
Overview of Standard Library containers

Tom Latham

1



The story so far…

• So far we have encountered a single example of each of the two main 
categories of containers:
• std::vector is a sequence container
• std::map is an associative container

• In these few slides I'll mention the other available containers within each of 
those two categories as well as those in the unordered associative
container category

• I'll also try to give you an idea about the pros and cons of each container 
type, which will hopefully guide you as to when it is best to use each one

• I’ll also provide guidance on how to most efficiently use vectors and maps

2



Illustrative code

• To illustrate some ideas of how to use some of the containers most efficiently 
I’ve prepared some pieces of code that we’ll look at together

• For now, please simply clone the following repository (if you haven’t already 
done so from looking at the Special Member Functions slides):

https://github.com/cpp-pg-mpags/SpecialMemberFunctions

• Then checkout the ContainerEfficiency branch

• On the later slides it will be indicated to build a particular piece of code from 
this branch of the repository

3

https://github.com/cpp-pg-mpags/SpecialMemberFunctions


Sequence containers

• The sequence containers are perhaps the simplest to understand

• They hold a number of elements in a particular order

• The main differences between the various types lie in the efficiency (i.e. 
speed) of performing certain operations, in particular: accessing, inserting, 
removing and moving elements

• For example, the std::vector, which we've already met, has very efficient 
random access to its elements, and addition/removal of elements to/from the 
end of the container is also efficient, but addition/removal anywhere else is 
not very efficient and neither is changing the order of the elements 

4



Sequence containers

• The different types available are:

• std::vector

• std::array

• std::deque

• std::list

• std::forward_list

Dynamically sized, contiguous array.

i.e.
- Its size is defined at run time
- Its elements are stored 

consecutively in memory

Fast random access to elements, e.g. 
through v[4], and fast addition to / 
removal from the end (push_back
and pop_back functions).

Operations to insert/remove 
anywhere else are linear with 
distance from the end.

5



Sequence containers

• The different types available are:

• std::vector

• std::array

• std::deque

• std::list

• std::forward_list

Statically sized, contiguous array.

i.e.
- Its size is defined at compile time
- Its elements are stored 

consecutively in memory

Essentially it is a fixed-size version of 
std::vector and therefore is very 
slightly more efficient for element 
access but adding/removing 
elements is not supported.

It has no memory overhead since it is 
statically sized.

6



Sequence containers

• The different types available are:

• std::vector

• std::array

• std::deque

• std::list

• std::forward_list

A double ended queue.

Like an std::vector, its size is defined 
at run time and it provides fast random 
access to elements, e.g. through q[4]. 
It also has fast addition to / removal from 
the end and beginning (push_back, 
push_front, pop_back, pop_front
functions).
Operations to insert/remove anywhere 
else are linear with size.

Unlike std::vector, its elements are 
not all stored consecutively in memory.
Means that expansion is cheaper since 
no copying has to take place.
Comes at price of slightly larger memory 
overhead.

7



Sequence containers

• The different types available are:

• std::vector

• std::array

• std::deque

• std::list

• std::forward_list

A doubly-linked list.

Fast insertion/removal/moving of 
elements anywhere in the container.
As such it implements specialisations 
of several algorithms, such as 
remove_if and sort, as member 
functions.

But comes at price of having no 
random access to elements – you 
have to iterate through from either 
beginning or end. Results from fact 
that elements are not stored 
contiguously.

8



Sequence containers

• The different types available are:

• std::vector

• std::array

• std::deque

• std::list

• std::forward_list

A singly-linked list.

As per std::list but can only 
iterate forwards through the 
elements.

Makes it slightly more memory-
efficient than std::list.

9



Efficient use of vectors – how do they grow?

• The vector is very likely the container you’ll use most often but it’s very easy to use 
them in an inefficient manner

• They are designed to keep their memory use roughly to a minimum and so you 
might get a bit of a surprise if you want to store a very large number of elements

• Build and run the efficient-vector program – see how the capacity and used size 
change

• Each time the capacity changes there is a reallocation of memory and all the 
elements are copied or moved (if possible) into the new memory

• Edit the efficient-vector.cpp file to uncomment the
whatOperationsHappenDuringDefaultGrowth()
function, build, and run, to see these operations reported

10



Efficient use of vectors – reserving memory

• If you know how many elements you are likely to want in your vector you can 
specify this using the reserve(…) member function:

std::vector<int> myvec;
myvec.reserve(1000);

• This performs a single allocation of 1000 elements-worth of memory

• Until we push_back more than 1000 elements, there will be no need for further 
allocation or copying/moving of elements

• Edit the efficient-vector.cpp file to uncomment the
whatOperationsHappenDuringGrowthWithReserve()
function, build, and run, to see how the operations reported have changed

• If you’re worried that you’ve reserved too much memory you can use 
shrink_to_fit() once you’ve finished putting elements into the vector –
although this might perform one reallocation and copy/move operation, so you need 
to strike a balance between this and having a bit of wasted memory

11



Efficienct use of vectors – emplace_back

• While the number of operations has dropped considerably, we still have to
construct a temporary object, copy it into the vector and then destroy the 
temporary

• Wouldn’t it be better if we could just construct the element in place inside the 
vector?

• This is where emplace_back(…) comes in – instead of providing an already-
constructed object, you instead provide the arguments to be used to 
construct it and the construction is done in place

• Edit the efficient-vector.cpp file to uncomment the
whatOperationsHappenDuringGrowthWithReserveAndEmplaceBack()
function, build and run, to see how the operations reported have changed

12



Associative containers

• The associative containers associate a key with a value

• The elements are sorted by the key at time of insertion

• Elements are accessed by searching for the key

• Insertion, removal and searching operations all have O(log n) complexity

13



Associative containers

• The different types available are:

• std::set

• std::map

• std::multiset

• std::multimap

A sorted collection of unique keys.

If you attempt to insert an element 
that already exists in the container it 
will not do so and return a 
corresponding flag.

Useful for e.g. storing the letters 
already encountered when 
processing the Playfair cipher key.

14



Associative containers

• The different types available are:

• std::set

• std::map

• std::multiset

• std::multimap

A collection of key-value pairs, sorted 
by the unique keys.

The obvious example from the cipher 
code is in the Vigenère cipher, where 
the various Caesar cipher objects are 
stored associated with the particular 
letter in the key word.

15



Associative containers

• The different types available are:

• std::set

• std::map

• std::multiset

• std::multimap

A sorted collection of non-unique 
keys.

i.e. exactly like the std::set but 
each key can be stored more than 
once

16



Associative containers

• The different types available are:

• std::set

• std::map

• std::multiset

• std::multimap

A collection of key-value pairs, sorted 
by the non-unique keys.

i.e. exactly like the std::map but 
can have more than one entry with 
the same key

17



Unordered associative containers

• Essentially the same as the associative containers but they use hashing 
instead of sorted data structures to store the information

• Elements are accessed by searching for the key

• Insertion, removal and searching operations all have O(1) complexity, 
although the hashing does introduce some latency

• Available types are:
• std::unordered_set
• std::unordered_map
• std::unordered_multiset
• std::unordered_multimap

18



Tuples

• Not strictly a container but rather is part 
of the utilities library

• The std::tuple is a generalisation of 
std::pair, i.e. it is a collection of 
many (number fixed at compile time) 
heterogeneous values

• Helper functions exist to create tuples 
(std::make_tuple), to access the 
individual elements (std::get) and to 
unpack the whole tuple (std::tie)

• C++17 makes unpacking of tuples even 
easier:
https://en.cppreference.com/w/cpp/language/structured_binding

• Example on right based on:
http://en.cppreference.com/w/cpp/utility/tuple

19

https://en.cppreference.com/w/cpp/language/structured_binding
http://en.cppreference.com/w/cpp/utility/tuple


Tuples

• Not strictly a container but rather is part 
of the utilities library

• The std::tuple is a generalisation of 
std::pair, i.e. it is a collection of 
many (number fixed at compile time) 
heterogeneous values

• Helper functions exist to create tuples 
(std::make_tuple), to access the 
individual elements (std::get) and to 
unpack the whole tuple (std::tie)

• C++17 makes unpacking of tuples even 
easier:
https://en.cppreference.com/w/cpp/language/structured_binding

• Example on right based on:
http://en.cppreference.com/w/cpp/utility/tuple

20

https://en.cppreference.com/w/cpp/language/structured_binding
http://en.cppreference.com/w/cpp/utility/tuple


Efficient use of maps

• The map does not have quite the same potential pitfalls as vector - the elements are 
stored completely separately in memory and allocated one by one, so there is no 
need to reserve memory in advance

• However, there is still the issue of how to most efficiently insert elements into the 
container

• Build and run the efficient-map program – see which operations are performed 
when using the subscript operator (square brackets) to perform insertions

• The other functions show:
• The behaviour when using insert() together with make_pair()
• The behaviour when using emplace()

• The last of the emplace() examples, piecewise construction of the pair in-place by 
forwarding the arguments as a tuple of references, is apparently the most efficient –
it simply calls the constructor once (the bear minimum that is needed!)

• However, it is always best to double check these things with a profiler!

21


