
Special member functions
Tom Latham

1

Reminder: Compiler-provided special member functions

• Last week we encountered some "special member functions" of classes that handle resource management and
are called:
• Copy constructor
• Move constructor
• Copy assignment operator
• Move assignment operator
• Destructor

• If you do not specify them, the compiler creates them for you

• In the majority of cases the compiler-provided versions will work perfectly well, which is why we had not had to
know about them up to then!

• We mentioned the “rule of all or nothing”. For more details see:

http://en.cppreference.com/w/cpp/language/rule_of_three

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-zero

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-five

And links therein.

2

http://en.cppreference.com/w/cpp/language/rule_of_three
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines

So what’s the problem?

• Last week we just needed to explicitly tell the compiler that we were happy with the
implementation that it provided by writing in the function declarations and adding
“= default” at the end

• But what implementation does the compiler provide?

• And under what circumstances might one need to write your own implementation?

• Let’s look at these questions with the help of some illustrative code:

https://github.com/cpp-pg-mpags/SpecialMemberFunctions

Please clone this repo (if you haven’t already done so from looking at the Containers
Overview slides) and we’ll take a look at it together…

3

https://github.com/cpp-pg-mpags/SpecialMemberFunctions

What does the compiler provide?

• The compiler-provided destructor does nothing

• The compiler-provided copy constructor and copy-assignment operator make a copy of
each data member, i.e. for built-in types (including raw pointers) their values are copied,
and for class types their copy constructor or copy-assignment operator are invoked

• Similarly, the move constructor and move-assignment operator will move each data
member, i.e. for built-in types (including raw pointers) their values will be copied, and for
class types their move constructor or move-assignment operator are invoked

• As you can see from the code in the master branch, this is all fine for our MyArray type
where the underlying storage is statically sized

• Checkout the ImplementDefaultsWithPrintout branch to see my guess as to how they are
probably implemented (with some added printout)

4

What if I don’t want my object to be copied (or moved)?

• This can be achieved rather easily in modern C++

• Check out the DeleteCopyAndMove branch and take a look at MyArray.hpp

• In a similar way as we did for the Cipher class last week to explicitly request
the compiler-default versions, we can just write the function declarations in
the header file and add “= delete” to the end to explicitly remove any of
these copy/move constructors/assignment operators

• NB you can prevent copying (by using “= delete”) but still allow moving (by
using “= default”) if that makes sense for your object

5

When do I need to write my own?

• These default implementations can become problematic if your class has a data member
that points to some resource that is either completely external or is dynamically allocated by
the class

• This could be a database or file handle or a dynamically allocated object (in our illustrative
case it is a dynamically allocated array)

• When copying, there is a choice to be made as to whether the new object should point to
the same resource as the old one (so-called shallow copy where only the pointer is copied)
or whether the resource being pointed to should also be copied (so-called deep copy)

6

When do I need to write my own?

• These default implementations can become problematic if your class has a data member
that points to some resource that is either completely external or is dynamically allocated by
the class

• This could be a database or file handle or a dynamically allocated object (in our illustrative
case it is a dynamically allocated array)

• When copying, there is a choice to be made as to whether the new object should point to
the same resource as the old one (so-called shallow copy where only the pointer is copied)
or whether the resource being pointed to should also be copied (so-called deep copy)

7

MyClass

Resource

MyClass
(copy)

“Shallow Copy”

When do I need to write my own?

• These default implementations can become problematic if your class has a data member
that points to some resource that is either completely external or is dynamically allocated by
the class

• This could be a database or file handle or a dynamically allocated object (in our illustrative
case it is a dynamically allocated array)

• When copying, there is a choice to be made as to whether the new object should point to
the same resource as the old one (so-called shallow copy where only the pointer is copied)
or whether the resource being pointed to should also be copied (so-called deep copy)

8

MyClass

Resource

MyClass
(copy)

Resource
(copy)“Deep Copy”

When do I need to write my own?

• If you’re using raw pointers then the compiler-default copying mechanism will give
you the shallow-copy behaviour, which throws up serious questions about
ownership and hence potential memory leaks or segmentation faults

• If you want deep-copy behaviour you must write your own copying functions and
you must also implement a destructor to free the resource

• Regardless of which behaviour you want, it is best to use smart pointers to both
simplify the code and clarify ownership

• For a shared resource, accessed with a shared_ptr data member, the compiler-
provided shallow-copy behaviour is OK – much easier!

• But if you want deep-copy behaviour, or it is enforced using unique_ptr, you will
have to write your own copying operations – NB unique_ptr has no copying
operations itself by definition – it’s unique!

• Check out the DynamicStorageWithDefaults branch to see this issue

• Finally, check out the DynamicStorage branch to see the custom functions

9

Move semantics
Tom Latham

10

Move semantics

• Move semantics were introduced in C++11 to make certain operations more
efficient when the object on the right-hand side of the operation is "expiring"
(e.g. is a temporary object), termed an xval

• Essentially, where a copy operation would make a copy of all the dynamically
allocated resources of an object, a move operation will "steal" those
resources by copying the pointer to them and resetting the pointer in the
original object so that it no longer points to them

• Since the original object is expiring this is fine since it no longer needs them

11

MyClass

Resource“Move”

Move semantics

• Move semantics were introduced in C++11 to make certain operations more
efficient when the object on the right-hand side of the operation is "expiring"
(e.g. is a temporary object), termed an xval

• Essentially, where a copy operation would make a copy of all the dynamically
allocated resources of an object, a move operation will "steal" those
resources by copying the pointer to them and resetting the pointer in the
original object so that it no longer points to them

• Since the original object is expiring this is fine since it no longer needs them

12

MyClass

Resource

MyClass
(moved)

“Move”

Move semantics

• Move operations should be invoked automatically when the right-hand object is
temporary, e.g. the return from a function

• It is possible to explicitly indicate that an object can be "moved from" using the
std::move utility function:

• Different operations will take place to construct the object in the vector for the two
push_back calls above

• A copy in the first case and a move in the second

• The state of mystr after it has been moved from is “valid but unspecified”

13

std::string mystr {"Hello"};

std::vector<std::string> myvec;
myvec.push_back(mystr);
myvec.push_back(std::move(mystr));

Where could we have used this in mpags-cipher?

• In a few places we make copies of strings, potentially some of these could be
replaced by moves, or at least we could allow that option

• The input text argument to the applyCipher function is a good example

• At present it is an lvalue reference to a const std::string object but in one of
the ciphers it is immediately copied into a local variable in the function and in the
other two it is gradually copied (and the code could easily be rewritten to
accommodate an immediate copy and then gradual modification)

• By overloading the applyCipher function, to additionally provide a version that
takes an rvalue reference, we allow the caller to optionally do a move instead, which
could be much more efficient if the text to be processed is very long

• See the 6.6 tag of
https://github.com/MPAGS-CPP-2023/MPAGS-Code.git

14

https://github.com/MPAGS-CPP-2023/MPAGS-Code.git

Operator overloading
Tom Latham

15

Operator overloading

• The copy- and move-assignment operators are provided to allow you to
perform assignment operations for your user-defined types in the same way
as you do for the built-in types, i.e. using the = sign

• This is an example of operator overloading

• Built-in types in C++ also know how to perform mathematical operations:
addition, subtraction, multiplication, division, etc.

• They can also be printed with std::cout <<

• More complex types can do more, like std::vector and its subscript[] operator

16

Operator overloading

• As with assignment, we can provide this functionality for our own types by
providing specially named functions, either as members of our class or as
free functions that take our class as an argument

• When the compiler encounters a line of code such as:

std::cout << employee << std::endl;

• It will look for a function called operator<< that takes a std::ostream&
and an Employee as arguments

17

Stream operator

• We define the overload function like any other

• Similarly you can overload other operators, see:
http://en.cppreference.com/w/cpp/language/operators

• Only overload those that make sense and are unambiguous!

• Employee % Employee doesn't mean anything!

std::ostream& operator<<(std::ostream& os, const Employee& employee)
{

os << " Name: " << employee.name() << std::endl;
os << "Salary: " << employee.salary() << std::endl;
return os; //Return the ostream object we were passed

}

18

http://en.cppreference.com/w/cpp/language/operators

