IIIIIIIIIIIIIIIIIIIIII

(++ Exceptions

Tom Latham

Error handling in mpags-cipher

* In mpags-cipher we had several cases where we
needed to handle errors

e Bad command line input
* Invalid Cipher Key
* Errors were indicated using bool returns, but
 That doesn’t provide much information on the cause

e Calling code can happily ignore the return value...

Throwing exceptions

* An exception is nothing exceptional - it can be any object that
iIs Copyable or Movable

* Exceptions are created (“raised” or “thrown”) using the throw
keyword followed by the object to be thrown

int foo() {
throw true;

return 42;

¥

1nt main() {
int answer {foo()};
return 0;

¥

Exception propagation

* A throw results in quite different behaviour to a return

 The thrown object is passed “up the stack” of calls until it is
handled.

 When handled, the stack is “unwound” with destructors of any
fully created objects invoked.

 |f the exception is never handled, it passes out of main,
resulting in an immediate termination.

e In this case, whether destructors are invoked is
implementation defined.

Exception propagation

bar() { Stack Before throw:
BObject b i}, . BObject::BObject()

throw true;
return 1; bar'Q .
1 AObject: :AObject()
foo() 1 foo()
AObject a {}: main()
bar();
return 42;
; On Stack Unwind, call
main() { l BObject: :~BObject()
int answer {foo()};

AObject: :~AObject()

return 0;

Catching exceptions

e o handle exceptions, we wrap code that may emit them in a
try/catch block.

* The catch parts specify the types of exception object this
block can handle (any others propagate further)

int main() {
try {
somethingThatMightThrow();

} catch (bool& e) { //Catch by reference to avoid slicing
std: :cout << “Handling bool exception\n”;

} catch (int& e) {
std: :cout << “Handling int exception\n”;

h

return 0;

¥

Exercise 1: handling exceptions from std::stoul

- In one of the CaesarCipher constructors we convert the key from a string to
an unsigned integer

At present we do a prior check that each character in the string is a digit

- However, the std: : stoul function will throw exceptions if the conversion
doesn't work: http://en.cppreference.com/w/cpp/string/basic string/stoul

* NB we're not actually handling one of the cases at the moment! Try it out
and see what happens...

* Remove the explicit check of the string and instead handle the two possible
exceptions that could be thrown (use the code on the previous slide as a
guide)

http://en.cppreference.com/w/cpp/string/basic_string/stoul

<stdexcept>

 Header that provides several generic concrete classes that
inherit from the std::exception base class (itself defined in the

<exception> header), e.q.

std::logic_error, std::runtime_error

https://en.cppreference.com/w/cpp/header/stdexcept

* Best to implement exception types specific to the project, e.qg.
for mpags-cipher, could have:
class MissingArgument

class UnknownArgument
class InvalidKey

* In effect, we use the type to decide how to handle the error

https://en.cppreference.com/w/cpp/header/stdexcept

Writing an exception class

 There is very little that needs to be written (you'll be glad to
hear!)

» The most effective way to proceed is to derive from one of the
existing standard library exception classes, then you just need

to implement a constructor that delegates to that of the base
class

class MissingArgument : std: :1nvalid_argument {
MissingArgument(const std::string& msg) :
std: :1invalid_argument{msg}
1
¥
¥

Using a custom exception class

* We can then use our custom class by doing something like:

throw MissingArgument{“-i1/--infile requires a filename argument”};

 We can then handle it as follows:

try {
processCommandLine(cmdLineArgs, settings);

+ catch (const MissingArgument& e) {

std::cerr << "[error] Missing argument: " << e.what() << std::endl;
return 1;

10

Documenting exceptions

* The exception objects themselves can be documented just as any other class

- However, it is important to allow document which exceptions may be emitted
by a given function

- For example, our CaesarCipher constructor:

/**
Create a new CaesarCipher with the given key

The string will be converted to an unsigned integer.
If the conversion fails an InvalidKey exception will be emitted.

\param key the key to use in the cipher

\exception InvalidKey will be emitted if the supplied string cannot be
successfully converted to a positive integer

x* X % X X ¥ X * *

*/
explicit CaesarCipher(const std::string& key);

Testing for exceptions

 You should include test cases in your unit tests for the exceptions that may or may
not be emitted from a given function

* In the Catch framework there are the useful REQUIRE_THROWS_AS and
REQUIRE_NOTHROW macros, which allow you to do just that

« So you can call a function with a configuration that should not throw and test that
with REQUIRE_NOTHROW

- And you can call it with a configuration that you expect to throw a particular type of
exception and test that it does so using REQUIRE_THROWS_AS

« See the Catch documentation for further details:

Exercise 2: using exceptions in processCommandLine

* There are several problems that can occur when processing the command
line arguments (in our processCommandL1ne function)

- At present we set a boolean flag to indicate an error, print an error message
and return the boolean

- But this means that while the calling code can (optionally!) find out that
something has gone wrong, it can't know what was the nature of the problem

« So let's remove the boolean return and instead throw custom exception
objects to indicate the different problems

« Use the previous few slides to help you to implement this

13

Exercise 3: using exceptions in VigenereCipher

- There is also a potential problem in the VigenereCipher, where an empty
key prevents this cipher from functioning

- At present we simply set the key to a default value "VIGENEREEXAMPLE" and

print a warning message to say what has happened and what we've done
about it

- But changing the key to a value that has not been requested is a bit
unsatisfactory

- Instead, we can throw a custom exception object, InvalidKey, to indicate
the problem, which the main function can catch and act on

» Use the previous few slides to help you to implement this

14

Exercise 4: using exceptions in CaesarCipher

- We can also improve further the behaviour of the second CaesarCipher
constructor (where the key is provided as a string)

- At present, if the string -> unsigned integer conversion fails, we simply set the
key to a default value of 0 and print a warning message to say what has
happened and what we've done about it

- But, again, changing the key to a value that has not been requested is a bit
unsatisfactory

- Instead, we can throw a custom exception object, InvalidKey, to indicate
the problem, which the main function can catch and act on

» Use the previous few slides to help you to implement this

15

Traps and pittalls

 Though exceptions offer an easy error handling
mechanism, their use does require a bit of care
because of the stack unwinding

 For example, if you’ve new’d an object then throw, the
object won’t be deleted (memory leak)

* Using Smart Pointers helps here!

* Exception Safety: ensuring that an object isn’t
corrupted when one of its member functions throws.

16

Further Reading

* The two best starting points for Exceptions in C++ are
the Super FAQ and Core Guidelines:

» https://isocpp.org/fag

» https://isocpp.org/guidelines

e Also see

» http://exceptionsafecode.com

17

https://isocpp.org/faq
https://isocpp.org/guidelines
http://exceptionsafecode.com

lude <exception>
Llude <i1ostream>
ide <memory>
struct A {

A() {std::cout <<
~A() {std::cout <<

i

struct B {
B() {std::cout <<
~B() {std::cout <<

i

struct C {
C() {std::cout <<
~C() {std::cout <<

i

void somethingThatTh
A foo {};
B bar {};

auto baz = std::make_unique<(C>();

:rcout <<

"About to throw

o exceptions.cpp (~/tmp/day6) - VIM

"[A::AQJ\n";}
"[A::~AQI\n";

Il Another example

"3k

"[B::BC)]
"[B::~B()]

S https://githulb.com/cpp-
"[C::~COI\n";} Qg'mDaQS/mDagS-CDD—
extra

rows() {

3

[1/42][1]

https://github.com/cpp-pg-mpags/mpags-cpp-extra
https://github.com/cpp-pg-mpags/mpags-cpp-extra
https://github.com/cpp-pg-mpags/mpags-cpp-extra

