Unit Testing mpags-cipher with Catch and CMake

* Mark Slater (based on slides from Ben Morgan)

THE UNIVERSITY OF UNIVERSITYOF

WA]QN/IC K BIRMINGHAM

Developer
Workflow

/\Build and Test

|4
: : $ cmake ../mpags-cipher.git && make
git add/commit § /mpags-cipher

“Add CMake
build” /)

Edit Sources
Add Files

Why Test At All?

* “I'm a scientist, show me a plot, I'll
know if it’s right or not”

* How do you know?

* The code changed, then the plot
changed - is it still right?

* Again, how do you know?

* If you know, then by definition there’s
a metric to measure “rightness’, and
thus something an (unbiased)
computer can measure!

SCIENTIFIC PUBLISHING

A Scientist’s Nightmare: Softwar
Problem Leads to Five Retraction

Until recently, Geoffrey Chang’s career wason 2001 Science paper, which described th
a trajectory most young scientists only dream ture ofa protein called MsbA, 1solated 1
about. In 1999, at the age of 28, the protein bacterium Escherichia coli. MsbA belc
crystallographer landed a faculty position at ~ huge and ancient family of molecules
the prestigious Scripps Research Institute in ~ energy from adenosine triphosphate t
San Diego, California. The next year, in a cer- port molecules across cell membrane:
emony at the White House, Chang received a so-called ABC transporters perforr

Presidential Early Career Award
for Scientists and Engineers, the
country’s highest honor for young
researchers. His lab generated a
stream of high-profile papers
detailing the molecular structures
of important proteins embedded in
cell membranes.

Then the dream turned into a
nightmare. In September, Swiss
researchers published a paper in
Nature that cast serious doubt on a
protein structure Chang’s group
had described in a 2001 Science
paper. When he investigated,
Chang was horrified to discover
that a homemade data-analysis pro-
gram had flipped two columns of
data, inverting the electron-density
map from which his team had
derived the final protein structure.
Unfortunately, his group had used

Flipping fiasco. The structures of MsbA (purple) and Sa
little (left) until MsbA is inverted (right).

Unit Testing

* We now have several “units” in mpags-cipher: command line parsing, input preprocessing and
the Caesar Cipher.

* Unit Testing simply means writing a small program that exercises a given “unit” by providing a
series of known inputs and checking the outputs are as required for that input. The tests pass,
i.e. the program runs successfully, if the outputs are as required.

* Whilst we can write these programs ourselves, it's more usual to use a Unit Testing Framework
that provides functions and objects specialised for this task. This allows us to concentrate on
the contents of the tests.

* Another reason is to ensure the tests themselves are correct!

Catch.hpp

* We've chosen the Catch unit testing
framework for this course purely for
simplicity

* Others include gtest, Boost,
CPPUnit

* It comes as a single header which
we ve supplied for you under the
Testing subdirectory of mpags-cipher

* See its GitHub page for further info
and documentation:

https.//github.com/catchorg/Catch2

Unit Testing Regressions

* Tests can also help us to fix bugs and to quickly spot if they reoccur.

* Imagine a user of your software reports a problem - the ciphertext they are getting is not as
expected when they encrypt “helloworld”

To help identify and resolve the issue, you write a test that reproduces the bug to provide a
starting point. Other tests may be written as you diagnose and resolve the bug.

This “bug test” is kept and run as part of testing in the future in case further changes cause it
to reappear (i.e. cause a regression)

Testing Resources

Naturally a huge topic and not C++
specific.

* A good and compact starting point is
the Kent Beck book on the right

* Though the examples are in Java, the
process and ideas are applicable to C+
+ and other languages

* The Addison-Wesley Signature Series
provides many other useful titles on
testing topics

TEST-DRIVEN
DEVELOPMENT

<8 BE
A
P

https://www.pearsonhighered.com/educator/series/AddisonWesley-Signature-Series/10031.page

Walkthrough: Testing mpags-cipher with Catch
and CMake

* In the following walkthrough, we'll prepare mpags-cipher for unit testing and write the first
few tests for it.

* We'll start by splitting the build of mpags-cipher into a library of functions that is linked to the
actual mpags-cipher executable. This will allow us to test the functions easily without multiple
recompilations.

* With the library in place, we'll use CMake and its CTest system to add a very basic test
program. We'll see how building and running the test integrates with our workflow

* Finally, we'll use Catch to write our first true unit test and see how to build and run it under
CMake/CTest.

Table Of Contents Command-Line Tools

Command-Line Tools

Interactive Dialogs e cmake(1)
Reference Manuals o ctest(1)
Release Notes

Index and Search * cpack(1)

N i . .
s Interactive Dialogs

This Page o cmake-gui(1)
Show Source » ccmake(1)

Quick search

Reference Manuals

cmake-buildsystem(7)
cmake-commands(7)
cmake-compile-features(7) -

Enter search terms or a module,
class or function name.

cmake-generator-expressions(7)

cmake-generators(7)
cmake-language(7)
crmake-modules(7)
cmake-packages(7)
cmake-policies(7)
cmake-properties(7)
cmake-qt(7)
cmake-toolchains(7)
cmake-variables(7)

® & & & 5 8 B 8 8 8 8 8

ACMake

/ catc

Tools you'll need

How to Test mpags-cipher?

Though we have units we'd like to test in mpags-cipher, they are all compiled into a
monolithic executable, so we can't test them independently and in isolation.

We could build our test programs like we do for mpags-cipher, creating an executable
composed of the test code plus the unit of code, e.g. TransformChar.cpp, we want to test.

However, the unit may use other units, so we'd need to compile those and know that we need
to, plus we'd be be recompiling the same code for each executable it is used in.

Instead, we're going to bundle the units into a ready compiled block of binary code that many
executables can reuse - a Library.

10

Libraries in C++

[_] TransformChar.cpp J
mpags-cipher.cpp

CommandLine.cdp J

* Have already seen how an executable

is compiled and linked from multiple |

sources. Compile Compile
* AlLibrary is just an intermediate, but [e] TransformChar.o]

persistent, step that bundles compiled

CommandLine.c J
object files into a special file - the

library itself. Link

_ . [lIbMPAGSCipher.a j
* ALibrary can be linked to an

executable (and even other libraries) Link ‘
just as object files are.

[mpags-cipher.exe j

11

Advantages

* We can have as many executables as
we want linking to the library - as
needed for testing!

* Each executable uses the same library
code, so the code only needs to be
compiled once rather than individually
every executable.

* Apart from timesaving, this also
reduces the potential for errors caused
by compile differences

libMPAGSCipher.a

Link

testCommand.exe

testCaesar.exe]

N

(

[testinput.exe]

[mpags-cipher.exe j

12

Using a Library

No real difference to compiling all the
code together:

We #include headers from the
library declaring the interfaces we
want to use

Use of interfaces is identical

However, must link our executable to
the library to ensure it can use the
binary implementation of the
interfaces we've used.

o Mpags-cipher.

mpags-cipher.cpp[cpp]

1: Project Structure for Libraries

The project structure may now be becoming a bit clearer - the code that implements the actual functionality of
mpags-cipher is provided as a series of headers/sources under MPAGSCipher/. We'll use CMake to compile
this code into a library and link it to the mpags-cipher program.

Whilst we've only used a single CMake script, we'll now see how to split up the build into a top level script plus one
for building the library

root@cbf7622ddalc:$ tree -C

— CMakeLists.txt NOtes
— LICENSE

— CaesarCipher.cpp
— CaesarCipher.hpp
— CipherMode. hpp . : . . -
— ProcessCommandLine. cpp Again, this choice of structure is

— ProcessCommandLine.hpp

S Sy e arbitrary, but is a common

L— TransformChar. hpp

- —cipher. .
[READNE.md pattern used by projects.

L— catch.hpp

2 directories, 12 files
root@cbf7622ddalc:$ |

2: Addin% MPAGSCipher/ To The Build

We can add a subdirectory to a CMake build by using the add_subdirectory command. It takes the path to the
directory holding a further CMakeL.ists.txt script to be processed as its argument. If the path is relative, it is
taken to be relative to the directory holding the CMakeLists.txt in which add_subdirectory was called.

Use add_subdirectory to add the MPAGSCipher/ directory to the build. To confirm it works, try using the
CMake message command in MPAGSCipher/CMakelLists.txt

(CMAKE_CXX_EXTENSIONS) N Otes

(CMAKE_CXX_FLAGS "-Wall -Wextra -Werror —Wfatal-errors -Wshadow -pedantic")

(MPAGSCipher) We only have a single level of
subdirectories, but more can be
(mpags-cipher used if required.

mpags—cipher.cpp
MPAGSCipher/TransformChar.hpp
MPAGSCipher/TransformChar.cpp
MPAGSCipher/ProcessCommandLine.cpp
MPAGSCipher/ProcessCommandLine.hpp
MPAGSCipher/RunCaesarCipher.cpp
MPAGSCipher/RunCaesarCipher.hpp

)

(mpags—-cipher
PRIVATE MPAGSCipher
)

(mpags—cipher
PRIVATE cxx_auto_type cxx_range_for cxx_uniform_initialization

)

3: Building The MPAGSCipher Library

To build a library in CMake, we use its add_library command. This takes the name you want the library to have,
the type of library it should be and a space separated list of all the sources that need to be compiled to create the
library.

In MPAGSCipher/CMakelLists.txt, use add_library to build a library named MPAGSCipher. Use the
STATIC library type and list the sources that should be compiled to create the library. Take care to specify the
correct paths to the sources.

Library Types

d yl(MPAGSCipher STATIC
CipherMode. hpp
CaesarCipher.hpp
CaesarCipher.cpp

ProcessCommandLine.hpp There are two main types on

ProcessCommandLine.cpp

TransformChar. hpp library - static and shared. The

prenstomehar. cpe difference between these is that
static libraries have to be built
and linked into the executable
whereas shared libraries are
‘referenced’ and are shipped as
separate files. There are pros and
cons to both depending on the
situation but here, we will stick

with the simpler static library.

4: Adding Compile Features and Include Paths

Just as we did for the mpags-cipher executable, use target_compile_features and
target_include_directories to declare needed C++ features and header search paths for MPAGSCipher.
Both executables and libraries are “targets” in CMake parlance so we can use exactly the same command. This
time, declare the features and paths using the PUBLIC scope specifier. We do this because we will have mpags-
cipher as a client of the library, so it needs to know about these

(MPAGSCipher STATIC H I nts

CipherMode.hpp
CaesarCipher.hpp
CaesarCipher.cpp

ProcessCommandLine. hpp The path paSSEd to

ProcessCommandLine.cpp

TransformChar. hpp target_inCIUde_direCtorieS
R S can use the CMake convenience
VEEL (S
CMAKE_CURRENT_LIST _
DIR. This has a value equal to

) rget ures (MPAGSCipher the absolute path to the
: PUBLIC cxx_auto_type cxx_range_for cxx_uniform_initialization directory hOldlng the CMake

script currently being processed.

. 2s|(MPAGSCipher
[puBLIC $4 '
)

5: What CMake Has Built

After adding compile features and include directories, try rebuilding and you should see it complete without error
(if not, resolve any errors until it does).

The output of our add_library call is a static library - a file named libMPAGSCipher.a which is located under
the MPAGSCipher subdirectory of the build directory. CMake outputs build products in the same directory

structure as used in the source project.

make -f MPAGSCipher/CMakeFiles/MPAGSCipher.dir/build.make MPAGSCipher/CMakeFiles/MPAGSCipher.d
ir/build

make[2]: Entering directory '/workspaces/mpags—-day-3—-drmarkwslater/build’

[66%]

cd /workspaces/mpags—day-3-drmarkwslater/build/MPAGSCipher && /usr/bin/c++ -I/workspaces/mpa
gs—day-3-drmarkwslater/src/MPAGSCipher -Wall -Wextra -Werror -Wfatal-errors -Wshadow -pedanti
¢ -std=c++11 -0 (MakeFile . pp.0 —¢ /workspaces/mpags—day-3—-drm
arkwslater/src/MPAGSCipher/ (cmd + click)

[77%]

cd /workspaces/mpags—day-3-drmarkwslater/build/MPAGSCipher && /usr/bin/c++ -I/workspaces/mpa
gs—day-3-drmarkwslater/src/MPAGSCipher -Wall -Wextra -Werror -Wfatal-errors -Wshadow -pedanti
¢ =-std=c++11 -0 (MakeFiles/MPAGSCipher.dir/ProcessCommandLine.cpp.0o —c /workspaces/mpags—day
-3-drmarkwslater/src/MPAGSCipher/ProcessCommandLine. cpp

[88%]

cd /workspaces/mpags—day-3-drmarkwslater/build/MPAGSCipher && /usr/bin/c++ -I/workspaces/mpa
gs—day-3-drmarkwslater/src/MPAGSCipher -Wall -Wextra -Werror -Wfatal-errors -Wshadow -pedanti
¢ -std=c++11 -0 (MakeFiles/MPAGSCipher.dir/TransformChar.cpp.o -c /workspaces/mpags—day-3-dr
markwslater/src/MPAGSCipher/TransformChar. cpp

[100%]

cd /workspaces/mpags—day-3-drmarkwslater/build/MPAGSCipher && /usr/bin/cmake -P CMakeFiles/MPA
GSCipher.dir/cmake_clean_target.cmake

cd /workspaces/mpags—day-3-drmarkwslater/build/MPAGSCipher && /usr/bin/cmake -E cmake_link_scr
ipt CMakeFiles/MPAGSCipher.dir/link.txt —--verbose=1

/usr/bin/ar qc 1ibMPAGSCipher.a CMakeFiles/MPAGSCipher.dir/CaesarCipher.cpp.o CMakeFiles/MPAG
SCipher.dir/ProcessCommandLine.cpp.o CMakeFiles/MPAGSCipher.dir/TransformChar.cpp.o
/usr/bin/ranlib 1ibMPAGSCipher.a

make[2]: Leaving directory '/workspaces/mpags-day-3-drmarkwslater/build’

[100%] Built target MPAGSCipher

make[1]: Leaving directory '/workspaces/mpags—day-3-drmarkwslater/build’

/usr/bin/cmake -E cmake_progress_start /workspaces/mpags—day-3-drmarkwslater/build/CMakeFiles
()

root@cbf7622ddalc:$ 1s MPAGSCipher/

CMakeFiles cmake_install.cmake 1ibMPAGSCipher.a Makefile

root@cbf7622ddalc: $

Library Names

The UNIX convention is to name
libraries ibNAME.EXT. NAME
is as you might guess, EXT is ‘a
for static libraries, but ‘so’ for
shared libraries, except on OS X
where ‘dylib’ is used.

On Windows, NAME .EXT is
used, with EXT being ‘dll’ for
shared libraries, and "lib" for
static/import libraries.

6: Using The MPAGSCipher Library

As things stand, we're still compiling all sources under MPAGSCipher twice - once for the mpags-cipher executable
and once for the MPAGSCipher library. With the latter now built, we can remove its sources from the
add_executable call for mpags-cipher and instead link mpags-cipher to the MPAGSCipher library.

In CMake, we link a target to libraries using the target_link_libraries command, and we'll see how to use this
next

(CMAKE_CXX_EXTENSIONS)
Notes

(CMAKE_CXX_FLAGS "-Wall -Wextra -Werror -Wfatal-errors -Wshadow -pedantic")

There are occasional use cases

(MPAGSCipher)
where you may need to compile

e the same file more than once.

mpags—cipher.cpp
MPAGSCipher/TransformChar.hpp

MPAGSCipher/TransformChar.cpp ; .
MPAGSCipher/ProcessCommandLine. cpp CMake W|ll handle th|5 aS WeE

MPAGSCipher/ProcessCommandLine.hpp have seen, but IN general the use

MPAGSCipher/RunCaesarCipher.cpp .
MPAGSCipher/RunCaesarCipher.hpp cases are quite advanced.

)

(mpags—cipher
PRIVATE MPAGSCipher
)

(mpags—cipher
PRIVATE cxx_auto_type cxx_range_for cxx_uniform_initialization

)

/: Using target_link_libraries
The target_link_libraries command takes the name of the target requiring linking, a link scope specifier and a list
of targets to be linked to it.

In your top level CMakeLists.txt, build mpags-cipher from mpags-cipher.cpp only. Replace the calls to

target_compile_features and target_include_directories with a call to target_link_libraries that links
the mpags-cipher executable to the MPAGSCipher library using the PRIVATE scope specifier.

Notes

(VERSION 3.2)
(MPAGSCipher VERSION 0.1.0)

Why remove

target_compile_features
(CMAKE_VERBOSE_MAKEFILE ON) and

target_include_directories?
(CMAKE_CXX_EXTENSIONS OFF) See the next slide!

We've used the PRIVATE
scope specifier here as mpags-
cipher is the end point of the
build process. We don't link
anything to it. so nothing needs

(mpags—-cipher mpags—cipher.cpp) to know that it uses
(mpags—-cipher PRIVATE MPAGSCipher) MPAGSCIpher

(CMAKE_CXX_FLAGS "-Wall -Wextra -Werror —Wfatal-errors -Wshadow -pedantic")

(MPAGSCipher)]

8: Rebuilding mpags-cipher
After you've edited your CMake script for mpags-cipher, rebuild and note what happens.

You should find that compilation of mpags-cipher.cpp has all the correct flags, including -std=c++11 and the
include path. By specifying the compile features and include paths of MPAGSCipher as PUBLIC scope, we can
simply link to it and CMake will take care of setting required compile features and include paths for us! You'll also
see that the libMPAGSCipher.a file is added to the linking step as expected.

y-3-drmarkws later/src/MPAGSCipher/TransformChar.cpp

[66%]

cd /workspaces/mpags—-day-3-drmarkwslater/build/MPAGSCipher && /usr/bin/cmake -P CMakeFiles/M I\J
PAGSCipher.dir/cmake_clean_target.cmake Otes
cd /workspaces/mpags—day-3-drmarkwslater/build/MPAGSCipher && /usr/bin/cmake -E cmake_link_s
cript CMakeFiles/MPAGSCipher.dir/link.txt —-verbose=1

/usr/bin/ar qc 1ibMPAGSCipher.a C(MakeFiles/MPAGSCipher.dir/CaesarCipher.cpp.o CMakeFiles/MP
AGSCipher.dir/ProcessCommandLine.cpp.o CMakeFiles/MPAGSCipher.dir/TransformChar.cpp.o
/usr/bin/ranlib 1ibMPAGSCipher.a

make[2]: Leaving directory '/workspaces/mpags—-day-3-drmarkwslater/build’ We could add extra Compile
[66%] Built target MPAGSCipher

make —f CMakeFiles/mpags-cipher.dir/build.make CMakeFiles/mpags—cipher.dir/depend features and include paths to
make[2]: Entering directory '/workspaces/mpags—day-3—-drmarkwslater/build’

cd /workspaces/mpags—-day-3-drmarkwslater/build && /usr/bin/cmake —-E cmake_depends "Unix Make -C1 I

files" /workspaces/mpags—-day-3-drmarkwslater/src /workspaces/mpags—day-3—-drmarkwslater/src / mpags Clpher If we nEEd them

workspaces/mpags—day-3-drmarkwslater/build /workspaces/mpags—day-3—-drmarkwslater/build /work " I
spaces/mpags—day-3-drmarkwslater/build/CMakeFiles/mpags—-cipher.dir/DependInfo.cmake —-color= CMake WI”‘ Slmply merge them

make[2]: Leaving directory '/workspaces/mpags—day-3-drmarkwslater/build’ I I
make -f CMakeFiles/mpags—cipher.dir/build.make CMakeFiles/mpags—cipher.dir/build Wlth those Of any target llnkEd'
make[2]: Entering directory '/workspaces/mpags—day-3—-drmarkwslater/build’

[83%]

/usr/bin/c++ -I/workspaces/mpags—day-3—-drmarkwslater/src/MPAGSCipher -Wall -Wextra -Werro

r -Wfatal-errors —Wshadow -pedantic -std=c++11 -0 CMakeFiles/mpags—cipher.dir/mpags—cipher The library is treated by the
.Cpp.0 —c /workspaces/mpags—day-3—-drmarkwslater/src/mpags—cipher.cpp

[100%] I I I I
/usr/bin/cmake -E cmake_link_script CMakeFiles/mpags—-cipher.dir/link.txt —-verbose=1 llnker IUSt llke any Other ObIECt
/usr/bin/c++ -Wall -Wextra -Werror -Wfatal-errors -Wshadow -pedantic -rdynamic CMakeFiles/ I it 1 '
mpags—cipher.dir/mpags—cipher.cpp.o -0 mpags—cipher MPAGSCipher/1ibMPAGSCipher.a flle’ S0 It IS Slmply addEd asan
make[2]: Leaving directory '/workspaces/mpags—-day-3-drmarkwslater/build’ I " I

[100%] Built target mpags—cipher eXtra InPUt In the llnk Step'
make[1]: Leaving directory '/workspaces/mpags—day-3-drmarkwslater/build’

/usr/bin/cmake —-E cmake_progress_start /workspaces/mpags—day-3-drmarkwslater/build/CMakeFile

s @

root@cbf7622ddalc: $

9: Library Build Summary

In this first part, we've partitioned the build of mpags-cipher into an executable linked to a library, the latter
holding the major part of the implementation such as functions.

We've done this so we can use that implementation in several places, in this case we can now link that library to
other executables that'll test units of that implementation.

Use of a build system like CMake has made that partition easy.

— CaesarCipher.cpp.o
— ProcessCommandLine.cpp.o

L— TransformChar.cpp.o NOteS
— mpags—cipher.cpp.o
— progress.make
progress.marks

TargetDirectories.txt
L— cmake_install.cmake

— Makefile If you don't have a working build

— at this point, check with us!

— C(MakeDirectoryInformation.cmake

— build.make

— CaesarCipher.cpp.o

— cmake clean.cmake

— cmake_clean_target.cmake
— CXX.includecache

— DependInfo.cmake

— depend. internal

— depend.make

— flags.make

— link.txt

— ProcessCommandLine.cpp.o0
— progress.make

L— TransformChar.cpp.o

L— progress.marks
cmake_install.cmake
LibMPAGSCipher.a

Makefile

12 directories, 54 files
root@cbf7622ddalc:$

10: Project Structure for Testing

There are no hard and fast rules for where to store unit test code in a project. For clarity, it's usually best to store
the files in a subdirectory of the main project, and we'll do this in mpags-cipher with the Testing subdirectory.

As mentioned, this directory is already present in the root of the mpags-cipher source tree. Within this, create a
blank CMakelLists.txt file.

root@cbf7622ddalc:$ tree -C

CMakeLists.txt NOteS

— LICENSE

— CaesarCipher.cpp

— CaesarCipher.hpp

— CipherMode. hpp

— CMakeLists.txt . .
[ProcessComnandLine. cpp This structure is usually followed
— ProcessCommandLine.hpp

[e in other languages such as

L— TransformChar.hpp
— mpags-cipher.cpp Python
README.md

[catch.hpp . .
— CMakeLists. txt There’s nothing to stop test code

R S being alongside the code it's
testing. It can cause a little
confusion over what is
implementation and what is test
though, plus naming clashes
might occur.

11: Enabling Testing in CMake

CMake provides a basic structure for adding and running test programs as part of the generated build system using
its ctest program (you can find this alongside the cmake program).

To use this functionality, add a call to the enable_testing() command in your top level CMake script. Following
this, we also need to make CMake aware of the Testing subdirectory, so also recurse the build into this using
add_subdirectory as we did for the MPAGSCipher directory.

(VERSION 3.2)

(MPAGSCipher VERSION ©0.1.0) NOtes

The call to enable_testing()
(CMAKE_VERBOSE_MAKEFILE) mUSt be made in the tOp level
CMake script of the project, no
matter where the tests actually
are.

(CMAKE_CXX_EXTENSIONS)

(CMAKE_CXX_FLAGS "-Wall -Wextra -Werror -Wfatal-errors -Wshadow -pedantic")

(MPAGSCipher)

()
(Testing)

(mpags—cipher mpags—cipher.cpp)
(mpags—cipher PRIVATE MPAGSCipher)

12: Running Tests

Even though we don't have any tests implemented yet, we can check that everything’s set up correctly and see how
they'll be run.
Move back to your build directory and re-run cmake and/or make as needed. You should see that a new file

CTestTestfile.cmake has been created, and a new Make target test is available. Try “building” this with make
test and not much happens as we don't have any tests yet, but this is how we'll run the tests when we have them

root@cbf7622ddalc:$ 1ls ——color
CMakeCache.txt cmake_install.cmake Makefile

CTestTestfile.cmake mpags—cipher N t
root@cbf7622ddalc:$ make test O es

/usr/bin/ctest —-force-new-ctest-process

Test project /workspaces/mpags—day-3—drmarkwslater/build
No tests were found!!!

root@cbf7622ddalc:$ |j

A similar test target will also be
created in IDEs like Xcode.

This target simply runs the ctest
program, and you can see this by
running ctest directly in your
build directory. To get verbose
output, run ctest -V

13: Adding a New Test Program

To define a test in CMake, we first use add_executable to build the test program, then add_test to declare a
new test using this program as the command to run.

To start, write testHello.cpp in Testing with the basic “hello world” in C++. Use add_executable in Testing/
CMakelLists.txt to build a testHello program from it, then use add_test to make it the command of a test
named test-hello

#include <iostream>

Notes

main(){
std::cout << "Hello World!" << std::endl;

This extremely simple use of
add_testis all we'll need in this
course.

(testHello testHello.cpp) More advanced usage is enabled
IESEIGLLE testhello) via test properties. These include
things like maximum runtime
and dependencies between tests
(e.g. one generates a file used by
another).

14: Building and Running the Test Program

Test executables are built as part of the main build task, so simply rerun this (make in this case) to rebuild - of
course the executable should compile!

The tests are run either by “building” the test target, i.e. make test, or by running the ctest command directly.
Try both and note the differences. Try running ctest -VV to get more detailed reporting.

root@cbf7622ddalc:$ make test

/usr/bin/ctest —-force-new-ctest-process N Otes

Test project /workspaces/mpags—day-3—-drmarkwslater/build
Start 1: test-hello
1/1 Test #1: test-hello Passed 0.00 sec

100% tests passed, @ tests failed out of 1

. .) Note that make test will not
otal Test time (real) = 0.01 sec _ !
root@cbf7622ddalc:$ ctest rebuild the test executables if

Test project /workspaces/mpags—day-3—-drmarkwslater/build
Start 1: test-hello |
1/1 Test #1: test-hello Passed 0.00 sec they Change'

100% tests passed, @ tests failed out of 1

e e Generally, make test is best for
quick checks as you develop. Use
of ctest is best when you need
more detailed output or to run
individual tests to debug.

15: A First Catch-based Test Program

Open a file named testCatch.cpp in Testing/ and add two lines

#define CATCH_CONFIG_MAIN is a simple preprocessor define to tell Catch to provide a main() function
for us. This simplifies writing tests and will also provide several command line options for the resulting executable
(just like those we've been writing for mpags-cipher)

#include "catch.hpp" of course just includes the single Catch header

#define _ _
#iscgde *cakteh-hpp” NOtes

This provision of a main()
function by the testing
framework is quite common.

It helps to focus on the task of
writing tests, and allows the
executable to be provisioned
with extra functionality, like
command line arguments.

16: Building the Catch-based Test Program

Compile the testCatch.cpp file into a program named testCatch, using add_executable to build it, and
target_include_directories to ensure the Testing/ subdirectory is used to find the Catch.hpp header.

Use add_test to create a test named test-catch that runs the testCatch program.

Rerun make in the build directory, and check that it compiles correctly.

le(testHello testHello.cpp) NOtes

gl test-hello CI) testHello)

le(testCatch testCatch.cpp) ’ . .
| | (testCatch PRIVATE .) Don't worry if you find
st|(test-catch CO testCatch) Compilation Of your CatCh

program taking a while. The
header is large and complex, so
this is the small price we pay for
ease of use!

17: Running the Catch-based Test Program

As we did for the “hello world” test, once you have testCatch building correctly, try running it using make test
and ctest -VV.

Just like other programs, the actual executable is output to the build directory under Testing/testCatch. You can
also run this directly, so try this, passing it the --help command line flag. This, and the other listed arguments, are
supplied because we got Catch to create main().

Catch v2.10.2
usage:

testCatch [<test name|pattern|tags> ...

where options are:
-7, -h, ——help
-1, —-list-tests
-t, —-list-tags
-S, —-success

-b, —--break

-e, ——nothrow

-i, —-invisibles

-0, ——out <filename>
-r, ——reporter <name>

-n, —--name <name>
-a, ——abort

-x, —abortx <no. failures>
-w, —-warn <warning name>
-d, --durations <yes|no>
-f, ——input-file <filename>

-#, ——filenames-as-tags

-c, —-section <section name>

-v, —-verbosity <quiet|normal|high>
—1list-test—-names—only

—1list-reporters
—order <decl|lex|rand>

——rng-seed <'time'|number>

root@cbf7622ddalc:$ Testing/testCatch ——help

] options

display usage information

list all/matching test cases
list all/matching tags

include successful tests in
output

break into debugger on failure
skip exception tests

show invisibles (tabs, newlines)
output filename

reporter to use (defaults to
console)

suite name

abort at first failure

abort after x failures

enable warnings

show test durations

load test names to run from a
file

adds a tag for the filename
specify section to run

set output verbosity

list all/matching test cases
names only

list all reporters

test case order (defaults to
decl)

set a specific seed for random
numbers

Notes

If you want to pass arguments to
add_test, these can be listed
after the command itself, e.g.

add_test(test-catch
COMMAND
testCatch -s)

to run testCatch with the
argument to output passing and
failing tests

18: Test Cases and Assertions

As the “No tests ran” report of testCatch indicates, we haven't implemented any tests yet.

We'll add tests using Catch's TEST_CASE and REQUIRE macros - preprocessor “templates” that are
expanded at compile time. In this case, we don't need to worry about this too much and can write and treat them

as functions returning void (i.e. nothing)

TEST_CASE organises tests, whilst REQUIRE does the actual test - we supply it with a boolean expression

that should evaluate to true if the test passes

0

i

& GitHub, Inc.

Writing tests

Let's start with a really simple example. Say you have written a function to calculate factorials and now you want to test
it (let's leave aside TDD for now).

unsigned int Factorial(unsigned int number) {
return number <= 1 ? number : Factorial(number—-1)=*number;

}

To keep things simple we'll put everything in a single file (see later for more on how to structure your test files)

#define CATCH_CONFIG_MAIN // This tells Catch to provide a main() - only do this in one cpp file
#include "“catch.hpp"

unsigned int Factorial(unsigned int number) {
return number <= 1 ? number : Factorial(number-1)=*number;

}

TEST_CASE("Factorials are computed", "[factoriall™) {
REQUIRE(Factorial(1l));
REQUIRE({ Factorial(2)
REQUIRE(Factorial(3)
REQUIRE(Factorial(1@)
I

1
2
6

= }:
= 1:
== 36283800);

This will compile to a complete executable which responds to command line arguments. If you just run it with no
arguments it will execute all test cases (in this case there is just one), report any failures, report a summary of how many
tests passed and failed and return the number of failed tests (useful for if you just want a yes/ no answer to: "did it

wirrke "™

Macros vs Functions

Test and other frameworks use

macros when the user needs to
supply a long but well-defined

block of code in which only one
or two names (strings, digits,

typenames) may need to be
changed.

However, macro expansions can
be very difficult to debug, so
functions should be preferred if
possible!

19: Implementing Test Cases
To see how TEST_CASE and REQUIRE work, add the code as shown below to your testCatch.cpp file.

The arguments to TEST_CASE are strings describing the test and “tags” that may be used to group tests (we
won't cover these, see the Catch docs for further info).

Inside TEST_CASE, we add a boolean expression inside a REQUIRE call that asserts that the result of 1+1 is 2
(which should be truel!l)

#define ' . Notes

#include "catch.hpp"

("Addition works", "[math]l") {
{1+1=2}:

Catch provides several other
assertion macros. These can be

used for more advanced checks
such as comparison of floating
point numbers (not as easy as
you may think!) and exception
throwing.

See the reference docs:

https://github.com/catchorg/Ca

tch2/blob/devel/docs/assertion
s.md

https://github.com/catchorg/Catch2/blob/devel/docs/assertions.md
https://github.com/catchorg/Catch2/blob/devel/docs/assertions.md
https://github.com/catchorg/Catch2/blob/devel/docs/assertions.md

20: Running Test Cases

Save your testCatch.cpp file, rebuild using make, then run make test (note that you must run make first as
make test will only run the test program, not rebuild it).

The test should pass, and we can get more detailed info by running ctest -VV. Here, Catch tells us about how
many test cases and assertions have been run. You can also try running the testCatch program directly with the ‘-
s’ argument (or use this as an argument to testCatch in add_test) to see how REQUIRE was evaluated.

root@cbf7622ddalc:$ ctest -V
UpdateCTestConfiguration from :/workspaces/mpags—day-3—-drmarkwslater/build/DartConfiguration

tcl r\l 't
UpdateCTestConfiguration from :/workspaces/mpags—-day-3-drmarkwslater/build/DartConfiguration O eS
tcl

Test project /workspaces/mpags—day-3—drmarkwslater/build
Constructing a list of tests

Done constructing a list of tests

Updating test list for fixtures .
Added 0 tests to meet fixture requirements Generally WS]USt want to run
Checking test dependency graph...

Check:iLng test dependency graph end everything d Single test
test

Start 1: test-hello executable does. However, we

1: Test command: /workspaces/mpags—day-3—-drmarkwslater/build/Testing/testHello Could create one add test for
1: Test timeout computed to be: 10000000 —

1: Hello World! each test case. The testCatch
1/2 Test #1: test-hello Passed 0.00 sec

test 2 command would be run every

Start 2: test-catch . b . h
: Test command: /workspaces/mpags—day-3-drmarkwslater/build/Testing/testCatch tlme’ Ut Wlt il argument tO

2
2: Test timeout computed to be: 10000000 select the test case Catch’s
2! .
2
2
2

: All tests passed (1 assertion in 1 test case) “tags" to test cases could also be

}2 Test #2: test-catch Passed 0.01 sec used here

100% tests passed, @ tests failed out of 2

Total Test time (real) = 0.02 sec
root@cbf7622ddalc:$ [

21: Failing Tests

To see what happens when tests fail, add an extra TEST_CASE for subtraction to testCatch.cpp, and add a
REQUIRE using an expression you know will fail (e.g. 1-1 == 1)

The testCatch program will still compile, but when you run make test, you should see a failure reported. Run
ctest -VV to get detailed output, and you'll see Catch has told us which tests failed, and exactly which bit of code
caused the failure.

test 2
Start 2: test-catch

: Test command: /workspaces/mpags—day-3-drmarkwslater/build/Testing/testCatch NOteS
: Test timeout computed to be: 10000000

: testCatch is a Catch v2.10.2 host application.
: Run with -? for options

This output from Catch should

: Subtraction works give you everything you need to
: /workspaces/mpags—day-3—-drmarkwslater/src/Testing/testCatch.cpp:9 Start looking for the problem in
the code.

: /workspaces/mpags—day-3—-drmarkwslater/src/Testing/testCatch.cpp:10: FAILED:
REQUIRE(1 - 1 ==1)

: with expansion:

0 ==1

As noted earlier, we'll generally

: test cases: 2 | 1 passed | 1 failed run make test with every rebuild,

: assertions: 2 | 1 passed | 1 failed

2:/2 Test #2: test-catch *xxxFailed 0.01 sec and then Use CteSt _VV When
we have failing tests to get this

extra information.

2
2
2:
2:
2
2
2:
2:
2
2:
2
2:
2:
2
2:
2
2:
2:
2:
2
2
2

50% tests passed, 1 tests failed out of 2
Total Test time (real) = 0.03 sec

The following tests FAILED:

2 - test-catch (Failed)
Errors while running CTest
root@cbf7622ddalc: $

22: Testing MPAGSCipher with Catch

Before starting to write unit tests for MPAGSCipher, it's worth spending a little time thinking about how to structure
them and what to test. The “unit” in unit testing means that ideally we should have one test program per interface
(i.e. header file). In that program, test cases can be organised by task or area - for ciphers we might have one test
case for encryption, one for decryption. For what to test, we can use our requirements as a starting point and
sketch these in as failing tests. We then work through implementing them, from simplest to most complex

#define - Notes

#include "catch.hpp"

#include "TransformChar.hpp"

Why write failing tests? It's a
(false); note to ourselves that we need a
test here, so it failing is a good
E("Digits are transliterated”, "[alphanumeric]") { marker of “needs fixing". This

SE("Characters are uppercased", "[alphanumeric]") {

();
also means we can concentrate

on one test at a time.

SE("Special characters are removed", "[punctuation]l") {

();

This is a slightly less upfront
version of Test Driven
Development - writing tests first
and then writing the
functionality afterwards to make
the tests pass

23: Writing MPAGSCipher Tests

To use, and hence test, MPAGSCipher functions/objects with Catch, we simply #include the relevant header after
setting up Catch.

The functions/objects can then be used in test cases and assertions just as they were in other code.

#defi
#isciBZe “catch. hpp"” NOtes

#include "TransformChar.hpp"

("Characters are uppercased', "[alphanumeric]") {

std::string upper{"ABCDEFGHLIKLMNOPORSTUVWXYZ"}; If you need additional headers,
std::string lower{"abcdefghijklmnopqrstuvwxyz"}; e_g_ for C'H' Standard Library to
for (size t i = 0; i < upper.size(); i++) assist in the testing, these can
. also be included.

(transformChar(lower([i]) == std::string{upperl[il});

s

'Digits are transliterated", "[alphanumeric]") {
transformChar('0') == "ZER0");
transformChar('1') == "ONE");
transformChar('2') == "TW0");
transformChar('3') == "THREE"
transformChar('4') == "FOUR")
transformChar('5') == "FIVE")

) H

)

)

)

);
transformChar("' == "SIX")
transformChar("' == "SEVEN"

transformChar("'
transformChar('

— — — — p— p— — p— p— p— p—
O 00 ~Jd O U A W N =

)i
== "EIGHT");
== "NINE");

24: Building MPAGSCipher Tests

To build the testing program, we build it in CMake just as we did for the basic testCatch program, but in this case
we also need to use target_link_libraries to link it to the MPAGSCipher library.

Try building and running your basic MPAGSCipher test program (start with one to begin with) ensuring it can use
the relevant MPAGSCipher header and is linked correctly to the static library

Notes

(testHello testHello.cpp)
test-hello testHello)

(testCatch testCatch.cpp) NOW We se€ the advantage Of
(testCatch PRIVATE using the library. In the example
test-catch testCatch) - .
on the left, without the library,
we would have had to compile
(testTransformChar testTransformChar.cpp) :
(testCatch PRIVATE transformChar.cpp again for
(testTransformChar MPAGSCipher) the test program

test-transformchar testTransformChar)

We'll see how to reduce the
amount of CMake commands in
an upcoming slide

25: Simplifying use of Catch.hpp

As further test programs are added, target_include_directories will need to be set for each one so that
Catch.hpp is found. We can simplify this through a CMake construct known as an “interface library " This is a
“library” with no compiled sources (i.e. has headers only, like Catch or the Eigen Linear Algebra library) but which
can have properties like include directories. Users of the library simply “link” to it using target_link_libraries to
pick up, here, include directories just like they would when linking to a binary library like MPAGSCipher.

Try This

(testHello testHello.cpp)
test-hello testHello)

Use

(Catch INTERFACE)
(Catch INTERFACE

(Catch INTERFACE cxx_noexcept) add_|ibrary(Catch
INTERFACE)

(testCatch testCatch.cpp)
(testCatch Catch)

test-catch testCatch) . . .
and set its include directories

(testTransformChar testTransformChar.cpp) USIng the INTERFACE SCOpe
(testTransformChar MPAGSCipher Catch) SO that your test executables can
test-transformchar testTransformCharﬂ
just link to it to pick up

Catch.hpp correctly.

26: Adding Further Test Cases and Tests

We've covered the basics of writing tests using Catch, building them with CMake and running with CTest.

Review these and your code and think about other test cases and tests the functions and now classes might need. If
you identify one, implement the test and see what happens!

root@cbf7622ddalc:$ tree Testing/ —C

— catch.hpp N t

— (MakeLists.txt O eS
— testCatch.cpp
— testHello.cpp

L— testTransformChar.cpp

@ directories, 5 files

root@chf7622ddalc:$ J Generally, it's easiest to have one
test executable per unit of
functionality (e.g. one test
executable for each header).
Each executable can have as
many test cases as needed.

27: Walkthrough Summary

We've partitioned the build of mpags-cipher into a main program linked to a static implementation library. This has
enabled both a simplification of the CMake scripts and set up the implementation to be tested easily by creating

test executables that link to the library.

Unit testing has been introduced using the simple Catch framework. We've seen how test programs can be
implemented using Catch, built with CMake and run using CTest. Test outputs have been reviewed to see how

success and failure cases are reported.

root@cbf7622ddalc:$ make test

/usr/bin/ctest ——force-new-ctest—process

Start 1: test-hello

1/3 Test #1: test-hello sevivnnnnnnnnnsnnnnnnns
Start 2: test-catch

2/3 Test #2: test-catchccviiiinninnnnnnnns
Start 3: test-transformchar

3/3 Test #3: test-transformcharcvuu...

100% tests passed, @ tests failed out of 3

Total Test time (real) = 0.04 sec
root@cbf7622ddalc:$ |

Test project /workspaces/mpags—day-3—-drmarkwslater/build

0.00 sec

0.01 sec

0.01 sec

Further Reading

yA...'I_. & @MZ@

CMake Documentation

Catch Documentation

Writing tests

Homework: Adding Tests for MPAGSCipher Classes

* As you work through your code, determine suitable unit tests for the functionality of each
part.

* Implement these tests using Catch, TEST_CASE and REQUIRE as needed. Also look at
Catch's SECTION macro as this could help with the Caesar Cipher testing:

— https://github.com/catchorg/Catch2/blob/devel/docs/tutorial.md

* Build the tests with CMake and ensure they compile and then pass without failure.

41

https://github.com/catchorg/Catch2/blob/devel/docs/tutorial.md

	Slide 1
	Slide 2
	Why Test At All?
	Unit Testing
	Catch.hpp
	Unit Testing Regressions
	Testing Resources
	Walkthrough: Testing mpags-cipher with Catch and CMake
	Slide 9
	How to Test mpags-cipher?
	Libraries in C++
	Advantages
	Using a Library
	1: Project Structure for Libraries
	2: Adding MPAGSCipher/ To The Build
	3: Building The MPAGSCipher Library
	5: Adding Compile Features and Include Paths
	6: What CMake Has Built
	7: Using The MPAGSCipher Library
	8: Using target_link_libraries
	9: Rebuilding mpags-cipher
	10: Library Build Summary
	11: Project Structure for Testing
	12: Enabling Testing in CMake
	13: Running Tests
	14: Adding a New Test Program
	15: Building and Running the Test Program
	16: A First Catch-based Test Program
	17: Building the Catch-based Test Program
	18: Running the Catch-based Test Program
	19: Test Cases and Assertions
	20: Implementing Test Cases
	21: Running Test Cases
	22: Failing Tests
	23: Testing MPAGSCipher with Catch
	24: Writing MPAGSCipher Tests
	25: Building MPAGSCipher Tests
	26: Simplifying use of Catch.hpp
	27: Adding Further Test Cases and Tests
	28: Walkthrough Summary
	Homework: Adding Tests for MPAGSCipher Classes

