
C++ Exceptions

Tom Latham

(based on material from Ben Morgan)

Error handling in mpags-cipher
• In mpags-cipher we had several cases where we

needed to handle errors

• Bad command line input

• Invalid Cipher Key

• Errors were indicated using bool returns, but

• That doesn’t provide much information on the cause

• Calling code can happily ignore the return value…
2

Throwing exceptions
• An exception is nothing exceptional - it can be any object that

is Copyable or Movable

• Exceptions are created (“raised” or “thrown”) using the throw
keyword followed by the object to be thrown
int foo() {

 …

 throw true;

 …

 return 42;

}

int main() {

 int answer {foo()};

 return 0;

} 3

Exception propagation
• A throw results in quite different behaviour to a return

• The thrown object is passed “up the stack” of calls until it is
handled.

• When handled, the stack is “unwound” with destructors of any
fully created objects invoked.

• If the exception is never handled, it passes out of main,
resulting in an immediate termination.

• In this case, whether destructors are invoked is
implementation defined.

4

Exception propagation
int bar() {

 BObject b {};

 throw true;

 return 1;

}

int foo() {

 AObject a {};

 bar();

 return 42;

}

int main() {

 int answer {foo()};

 return 0;

}

Stack Before throw:

BObject::BObject()

bar()

AObject::AObject()

foo()

main()

On Stack Unwind, call

BObject::~BObject()

AObject::~AObject()

5

Catching exceptions
• To handle exceptions, we wrap code that may emit them in a
try/catch block.

• The catch parts specify the types of exception object this
block can handle (any others propagate further)

int main() {

 try {

 somethingThatMightThrow();

 } catch (bool& e) { //Catch by reference to avoid slicing
 std::cout << “Handling bool exception\n”;

 } catch (int& e) {

 std::cout << “Handling int exception\n”;

 }

 return 0;

}

6

Exercise 1: handling exceptions from std::stoul

• In one of the CaesarCipher constructors we convert the key from a string to
an unsigned integer

• At present we do a prior check that each character in the string is a digit

• However, the std::stoul function will throw exceptions if the conversion
doesn't work: http://en.cppreference.com/w/cpp/string/basic_string/stoul

• NB we're not actually handling one of the cases at the moment! Try it out
and see what happens...

• Remove the explicit check of the string and instead handle the two possible
exceptions that could be thrown (use the code on the previous slide as a
guide)

7

http://en.cppreference.com/w/cpp/string/basic_string/stoul

<stdexcept>
• Header that provides several generic concrete classes that

inherit from the std::exception base class (itself defined in the
<exception> header), e.g.

std::logic_error, std::runtime_error  
 
https://en.cppreference.com/w/cpp/header/stdexcept

• Best to implement exception types specific to the project, e.g.
for mpags-cipher, could have:

• In effect, we use the type to decide how to handle the error

class MissingArgument

class UnknownArgument

class InvalidKey

8

https://en.cppreference.com/w/cpp/header/stdexcept

Writing an exception class
• There is very little that needs to be written (you'll be glad to

hear!)

• The most effective way to proceed is to derive from one of the
existing standard library exception classes, then you just need
to implement a constructor that delegates to that of the base
class

class MissingArgument : public std::invalid_argument {

public:

MissingArgument(const std::string& msg) :

std::invalid_argument{msg}

{

}

};
9

Using a custom exception class
• We can then use our custom class by doing something like:

• We can then handle it as follows:

 throw MissingArgument{“-i/--infile requires a filename argument”};

 try {

 processCommandLine(cmdLineArgs, settings);

 } catch (const MissingArgument& e) {

 std::cerr << "[error] Missing argument: " << e.what() << std::endl;

 return 1;

 }

10

Documenting exceptions
• The exception objects themselves can be documented just as any other class

• However, it is important to allow document which exceptions may be emitted
by a given function

• For example, our CaesarCipher constructor:

 /**

 * Create a new CaesarCipher with the given key

 *

 * The string will be converted to an unsigned integer.

 * If the conversion fails an InvalidKey exception will be emitted.

 *

 * \param key the key to use in the cipher

 *

 * \exception InvalidKey will be emitted if the supplied string cannot be

 * successfully converted to a positive integer

 */

 explicit CaesarCipher(const std::string& key);

Testing for exceptions
• You should include test cases in your unit tests for the exceptions that may or may

not be emitted from a given function

• In the Catch framework there are the useful REQUIRE_THROWS_AS and
REQUIRE_NOTHROW macros, which allow you to do just that

• So you can call a function with a configuration that should not throw and test that
with REQUIRE_NOTHROW

• And you can call it with a configuration that you expect to throw a particular type of
exception and test that it does so using REQUIRE_THROWS_AS

• See the Catch documentation for further details:

Exercise 2: using exceptions in processCommandLine

• There are several problems that can occur when processing the command
line arguments (in our processCommandLine function)

• At present we set a boolean flag to indicate an error, print an error message
and return the boolean

• But this means that while the calling code can (optionally!) find out that
something has gone wrong, it can't know what was the nature of the problem

• So let's remove the boolean return and instead throw custom exception
objects to indicate the different problems

• Use the previous few slides to help you to implement this

13

Exercise 3: using exceptions in VigenereCipher

• There is also a potential problem in the VigenereCipher, where an empty
key prevents this cipher from functioning

• At present we simply set the key to a default value "VIGENEREEXAMPLE" and
print a warning message to say what has happened and what we've done
about it

• But changing the key to a value that has not been requested is a bit
unsatisfactory

• Instead, we can throw a custom exception object, InvalidKey, to indicate
the problem, which the main function can catch and act on

• Use the previous few slides to help you to implement this

14

Exercise 4: using exceptions in CaesarCipher

• We can also improve further the behaviour of the second CaesarCipher
constructor (where the key is provided as a string)

• At present, if the string -> unsigned integer conversion fails, we simply set the
key to a default value of 0 and print a warning message to say what has
happened and what we've done about it

• But, again, changing the key to a value that has not been requested is a bit
unsatisfactory

• Instead, we can throw a custom exception object, InvalidKey, to indicate
the problem, which the main function can catch and act on

• Use the previous few slides to help you to implement this

15

Traps and pitfalls
• Though exceptions offer an easy error handling

mechanism, their use does require a bit of care
because of the stack unwinding

• For example, if you’ve new’d an object then throw, the
object won’t be deleted (memory leak)

• Using Smart Pointers helps here!

• Exception Safety: ensuring that an object isn’t
corrupted when one of its member functions throws.

16

Further Reading
• The two best starting points for Exceptions in C++ are

the Super FAQ and Core Guidelines:

• https://isocpp.org/faq

• https://isocpp.org/guidelines

• Also see

• http://exceptionsafecode.com

17

https://isocpp.org/faq
https://isocpp.org/guidelines
http://exceptionsafecode.com

Another example

https://github.com/cpp-
pg-mpags/mpags-cpp-

extra

https://github.com/cpp-pg-mpags/mpags-cpp-extra
https://github.com/cpp-pg-mpags/mpags-cpp-extra
https://github.com/cpp-pg-mpags/mpags-cpp-extra

