[0 .devcontainer Initial commit 3 hours ago
[.gitignore Initial commit 3 hours ago
[LICENSE Initial commit 3 hours ago
O'REILLY"
(Y README.md Demonstrate conflicts 5 minutes ago
README.md V4

A simple command line tool for encrypting/decrypting text using classical ciphers

Author

Homework Hand In with Git

* Through github classrooms, you will get a repository for each day.

* Once you’re happy with your code from the end of each session, email us and we can
have a look at your repos and leave comments!

37

	Slide 1
	A Version Control Walkthrough with Git
	Slide 3
	1: Creating the Repository on Github
	3: Creating Your mpags-cipher Repository
	4: Your mpags-cipher Repository
	6: Getting Your Repository
	Slide 8
	8: Repository Structure
	9: Viewing Repository Status
	10: Configuring Git
	11: Improving the README file
	12: Staging Changes for Commit
	13: Committing Changes
	14: Making Further Changes
	15: Unstaging Changes
	16: Adding New Files
	17: Removing Files
	18: Viewing Logs
	19: Viewing Changes
	20: Changes between Commits
	21: Writing Good Commit Messages
	22: The .gitignore File
	23: Tagging
	24: Sharing Changes between Repositories
	25: Pushing your Repository to Github
	Slide 27
	Slide 28
	Slide 29
	26: Viewing Changes on GitHub
	27: Pushing Tags
	28: Pulling Changes from Github
	31: Git Conflicts
	32: Viewing Conflicts
	33: Resolving Conflicts
	34: And we’re done
	Homework Hand In with Git

