
1

Pointers and Arrays

Mark Slater

2

Raw Pointers

3

Introducing Raw Pointers

● Last week we covered the concept of Pointers and how they are used
to enable dynamic allocation and for extending the lifetime of an
object beyond the scope it was created in

● Before the Smart Pointers we saw last week were available, this
functionality was only possible through 'raw' C-Style pointers

● These are very basic types that just hold the memory location of the
object they point to and don't have any other functionality

● This means you have to be very careful about ensuring the pointer
points at a valid object and deleting any unused objects when
appropriate

● To create a new object and return a pointer to it, use the 'new'
operator. When finished with this object, use the 'delete' operator to
de-allocate the associated memory

4

nullptr

● As we will see, it's vitally important to initialise any pointers to null
otherwise they could point anywhere

● Pre-C++11, the best way of doing this is to set it to 0 (or 'NULL' is
sometimes defined) which would cause a crash if accessed and can be
checked specifically do decide if it's valid

● In C++11 there is a keyword nullptr that designates a null pointer
constant of type std::nullptr_t which is a lot more robust (and won't
be converted to/from an integer on the fly) and less confusing

● This can be used for any pointer type and will resolve correctly

5

To demonstrate how pointers work,
we will return to our basic memory
picture shown in the first week

This code is just for teaching
purposes – don't use it in practise!

90343 21

Pointers in Action (1)

Memory Locations
#include <iostream>

int main()
{
 int *a{nullptr};
 int *b; // VERY BAD!!

 a = new int {5};
 b = new int;

 *b = 7;

 int c {(*a) + (*b)};
 int *d{&c};
 int *e{a};

 delete a;

 // 0x7fff3f0fc6c4: 12
 std::cout << d << “: “ << *d

<< std::endl;

 return 0;
}

6

 b a

Pointers in Action (2)

First, two pointers to ints (a and b)
are declared

'a' is initialised with the nullptr but
'b' is not – if you accessed 'a' your
program would crash which is
actually better than if you accessed
'b' as this would be completely
undefined!

#include <iostream>

int main()
{
 int *a{nullptr};
 int *b; // VERY BAD!!

 a = new int {5};
 b = new int;

 *b = 7;

 int c {(*a) + (*b)};
 int *d{&c};
 int *e{a};

 delete a;

 // 0x7fff3f0fc6c4: 12
 std::cout << d << “: “ << *d

<< std::endl;

 return 0;
}

7

 b a

Pointers in Action (3)

Next, the memory for two integers are
allocated and the addresses of these
allocations are assigned to the pointers
using the 'new' operator

At this point, a and b now point to useful
memory locations, but the value of *b has
 not been initialised (i.e. junk!)

(Note, objects created with 'new' are put
in a different area of memory – we're
going to ignore this for this example!)

#include <iostream>

int main()
{
 int *a{nullptr};
 int *b; // VERY BAD!!

 a = new int {5};
 b = new int;

 *b = 7;

 int c {(*a) + (*b)};
 int *d{&c};
 int *e{a};

 delete a;

 // 0x7fff3f0fc6c4: 12
 std::cout << d << “: “ << *d

<< std::endl;

 return 0;
}

5

8

 b a

Pointers in Action (4)

To actually assign a value to the
integer pointed at by b, we can
dereference the pointer as we did
with smart pointers and iterators

#include <iostream>

int main()
{
 int *a{nullptr};
 int *b; // VERY BAD!!

 a = new int {5};
 b = new int;

 *b = 7;

 int c {(*a) + (*b)};
 int *d{&c};
 int *e{a};

 delete a;

 // 0x7fff3f0fc6c4: 12
 std::cout << d << “: “ << *d

<< std::endl;

 return 0;
}

5 7

9

 b a

Pointers in Action (5)

Next, we create a normal integer variable
and assign the sum of the two integers
pointed to by a and b

After this, we create another pointer (d)
and assign it to the address of the
variable c by pre-fixing with the 'address-
of' operator

We also create another pointer (e) and
set it to the value of 'a'

 c d
#include <iostream>

int main()
{
 int *a{nullptr};
 int *b; // VERY BAD!!

 a = new int {5};
 b = new int;

 *b = 7;

 int c {(*a) + (*b)};
 int *d{&c};
 int *e{a};

 delete a;

 // 0x7fff3f0fc6c4: 12
 std::cout << d << “: “ << *d

<< std::endl;

 return 0;
}

5 7 12

 e

10

 b a

Pointers in Action (6)

Just to show what happens, we now
delete the memory allocated to the
pointer 'a'

If we were to try to access either
the 'a' or 'e' variables after this we
would get unexpected results
because the object they point to
has now been deleted

 c d
#include <iostream>

int main()
{
 int *a{nullptr};
 int *b; // VERY BAD!!

 a = new int {5};
 b = new int;

 *b = 7;

 int c {(*a) + (*b)};
 int *d{&c};
 int *e{a};

 delete a;

 // 0x7fff3f0fc6c4: 12
 std::cout << d << “: “ << *d

<< std::endl;

 return 0;
}

7 125

 e

11

Pointers in Action (7)

To give you an idea of what the
contents of these variables are, we
now print out the pointer and the
dereferenced pointer

#include <iostream>

int main()
{
 int *a{nullptr};
 int *b; // VERY BAD!!

 a = new int{5};
 b = new int;

 *b = 7;

 int c {(*a) + (*b)};
 int *d{&c};
 int *e{a};

 delete a;

 // 0x7fff3f0fc6c4: 12
 std::cout << d << “: “ << *d

<< std::endl;

 return 0;
}

 b a c d

7 125

 e

12

Pointers in Action (8)

Finally, on exit of this scope, we see
that because we only deleted one
of the integers created with 'new',
we're left with memory allocated
that is no longer referenced, i.e. it
does not go out of scope

This is the other major problem
with pointers: memory leaks!

#include <iostream>

int main()
{
 int *a{nullptr};
 int *b; // VERY BAD!!

 a = new int {5};
 b = new int;

 *b = 7;

 int c {(*a) + (*b)};
 int *d{&c};
 int *e{a};

 delete a;

 // 0x7fff3f0fc6c4: 12
 std::cout << d << “: “ << *d

<< std::endl;

 return 0;
}

75 12

13

Drawbacks of Using Raw Pointers

● There are several reasons why it's a bad idea to use raw pointers
instead of smart pointers:

➔ You have to remember to 'delete' anything you 'new'
➔ There is a question over returned pointers as to who has ownership
➔ It's much harder to ensure unique pointers
➔ There is no protection for bad pointers

● In summary:

Only use Raw Pointers when you absolutely have to – Smart Pointers are
better in almost every practical way!

14

C-Style Arrays

15

● We have currently only dealt with C++ containers that do all the
memory (de)allocation for us

● Before these were available, there was only the 'C-Style' arrays to hold
multiple objects. Due to their implementation, they are intimately
linked to pointers

● Essentially, to create an array, you do exactly as was done for a single
variable allocation but add the array size in square brackets
afterwards. This produces a variable that represents the full memory
allocated

● These have very similar drawbacks to raw pointers and also don't have
any of the power of C++ containers, e.g. dynamic resizing, memory
(de)allocation control, etc.

Introducing C-Style Arrays

16

This time we will look at the
memory allocation going on for a C-
Style array

90343 21

Arrays in Action (1)

Memory Locations
#include <iostream>

int main()
{
 int a[3];

 a[0] = 2;
 a[1] = 7;
 a[2] = a[0] * a[1];

 int *b = a;

 int *c = new int[3];

 c[2] = b[2] - a[0];

 c += 2;
 std::cout << *c << std::endl;

 // should have done:
 // c -= 2
 // delete [] c;
 return 0;
}

17

First, we declare an array

This allocates the memory
requested and 'links' it to the
variable a

903 21

Arrays in Action (2)

 a
#include <iostream>

int main()
{
 int a[3];

 a[0] = 2;
 a[1] = 7;
 a[2] = a[0] * a[1];

 int *b = a;

 int *c = new int[3];

 c[2] = b[2] - a[0];

 c += 2;
 std::cout << *c << std::endl;

 // should have done:
 // c -= 2
 // delete [] c;
 return 0;
}

18

As always, the actual values are not
initialised, so we now do that

903 21

Arrays in Action (3)

 a
#include <iostream>

int main()
{
 int a[3];

 a[0] = 2;
 a[1] = 7;
 a[2] = a[0] * a[1];

 int *b = a;

 int *c = new int[3];

 c[2] = b[2] - a[0];

 c += 2;
 std::cout << *c << std::endl;

 // should have done:
 // c -= 2
 // delete [] c;
 return 0;
}

1472

19

To show the similarities between
arrays and pointers, we now create
a basic pointer and assign it to
point to the array

903 21

Arrays in Action (4)

 a

 b
#include <iostream>

int main()
{
 int a[3];

 a[0] = 2;
 a[1] = 7;
 a[2] = a[0] * a[1];

 int *b = a;

 int *c = new int[3];

 c[2] = b[2] - a[0];

 c += 2;
 std::cout << *c << std::endl;

 // should have done:
 // c -= 2
 // delete [] c;
 return 0;
}

1472

20

We now demonstrate the other way
of creating arrays, by using the
'new' operator

903

Arrays in Action (5)

 a

 b c
#include <iostream>

int main()
{
 int a[3];

 a[0] = 2;
 a[1] = 7;
 a[2] = a[0] * a[1];

 int *b = a;

 int *c = new int[3];

 c[2] = b[2] - a[0];

 c += 2;
 std::cout << *c << std::endl;

 // should have done:
 // c -= 2
 // delete [] c;
 return 0;
}

1472

21

Again we fill the values in this new
array

Arrays in Action (6)

 a

 b c
#include <iostream>

int main()
{
 int a[3];

 a[0] = 2;
 a[1] = 7;
 a[2] = a[0] * a[1];

 int *b = a;

 int *c = new int[3];

 c[2] = b[2] - a[0];

 c += 2;
 std::cout << *c << std::endl;

 // should have done:
 // c -= 2
 // delete [] c;
 return 0;
}

9031472 12

22

As can be done with pointers, if we
increment the variable, we are
incrementing the pointer, not the
value pointed to

Arrays in Action (7)

 a

 b c#include <iostream>

int main()
{
 int a[3];

 a[0] = 2;
 a[1] = 7;
 a[2] = a[0] * a[1];

 int *b = a;

 int *c = new int[3];

 c[2] = b[2] - a[0];

 c += 2;
 std::cout << *c << std::endl;

 // should have done:
 // c -= 2
 // delete [] c;
 return 0;
}

9031472 12

23

Finally, after we go out of scope, we
can see that because we didn't
delete the 'new'd array, it's still
present but the hard-coded array
has been deleted.

Arrays in Action (8)

#include <iostream>

int main()
{
 int a[3];

 a[0] = 2;
 a[1] = 7;
 a[2] = a[0] * a[1];

 int *b = a;

 int *c = new int[3];

 c[2] = b[2] - a[0];

 c += 2;
 std::cout << *c << std::endl;

 // should have done:
 // c -= 2
 // delete [] c;
 return 0;
}

903 121472

24

Allocating Memory in Functions

#include <iostream>

void myfunc(int sz, int flag)
{
 // create an array
 int *arr = new int[sz];

 // do things depending on the flag
 if (flag == 0)
 {
 std:cout << "flag was 0" << std::endl;
 delete [] arr;
 return;
 }
 else if (flag == 1)
 {
 std:cout << "flag was 1 " << std::endl;
 delete [] arr;
 return;
 }

 delete [] arr;
}

Initialise an array based
on an integer

Must remember to delete the
array before each return

statement

Must also delete the
array before going out of

scope

25

Allocating Memory in Classes

class DynamicArray {

public:
 DynamicArray(int sz)
 {
 // Initialise the arr_ member
 arr_ = new int[sz];
 }

 ~DynamicArray()
 {
 // Must remember to delete everything
 // that has been initialised
 delete [] arr_;
 }

private:
 int *arr_ = nullptr;
};

Best to allocate any
memory in the constructor

and delete it in the
destructor

26

Drawbacks of Using C-Style Arrays

● As with raw pointers, there are several reasons why you shouldn't use
C-Style arrays:

➔ They are of fixed size unless being allocated with 'new'
➔ If allocated with 'new', must remember to 'delete' them
➔ Not as flexible or powerful as containers
➔ No protection for the array pointer changing
➔ No protection for going 'out of bounds' of the allocated memory
➔ You can't easily determine the size of an array

● And so, as before:

Only use C-Style arrays when you absolutely have to – C++ containers are
better in almost every practical way!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

