
Doxygen

Tom Latham

(based on material from Matt Williams)

1

Documentation

● Documentation is just as important as the code itself

● Without docs, you wouldn't know how to use a library:
cppreference.com or the Boost docs are essential

● You should make sure you always document your code
for external use (or just to remind yourself in 6 months!)

● A standard syntax exists called Doxygen

2

Doxygen syntax

● Doxygen comments are generally placed within the
header (.hpp) files, rather than the source (.cpp) files

● Doxygen comments are marked in a special way

● Comments precede the statement that they want to
document

/// Doxygen single-line comments start with three slashes

/**
* Doxygen multi-line comments start with a slash and two stars
* In both cases, Doxygen reads what's inside the comment
*/

3

Doxygen commands

● The descriptions of functions,
classes, enums, etc. often need to
be quite detailed, so it's good to
also have a short one-line
description that is used at the
head of the page – use the
\brief command

● \param is used to document
function arguments

● \return is used to describe the
return value of a function

/**
* \brief This function is amazing
*
* More detailed description of all
* the very special stuff it does
*/
void foo();

/**
* \param key the cipher key
*/
void setKey(const size_t key);

/**
* \return the number of elements
*/
int size() const;

● Doxygen provides its own syntax to be used inside comments

● They are detailed in full in the manual but there are a few which are
most commonly used:

4

https://www.stack.nl/~dimitri/doxygen/manual/commands.html

Function example
● Describe the function in a good degree of detail

● Always document all function parameters and return values

/**
* \brief An amazing function which does something very special
*
* A longer description of this function is that is can be used
* to do something very interesting, which this longer description
* explains in detail.
*
* \param input the string that we want to convert
*
* \return the converted string
*/

std::string convert(const std::string& input);
5

Class example
● Class docs should describe the purpose of the class and give

examples of usage
/**
* \brief A cipher encodes and decodes
*
* Cipher is an abstract base class, which provides the ability
* to encode and decode strings based on a key
*
* Use it like
* \code{.cpp}
class MyCipher : public Cipher {...};

* \endcode
*
* \since 0.1.3
*/

class Cipher {
6

Enum example

● Enumerations should have a general description and
each state should also be documented

● A common style is to use 'suffix' comments for the
individual state descriptions

/**
* \brief The rank of the employee
*/
enum class Rank {

Junior, ///< A new person at the company
Senior, ///< Someone who has been here a while
Chief ///< Someone super special

};
7

Separate page example
● Can create pages of

documentation that are perhaps
not specific to particular classes
or functions

● Can create files with .dox
extension that use the Doxygen
syntax

● Or you can use Markdown files –
note that we've simply used our
README.md to create the front
page of the documentation

/**
* \mainpage Welcome to MPAGS Cipher
*
* Blah blah
*
* \section Introduction
* Blah blah
*
* \subsection Usage
*
* \code{.cpp}

CaesarCipher c {"4"};
std::cout << c.applyCipher("test");

* \endcode
*/

8

Configuring Doxygen

● Doxygen itself is a program that, given a configuration
file, generates a set of HTML (or LaTeX, or …) files

● A default configuration file can be created with

but we will just use the one that we've provided in the
Documentation folder of today's git repository

● It's a simple (if slightly long) file, so feel free to read
through it

$ doxygen -G Doxyfile

9

Automating generation of documentation

Find the Doxygen tools
find_package(Doxygen REQUIRED)

Copy Doxyfile.in (in source dir) to Doxyfile (in build dir)
and replace any @VAR@ with with CMake variables called VAR
configure_file(Doxyfile.in Doxyfile @ONLY)

Tells CMake how to 'create' ${CMAKE_CURRENT_BINARY_DIR}/html/index.html
add_custom_command(
OUTPUT "${CMAKE_CURRENT_BINARY_DIR}/html/index.html"
COMMAND ${DOXYGEN_EXECUTABLE}
WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}
DEPENDS Doxyfile.in

MPAGSCipher
${PROJECT_SOURCE_DIR}/README.md
${PROJECT_SOURCE_DIR}/CMakeLists.txt

COMMENT "Doxygenating ${PROJECT_NAME}"
)

Adds the ability to do 'make doc' which will try to create ".../html/index.html"
add_custom_target(doc ALL DEPENDS "${CMAKE_CURRENT_BINARY_DIR}/html/index.html")

Documentation/CMakeLists.txt

10

Exercise 1 – build the documentation
• The starter repository for today should contain the necessary files form which to

build the documentation

• Look at what has changed in the top level CMakeLists.txt file

• Take a look at the new files in the Documentation subdirectory

• Try running "make doc" in your build area

• Open the resulting documentation in your web browser
(instructions for two ways to do this on the next slides)

• Can you work out how to have the private members of the CaesarCipher class
appear in the documentation?

• Throughout the rest of the day, when adding new code always make sure to
document new classes, functions, etc.

11

Using a webserver to view the Doxygen docs
• In order to view the documentation files built by Doxygen, you can start a

webserver in your container that can serve the pages to your host system

• This can be done using the following commands (which assume that you are
currently in your build directory):

cd Documentation/html
python3 –m http.server 8000

• At this point VSCode will likely pop up with a box asking if you want to open in a
browser – click "Open in Browser" and the pages should appear in your browser

• If you don't see that dialogue box, you should just be able to open a browser
and put in the following address:
http://localhost:8000/index.html

• If at any point you want to close the webserver you can just Ctrl+C in the
terminal from which you issued the python3 command to start the server

12

http://localhost:8000/index.html

Copying files from dev container to host
• In order to view the documentation files built by Doxygen you

can alternatively copy them from your dev container to your host
system

• This can be done using the ‘docker cp’ command

• You’ll need to to know the unique ID of your container and the
full path to the generated html files, which will likely be:
/workspaces/<your_repo>/build/Documentation/html

• The unique ID can be easily obtained from the VSCode terminal
– it may already be part of your terminal prompt (see the
screenshot on the right and compare with the command below)

• Otherwise, use the ‘hostname’ command in the VSCode
terminal

13

• The below docker command will copy the whole html directory to the current directory of your host filesystem, so first change directory
to wherever you want to copy the files

• Then, in a terminal on your host system, run the command (substituting your unique ID and path):

docker cp 18d82203a64c:/workspaces/mpags-day-4-tomlatham/build/Documentation/html .

• Finally, you can open the html/index.html file in your browser

