
Concurrent Programming in C++11

Mark Slater (based on slides by Ben Morgan)

1

Concurrency
• Can no longer rely on processor clock speed for

increasing computational throughput - instead, try to
split tasks across N>1 parallel “things”

• There are several levels of parallelism

• SIMD or “vectorization” (on chip)

• Multithread/Multicore (single machine)

• Multiprocessor (multiple machine)

2

Concurrency in Action (1)
• Concurrency is a fundamental part of modern

computing

• Modern OSs use it extensively to allow users (and itself)
to perform multiple tasks at the same time

• Having several windows open on a desktop is a very
obvious form of this concurrency

3

Concurrency in Action (2)
• Individual programs can also take advantage of the

concurrency offered by the underlying OS, e.g. Web
browsers:

• You download a file - this happens in a separate thread.

• Means you can continue browsing while the file
downloads in the background.

• The browser may download updates for itself in the
background (Chrome for example)

• Multiple tabs can have web scripts/services running and
updating at the same time 4

Modern PCs and Threading
• You aren’t restricted to having the number of threads =

number of cores

• The operating system will take care of scheduling the
waiting tasks across the CPU cores available

• The majority of threads don’t use CPU most of the time
– they are waiting for input, disk access, network, etc.

• During these ‘sleep’ times, the OS can give CPU time
to other threads to continue their tasks

5

Concurrency in C++11
• Prior to C++11, concurrent programming relied on the

underlying OS implementation (pthreads on UNIX,
CreateThread on Windows)

• C++11 introduced the thread support library which
provides a cross-platform API hiding the underlying
implementation.

• Provides all of the main abstractions of multithreading
in a series of headers:

• http://en.cppreference.com/w/cpp/thread
6

http://en.cppreference.com/w/cpp/thread

std::async and std::future
• C++11 provides both high and low level thread

creation/management interfaces (cf new/delete vs
make_shared/make_unique for memory)

• We’ll only look at the high level interface:

• std::async : Takes a function that will be run
asynchronously, returns a std::future instance
that will hold the result of the function call.

• std::future : Wraps result of an asynchronous
operation. Provides interface to query, wait for or get
result of the operation.

7

Basic Threading Example
int main(int, char **) {

auto fn = [] () {std::cout << ”[thread] Wait for it…\n”;
std::this_thread::sleep_for(std::chrono::seconds(10));
std::cout << “[thread] Done!\n”;
return 8;

};

// Start up a thread
auto future1 = std::async(std::launch::async, fn);

// wait a bit
std::this_thread::sleep_for(std::chrono::seconds(2));

// start another one
auto future2 = std::async(fn);

// wait for the second to finish
std::future_status status{std::future_status::ready};
do {

status = future2.wait_for(std::chrono::seconds(1));
if (status == std::future_status::timeout) {

std::cout << "[main] waiting...\n";
} else if (status == std::future_status::ready) {

std::cout << "[main] finally, an answer!\n";
}

} while (status != std::future_status::ready);

std::cout << ”Answer is: " << future2.get() <<"\n";
}

It is useful to use the ‘chrono’ header
and functions for specifying timeouts

Create and start a new thread that will
run the given function to completion.

This returns a ‘future’ that can be
queried for the status and result

The sleep_for function is very useful if
you know a thread won’t need to do

anything for a while.

Use ‘wait_for’ on a future to wait for it
to complete or the timeout occurs

‘get’ will return the result of the function run
in the thread when available 8

Making MPAGS Cipher Multithreaded
• A possible use of multithreading is when processing a very large file

• The input text could be split up into ‘chunks’ which could all be processed
independently using threads

• There are a few things to consider:

1. You will need to construct strings for each thread to run on

2. You only need one cipher object as the applyCipher function is const
and already thread-safe

3. You will need to keep track of several threads and so will need to store the
futures in a vector

4. Your main code will need to wait until all threads have returned a result
and then concatenate them together

9

Exercise 5: adding threading to MPAGSCipher

• To implement the multithreading in MPAGSCipher, work through the following:

1. You’ll need to include the ‘future’ header as well as the ‘thread’ header

2. You’ll need to link against the threading library:

3. Loop over the number of threads you want to use (should be configurable but
don’t worry about that now!)

4. For each iteration, take the next chunk from the input string

5. Start a new thread to run a lambda function that calls the ‘applyCipher’
function on the constructed Cipher object

6. Loop over the futures and wait until they are all completed

7. Get the results from them and assemble the final string

find_package(Threads)
add_executable(mpags-cipher mpags-cipher.cpp)
target_link_libraries(mpags-cipher PRIVATE MPAGSCipher Threads::Threads)

Exercise 5: adding threading to MPAGSCipher – Some Notes!

• To get a substring from a string, use the string.substr function – just make sure you’re
covering the whole string!

• When creating the threads and getting the futures, you’ll need to push them directly onto a
vector:

std::vector< std::future< std::string > > futures;
futures.push_back(std::async(std::launch::async, <FN>, arg1, arg2, …));

• Though you could create a separate function to apply the cipher, a lambda (using variable
capture) is a lot easier. Be careful about passing any local/changing variables by reference!

• Use a range based for loop to go over the futures vector and the wait_for function to
check the status

• After all have finished, use the get() method to put all the output strings together

Traps and Pitfalls
• Concurrent programming requires more thought

because data (Objects) can be shared between threads

• For example, what happens if two threads try to add
data into the same std::vector instance at the same
time? Locking and Mutex’s are useful here.

• Since computations may be performed out of
sequence, synchronisation may be needed.

• The good news is that designing code for concurrency
generally results in cleaner and more coherent code!

12

https://github.com/mpag
s-cpp/mpags-cpp-extra

13

https://github.com/mpags-cpp/mpags-cpp-extra

Further Reading

• For C++, a good
reference is Anthony
Wiliams’ book:

• For more general guides
to structuring concurrent
algorithms:

14

