
Vigenère Cipher

Mark Slater (slides by Ben Morgan and Tom Latham)

1

The Vigenère Cipher

• A polyalphabetic substitution cipher

• The rule to substitute characters changes with each
character in the input text

• Originally described in 1553 by Giovan Battista Bellaso,
but mistakenly attributed to Blaise de Vigenère (1586)
by 19th Century cryptographers.

• Though occasionally broken before the 19th century, no
published formal attack until Kasiski and Babbage in
the mid 1800s.

2

Vigenère Cipher Encryption Substitution Rule

• Choose a Keyword W [1, N] characters long.

• Pair each character in Keyword with character in
Plaintext, repeating/truncating Keyword if it is
shorter/longer than Plaintext.

• Replace each character in Plaintext by encrypting it
with a CaesarCipher of Shift equal to the position in
the alphabet of the Keyword character that is paired
with the Plaintext character

3

Encrypting With the Vigenère Cipher, W=KEY

HELLOWORLD
KEYKEYKEYK

Plaintext
Keyword

Ciphertext RIJVSUYVJN

CaesarEncrypt(‘H’,10) CaesarEncrypt(‘O’,4)

4

Vigenère Cipher Decryption Substitution Rule

• Choose a Keyword W [1, N] characters long.

• Pair each character in Keyword with character in
CipherText, repeating/truncating Keyword if it is
shorter/longer than CipherText.

• Replace each character in Plaintext by decrypting it
with a CaesarCipher of Shift equal to the position in
the alphabet of the Keyword character that is paired
with the CipherText character.

5

Decrypting With the Vigenère Cipher, W=KEY

RIJVSUYVJN
KEYKEYKEYK

Ciphertext
Keyword

Ciphertext HELLOWORLD

CaesarDecrypt(‘R’,10) CaesarDecrypt(‘S’,4)

6

Exercise 1 – Add Vigenère Boiler Plate
• As with the Playfair cipher, we’ll start with putting the boiler

plate in that we’ll fill in afterwards
• You will need to:

1. Allow the user to give ‘vigenere’ as an argument to the
‘--cipher’ command-line option

2. Create a basic VigenereCipher class skeleton that
contains a std::string member variable called key_
and the function signatures given on the next slide

3. When given on the command line, create a
VigenereCipher object with the given key and call the
applyCipher function

4. Don’t forget to add documentation and some initial tests!

7

Exercise 1 – Vigenère Function Signatures

void VigenereCipher::setKey(\
const std::string& key)

{

}

std::string VigenereCipher::applyCipher(const std::string& inputText, \
const CipherMode /*cipherMode*/) const

{
return inputText;

}

VigenereCipher::VigenereCipher (\
const std::string& key)

{
// Set the given key
setKey(key);

}

8

Composition in C++

Mark Slater (slides by Tom Latham)

9

Composition of objects

• As we've mentioned before, re-using
code is a good thing

• Avoids duplicating code and hence reduces
the burden of maintenance and the
likelihood of bugs creeping in

• Object composition is an excellent way
of re-using already tested code

• Composition means having a data
member of a class that is itself an
instance of another class

• That data member can then be used by
the containing class to help perform
some of its work for it

• We've actually already been doing this
when we have containers and strings as
data members of our cipher classes

#include <vector>
#include "Employee.hpp"

class ProjectTeam {

...

private:
/// The leader of the team
Employee teamLeader_;

/// Other members of the team
std::vector<Employee> team_;

}

Using composition in the Vigenère cipher implementation

• We've seen that the Vigenère cipher algorithm involves using a series of
Caesar ciphers with different keys

• We don't want to re-implement the Caesar cipher algorithm within our
Vigenère cipher class, we want to be able to reuse the code we've already
written and tested

• We can do so by having data members of the VigenereCipher class that
are themselves object instances of the CaesarCipher class

• We can then delegate some of the work of performing the encryption to those
objects

Using composition in the Vigenère cipher implementation

• In particular, we want to have a
number of CaesarCipher objects
that are each associated with a
character in the key word

• We can do this by using the
std::map, which we used last
week, to create a lookup table

• This table should be filled in the
setKey member function

• Then in the applyCipher function it
can be used to retrieve the
CaesarCipher objects, which can
then be used to encrypt the input
text one letter at a time

#include <map>
#include <string>
#include "CaesarCipher.hpp"

class VigenereCipher {

...

private:
/// The cipher key
std::string key_ = "";

/// Lookup table
std::map<char,CaesarCipher> charLookup_;

}

Exercise 2 - Complete Implementation of Vigenère Cipher

• We’ve now got a better idea how to implement the
Vigenere Cipher, so make the following changes:

1. Add the lookup map member variable as in the
previous slide

2. Put in the comment changes as shown in the next
slide

3. Attempt to implement the functions as described in
the comments

13

Exercise 2 – Vigenère Function Signatures

void VigenereCipher::setKey(\
const std::string& key)

{
// Store the key
key_ = key;

// Make sure the key is uppercase

// Remove non-alphabet characters

// Check if the key is empty and
replace with default if so

// loop over the key
// Find the letter position in the

alphabet

// Create a CaesarCipher using
this position as a key

// Insert a std::pair of the
letter and CaesarCipher into the lookup
}

std::string VigenereCipher::applyCipher(\
const std::string& inputText, \
const CipherMode /*cipherMode*/)

const
{

// For each letter in input:

// Find the corresponding letter
in the key,

// repeating/truncating as
required

// Find the Caesar cipher from the
lookup

// Run the (de)encryption

// Add the result to the output

return inputText;
}

14

