IIIIIIIIIIIIIIIIIIIIII

Doxygen

Tom Latham

Documentation

. Documentation is just as important as the code itself

. Without docs, you wouldn't know how to use a library:
cppreference.com or the Boost docs are essential

. You should make sure you always document your code
for external use (or just to remind yourself in 6 months!)

. A standard syntax exists called Doxygen

Doxygen syntax

. Doxygen comments are generally placed within the
header (.hpp) files, rather than the source (.cpp) files

. Doxygen comments are marked in a special way

/// Doxygen single-line comments start with three slashes

/**
* Doxygen multi-line comments start with a slash and two stars
* In both cases, Doxygen reads what's inside the comment

*/

. Comments precede the statement that they want to
document

Doxygen commands

. Doxygen provides its own syntax to be used inside comments

. They are detailed in full in the manual but there are a few which are

most commonly used:

. The descriptions of functions,
classes, enums, etc. often need to
be quite detailed, so it's good to
also have a short one-line
description that is used at the
head of the page — use the
\brief command

. \param is used to document
function arguments

. \return is used to describe the
return value of a function

/**
* \brief This function 1s amazing
*
* More detailed description of all
* the very special stuff it does
*/

void foo();

/**
* \param key the cipher key
*/

void setKey(const size_t key);

/**
* \return the number of elements
w

int size() const;

https://www.stack.nl/~dimitri/doxygen/manual/commands.html

Function example

. Describe the function in a good degree of detalil

. Always document all function parameters and return values

/**
\brief An amazing function which does something very special

A longer description of this function 1s that 1s can be used
to do something very interesting, which this longer description

explains in detatil.

\param input the string that we want to convert

* X X X X X ¥ *x *

\return the converted string
*/
std: :string convert(const std::string& input);

Class example

. Class docs should describe the purpose of the class and give
examples of usage

/**
\brief A cipher encodes and decodes

Cipher 1s an abstract base class, which provides the ability
to encode and decode strings based on a key

Use 1t like

\code{.cpp}

class MyCipher : public Cipher {...};
* \endcode

* X X X X X ¥

* \sihce 0.1.3
*/
class Cipher {

Enum example

. Enumerations should have a general description and
each state should also be documented

. A common style is to use 'suffix' comments for the
individual state descriptions

/**
* \brief The rank of the employee
*/

enum class Rank {
Junior, ///< A new person at the company
Senior, ///< Someone who has been here a while
Chief ///< Someone super special

s

Separate page example

. Can create pages of
documentation that are perhaps
not specific to particular classes
or functions

. Can create files with .dox
extension that use the Doxygen
syntax

. Or you can use Markdown files —
note that we've simply used our
README.md to create the front
page of the documentation

/**

X K X X X X X X * x

*/

\mainpage Welcome to MPAGS Cipher
Blah blah

\section Introduction
Blah blah

\subsection Usage

\code{.cpp}

CaesarCipher c {"4"};

std::cout << c.applyCipher("test");
\endcode

Configuring Doxygen

. Doxygen itself is a program that, given a configuration
file, generates a set of HTML (or LaTeX, or ...) files

. A default configuration file can be created with
$ doxygen -G Doxyfile

but we will just use the one that we've provided in the
Documentation folder of today's git repository

. It's a simple (if slightly long) file, so feel free to read
through it

Automating generation of documentation

Documentation/CMakel ists. txt

Find the Doxygen tools
find_package(Doxygen REQUIRED)

Copy Doxyfile.in (in source dir) to Doxyfile (in build dir)
and replace any @VAR@ with with (Make variables called VAR
configure_file(Doxyfile.in Doxyfile @ONLY)

Tells CMake how to 'create' ${CMAKE_CURRENT_BINARY_DIR}/html/index.html
add_custom_command(
OUTPUT "${CMAKE_CURRENT_BINARY_DIR}/html/index.html"
COMMAND ${DOXYGEN_EXECUTABLE}
WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}
DEPENDS Doxyfile.1in
MPAGSCipher
${PROJECT_SOURCE_DIR}/README . md
${PROJECT_SOURCE_DIR}/CMakelLists.txt
COMMENT "Doxygenating ${PROJECT_NAME}"

)

Adds the ability to do 'make doc' which will try to create ".../html/index.html"
add_custom_target(doc ALL DEPENDS "${CMAKE_CURRENT_BINARY_DIR}/html/index.html")

10

Exercise 1 - build the documentation

The starter repository for today should contain the necessary files form which to
build the documentation

- Look at what has changed in the top level CMakelL.ists.txt file

- Take a look at the new files in the Documentation subdirectory

Try running "make doc" in your build area

* Open the resulting documentation in your web browser
(instructions for two ways to do this on the next slides)

Can you work out how to have the private members of the CaesarCipher class
appear in the documentation?

Throughout the rest of the day, when adding new code always make sure to
document new classes, functions, etc.

11

Using a webserver to view the Doxygen docs

* |In order to view the documentation files built by Doxygen, you can start a
webserver in your container that can serve the pages to your host system

 This can be done using the following commands (which assume that you are
currently in your build directory):

cd Documentation/html
python3 —-m http.server 8000

- At this point VSCode will likely pop up with a box asking if you want to open in a
browser — click "Open in Browser" and the pages should appear in your browser

* |f you don't see that dialogue box, you should just be able to open a browser
and put in the following address:
http://localhost:8000/index.html

- If at any point you want to close the webserver you can just Ctrl+C in the
terminal from which you issued the python3 command to start the server

12

http://localhost:8000/index.html

Copying files from dev container to host

« In order to view the documentation files built by Doxygen you
can alternatively copy them from your dev container to your host

SyStem Generating namespace member index...
Generating annotated compound index...
Generating alphabetical compound index...
i ; ¢ ’ Generating hierarchical class index...
- This can be done using the ‘docker cp’ command popliip ekl el 2
Generating file index...
Generating file member index...

- You’ll need to to know the unique ID of your container and the fineliciny Srey Tippethees
full path to the generated html files, which will likely be: writing tag file... _ ,
lookup cache used 23/65536 hits=73 misses=24
.] finished...
/workspaces/<your_repo>/build/Documentation/html make[3]: Leaving directory '/workspaces/mpags—-day-4-tomlatham/build’

[100%] Built target doc
make[2]: Leaving directory '/workspaces/mpags—day-4-tomlatham/build’
/usr/bin/cmake -E cmake_progress_start /workspaces/mpags-day-4-tomlatham/build/CMakeFiles @

« The unique ID can be easily obtained from the VSCode terminal make[1]: Leaving directory '/workspaces/mpags—-day-4-tomlatham/build’
— it may a|ready be part of your terminal prompt (See the root@18d82203a64c: /workspaces/mpags-day-4-tomlatham/build# cd Documentation/html/

rant@R18AR270A2RAr s lunrkenarac Iimnanc—rdav-A_tamlatham/huild /Nacimantatinn /himl# 1c nrav html

screenshot on the right and compare with the command below) index.himl
root@18d82203a64c: /workspaces/mpags—-day-4-tomlatham/build/Documentation/html# |

« Otherwise, use the ‘hostname’ command in the VSCode
terminal

« The below docker command will copy the whole html directory to the current directory of your host filesystem, so first change directory
to wherever you want to copy the files

« Then, in a terminal on your host system, run the command (substituting your unique ID and path):

docker cp 18d82203a64c:/workspaces/mpags-day-4-tomlatham/build/Documentation/html

« Finally, you can open the html/index.html file in your browser

13

