
Structured binding declarations

Tom Latham

1

Structured binding declarations

• Introduced in C++17, structured binding declarations allow new names to be
bound to existing objects, specifically, to sub-objects or elements of the
initialiser, which should either be:

• a C-style array

• a tuple-like type (e.g. std::tuple, std::pair, std::array)

• a struct or a class that has (some) public data members

• While this may sound a bit complicated, in practice it is quite straightforward
and helps to make code much more readable

• For full technical info see:
https://en.cppreference.com/w/cpp/language/structured_binding

2

https://en.cppreference.com/w/cpp/language/structured_binding

Example usage: improved looping over maps

• Structured bindings offer an
improved way of looping over
maps

• You can address the key and
value of each element using
meaningful names

• This makes the code much
more understandable

std::map<std::string,double> wages;

wages["Jane"] = 24.52;
wages["Pablo"] = 22.86;

...

for (const auto& elem : wages)
{

std::cout << elem.first
<< " earns £"
<< elem.second
<< " per hour\n";

}

3

Example usage: improved looping over maps

• Structured bindings offer an
improved way of looping over
maps

• You can address the key and
value of each element using
meaningful names

• This makes the code much
more understandable

std::map<std::string,double> wages;

wages["Jane"] = 24.52;
wages["Pablo"] = 22.86;

...

for (const auto& [name, wage] : wages)
{

std::cout << name
<< " earns £"
<< wage
<< " per hour\n";

}

4

Example usage: improved looping over maps

• NB that we can use qualifiers
such as const and the
reference symbol

• Without the reference
qualifier we would copy each
element of the map and the
new identifiers would refer to
the key and value of the copy

std::map<std::string,double> wages;

wages["Jane"] = 24.52;
wages["Pablo"] = 22.86;

...

for (const auto& [name, wage] : wages)
{

std::cout << name
<< " earns £"
<< wage
<< " per hour\n";

}

5

Example: improving clarity in PlayfairCipher::applyCipher

6

Example: improving clarity in PlayfairCipher::applyCipher

7

Declaration of our structured bindings:

We give meaningful names to the ‘first’
and ‘second’ elements of the pair

Example: improving clarity in PlayfairCipher::applyCipher

8

Operations immediately become more understandable:

And because we used the reference specifier in
the declaration, we are acting on the original objects.
Point1 and Point2 are updated to the new co-ords.

Example: improving clarity in PlayfairCipher::applyCipher

9

Specifying the C++ standard to use

• Since structure bindings are only available in C++17 onwards, we need to
specify in the build that we want to use that standard when compiling

• To do this we have added cxx_std_17 to the
target_compile_features for the MPAGSCipher library

• Alternatively, if we wanted to set it for the entire project we could add:

set(CMAKE_CXX_STANDARD 17)
set(CMAKE_CXX_STANDARD_REQUIRED ON)

in the top level CMakeLists.txt file, just before the line:

set(CMAKE_CXX_EXTENSIONS OFF)

10

