
Introduction to Linux
(2011 Course)

Tom Latham
Ben Morgan



Introduction
● These slides are designed to introduce you to UNIX based operating systems, in 

particular Linux

● We want to give you enough info here to allow you to concentrate on the C++ in the 
hands-on sessions rather than worrying about how to copy files or change directory

● There are exercises provided throughout the booklet and there are several more 
detailed ones at the end that you should go through before the first hands-on session

● There will be a couple of hours at the first hand-on session to go through anything 
from these slides that isn't clear and to do a few extra exercises

● We'll start with basic usage including an introduction to the shell and how to navigate 
the file system

● Later on, we'll see how to view and edit files

● We've also provided extra material in further booklets on the web that will go 
through various very useful commands, more advanced shell usage and finally shell 
scripting – please dip into these when you can

● It's important to gain a good working knowledge so that you can become more 
productive



What is Linux?
● From http://en.wikipedia.org/wiki/Linux

– 'Linux (also known as GNU/Linux is a Unix-like computer operating system. It is one of the 
most prominent examples of open source development and free software; unlike 
proprietary operating systems such as Microsoft Windows or Mac OS X, its underlying 
source code is available for anyone to use, modify, and redistribute freely.'

– 'Initially, Linux was primarily developed and used by individual enthusiasts on personal 
computers. Since then, Linux has gained the support of major corporations such as IBM, 
Sun Microsystems, Hewlett-Packard, and Novell, Inc. for use in servers and is gaining 
popularity in the personal computer market. It is used in systems ranging from 
supercomputers to mobile phones.'

● Large use within scientific community.

● As Linux is Unix-like, you'll be at home on other systems such as 
Solaris, BSD/OS X and the various Unices.

● Be mindful of the subtle differences though!

http://en.wikipedia.org/wiki/Linux


The Evolution of Linux



Linux Distributions
● Linux typically comes as a 'distribution', consisting of:

– The Linux kernel

– GNU software (e.g. utilities, editors, compilers)

– Desktop/Window manager (i.e. GUI)

– Software management system (rpm, deb etc.)

● Currently ~300 different (active) distributions!



Cartoon courtesy of xkcd.com



How to Choose?
● In HEP you're most likely to end up using

– Scientific Linux

– RedHat Enterprise Linux

– Fedora

● Differences between distros that could affect you

– Choice of software

– Arrangement of system files

● However, this course is distribution neutral so it can be applied to 
(almost) any Linux system.

● Further information:

– http://en.wikipedia.org/wiki/Linux_distribution

– http://distrowatch.com

http://en.wikipedia.org/wiki/Linux_distribution
http://distrowatch.com/


User Accounts
● Linux is a multi-user system

– You need a user account to access workstations and other remote 
systems.

– Hopefully you should all have an account on your university 
systems.

● Security of your login is VERY, VERY IMPORTANT!

– Passwords should be at least 8 characters long, mixture of letters 
(upper and lower case), numbers and symbols, NO DICTIONARY 
WORDS!

– Never, ever share your login with anyone.

– If you leave your workstation unattended, lock the screen so no one 
else can access your session.



Graphical Login
● Using your account details, you can now login...

● Generally, this is through a graphical screen, e.g.



Terminal Login
● There are also terminal logins, accessed via Ctrl+Alt+F1, 
Ctrl+Alt+F2 etc.

● Useful for quick logins, and may be the only login available on 
old systems(!).

● To get back to graphical login, do Ctrl+Alt+F7



The Linux Desktop GUI
● Login through the graphical interface, the GUI starts up...

● Most Linux distributions generally provide two main GUIs, 
KDE and GNOME, selectable from the login screen

– Very much a personal choice.

– Try both and see which you prefer.

– Some systems may only have one or the other installed

● Both present a Windows-like desktop, so transition should be 
fairly easy.

● Common applications are available through the menus or 
panel buttons, e.g.

– Web browsers (Mozilla, Firefox etc.).

– GUI email readers (Kmail, Thunderbird etc.).

– PDF and PostScript viewers (Acroread, gv etc.).



The Terminal
● Whilst the GUI is useful, the terminal is where the real power 

lies and where you'll do most work.

● It looks (something) like this:

● Terminals can be opened from a button on the panel or a 
menu item – have a look round...

● NB, it is essential to get used to using the terminal for ALL 
tasks including file management



What's a terminal good for?
● When started, a terminal window contains a process called a 

'shell'

– Essentially a program that knows how to find other programs and 
run them.

● Programs can be started from the terminal by typing in a 
command

progname options arguments

● For instance, open a terminal and try

ls -la ~/.mozilla

● which lists the contents of your browser config directory.

● You'll learn about ls and its options later.



Shell Flavours

● Shell choice is personal – so experiment – and argue about the 
relative merits of each with other users!

● Several different shells 
available.

● bash and tcsh are the most 
common of the two main 
families.

● Unfortunately, the different 
families have different syntax 
and behaviour for certain 
operations.

● Will try to be as shell-neutral as 
possible here but will point out 
where there are differences.



Manual Pages
● To obtain more information on a command you can view its 

manual page

● These are accessed using the man command

● The following command will display the manual page for the 
ls command that we've just met

man ls

● The following shows a small portion of the page:

● It's vitally important to get 
used to reading man pages.

● They will be one of your 
main sources of help and 
information.



Finding Commands
● Often you'll have need of a command to do a specific task, 

but you don't know the exact command name.

● You can use the apropos command to search the man page 
names and descriptions.

● For example, we want a command to list the contents of a 
directory:

apropos “list directory”

● this will return a list of (possibly) relevant commands and 
their descriptions.

● Exercise:  a common task in HEP is to connect to a remote 
machine at CERN or SLAC etc. – use apropos to find 
potential commands to do this....

● Also Google is very useful if apropos comes up short



The Filesystem
● The Linux filesystem (fs) is arranged rather differently from 

that of Windows

● There are no drive letters (C: etc) but instead everything is 
“mounted” under a single “root” directory – /

● Instead of the “My Documents” folder you have a “home” 
directory, which will be the working directory when you 
open a terminal

● The main parts of a typical Linux fs include:

– /home – where users' home directories can be found

– /usr – where most programs are installed

– /etc – where the system configuration files are

● Much more information at:

http://tldp.org/LDP/Linux-Filesystem-Hierarchy/html/index.html

http://tldp.org/LDP/Linux-Filesystem-Hierarchy/html/index.html


Navigating the Filesystem
● To find where you are within the fs you can use the command pwd

● To change directory you use the command cd

– To navigate to your home directory you can do:

cd  or  cd ~/

– Target directory is within current directory:

cd target  or  cd ./target

– Target directory is parent of current directory:

cd ..

– Target directory is at arbitrary location in fs:

cd /path/to/target

– Target directory is another user's home directory:

cd ~username/

– Target directory is the previous working directory:

cd -



Listing Directories/Files
● To find out the contents of a directory or to get information 

on a particular file you use ls

● There are many options for this command, some of which are 
illustrated below:

Modification time

File size

File group

File owner

File
permissions



Finding Directories/Files
● To locate files or directories within a given part of the file 

system you can use the find program

● This is actually a very powerful program but we'll just look at 
the most basic options here

● To find a file with a particular string in its name you can do:

find basedir -name '*string*'

– where basedir is the directory within which you want to recursively 
search, e.g. use . for the current dir

● You can also use the locate command to search for files:

locate string

● This command uses a database that is usually updated every 
night on most Linux systems



Directory/File Manipulation
● To create a directory:

mkdir mynewdir

● To remove an empty directory:

rmdir myolddir

● To delete a file.

rm myoldfile

● To move a file:

mv myoldfile mynewfile

● To copy a file:

cp myfile1 myfile2

● Recursively delete a directory and its contents:

rm -r myolddir

WARNING:

rm is exceptionally 
powerful, files are 
deleted 
permanently.

Exercise:

Look up some of the 
options these 
commands have in 
their manual pages.



Network File System
● NFS allows a computer to access files over a network as 

easily as if they were on its local disks.

● An NFS server holds the actual disks and exports them over 
the network

● The clients can mount the exports into their filesystem

● Users do not need to know the files are not local

● File permissions are determined by user ID

● Therefore user ID's must be the same on the NFS server and 
the clients

● Server decides which client machines are allowed to connect



Andrew File System
● AFS is another distributed file system

● Some advantages over NFS in terms of security and scalability

● Authentication to an AFS “cell” (e.g. cern.ch) is done by 
password using the klog command, which acquires a “token”

● So no restriction on which machines are permitted to connect

● However, AFS is not part of the standard filesystem tools in 
Linux so need to have client software and kernel modules 
installed

● Some labs place users' home directories in AFS, e.g. CERN

● AFS is usually mounted in /afs on most systems

● e.g. to access SLAC cell go to

/afs/slac.stanford.edu



wget
● Command line program to download items from the web

● Supports http, https and ftp protocols

● Simplest usage to retrieve a single file:

wget URL

● To give the file a different local name do:

wget URL -O local_name

● If you have a text file with a list of URLs you want to 
download you do:

wget -i file



gzip
● gzip is a compression utility

– Reduces file size

– Multiple levels of compression – trade-off between speed vs. size 
reduction

● Common usage:

gzip myplot.eps

● myplot.eps becomes myplot.eps.gz and has much reduced 
file size

● To uncompress do:

gunzip myplot.eps.gz

● To change level of compression do (#=1-9):

gzip -# myplot.eps



tar
● tar is an archive utility

– Allows multiple files and even large directory structures to be 
archived into a single file

● Common usage:

tar -cf archive.tar mydirectory

● Interaction with gzip allows creation of compressed archives:

tar -zcf archive.tar.gz mydirectory

● Compressed archives sometimes have the file extension .tgz 
rather than .tar.gz

● NB source code for the C++ course will be distributed as 
(gzipped) tar archives so need to get used to using this tool!!



tar (cont.)
● NB with all below commands add 'z' to the options if the 

archive is compressed

● To list the contents of an archive do:

tar -tf archive.tar

● To extract an entire archive do:

tar -xf archive.tar

● To extract a specfic file from an archive do:

tar -xf archive.tar filename

– where the filename must match that given by listing the archive's 
contents

● The option 'v' makes the output verbose, e.g. it lists the files 
as it archives/extracts them



tar and gzip in use



Exercise
● A quick exercise in using wget, tar and file system 

navigation

● Please download the following file to your home directory 
using wget:

http://www2.warwick.ac.uk/fac/sci/physics/staff/research/tlatham/teaching/computing2011/linux/exercises.tar.gz

● Firstly list the contents of the archive

● Next extract “directory1” from the archive

● Navigate around this directory and its sub-directories and try 
listing, copying, moving and deleting files

● Also try using find to locate certain files

● Now extract “directory2” from the archive, move all its sub-
directories into “directory1” and delete empty “directory2”

● Finally perform a recursive delete on “directory1”

http://www2.warwick.ac.uk/fac/sci/physics/staff/research/tlatham/teaching/computing2011/linux/exercises.tar.gz


Useful Commands
● We've already seen some Linux commands relating to filesystem 

operations

● We're now going to look at a range of commands to help with 
viewing and processing text and text files.

● To help in learning these commands, we've supplied 2 basic text 
files in directory3 of the archive: particles_a.dat and 
particles_b.dat

● So please extract these two files from the archive

● They are hypothetical data files containing event number, particle 
name, momenta, and raw data source file name:

Event Name p_x p_y p_z datasource
1001 e- 1.0 1.2 3.1 run00001.dat
...



less – viewing text files
● To view (i.e. read but not edit) text files you can use less

● less is an improved version of an earlier program called more 
(computer scientists' idea of a joke)

● Allows scrolling both forwards and backwards through file as well as 
basic searching

● Up and down arrow keys (or “j” and “k”) scroll through file line by line

● “Ctrl+f” and “Ctrl+b” go through page by page

● Type a number then “G” to go directly to a line no.

● Typing “/” allows you to type a search string

● Typing “?” does the same but search is backward

● To quit, type “q”

● Practice using less by viewing particles_a.dat and 
particles_b.dat



cat

● less is a basic text viewer, but cat is simpler still

● It just concatenates the contents of one or more files and outputs it 
to standard output.

● Not exactly exciting, but is good for quickly viewing a short file

● Its real power comes later when we look at linking commands

● Typically cat is used to pipe (see later) the contents of a file to 
another command for processing

[me@here ~]$ cat particles_a.dat particles_b.dat
...contents of particles_a.dat...
...contents of particles_b.dat

mailto:me@here


head/tail

● head(tail) prints the first(last) n lines of files:

● tail is more useful as it provides the options:

-f, --follow, output appended data as file grows

-s –sleep=S, used with -f, sleep for S seconds 
between iterations

● This is handy for monitoring files that are updated regularly.

● Try this: Open two terminals. In one create mon.txt and do

[me@here ~]$ tail -f -s 5 mon.txt

● In the other terminal, keep doing

[me@here ~]$ echo “muon” >> mon.txt

[me@here ~]$ head -n 2 particles_a.dat particles_b.dat
...first 2 lines of particles_a.dat...
...first 2 lines of particles_b.dat

mailto:me@here
mailto:me@here
mailto:me@here


grep

● grep is used to search for patterns in files and print lines 
matching/not matching the pattern.

● Try this: Say we want to find all electron entries in particles_a

[me@here ~]$ grep “e-” particles_a.dat

● Try this: We can find all lines that DON'T list an electron with the 
-v option

[me@here ~]$ grep -v “e-” particles_a.dat

● Try this: Pattern matches can also be based on regular expressions, 
e.g.

[me@here ~]$ grep e[+-] particles_a.dat

● This finds all electrons and positrons.

● We don't look at 'regexps' in this course, but there's plenty of 
documentation out there to help you.

mailto:me@here
mailto:me@here
mailto:me@here


diff
● diff is used to compare files line by line and present any 

differences found.

● Useful for creating file 'patches' so that whole file doesn't have to 
be redistributed when you make a small change.

● Try this: Use the -q option to simply check for differing files

[me@here ~]$ diff -q particles_a.dat particles_b.dat

● Try this: Use -y (output in two columns) and --suppress-
common-lines so we just see the differing lines

[me@here ~]$ diff -y --suppress-common-lines \ 
particles_a.dat particles_b.dat

● Try this: Use -u to output a unified diff (standard for patches)

[me@here ~]$ diff -u particles_a.dat particles_b.dat

mailto:me@here
mailto:me@here
mailto:me@here


cut
● cut removes sections from each line of a file and outputs the 

removed sections as required.

● Most useful options are

-d, --delimiter=DELIM : Use DELIM as the thing 
separating fields in the line (default is TAB).

-f, --fields=LIST : Use LIST as a comma separated 
list of output fields

--output-delimiter=DELIM : Use DELIM as the thing 
separating output fields

● Try the following:

[me@here ~]$ cut -f 1,2 --output-delimiter “, ” \ 
particles_a.dat

● Try this: Can you print the particle name followed by the event id 
in that order?

mailto:me@here


Chaining Commands
● Whilst the commands we've looked at are useful on their own, they 

become even more useful when chained together

● Linux enables this chaining through I/O redirection

– We'll go into this a lot more in the extra booklets

● The output of a command can be redirected to a file:

[me@here ~]$ grep “e-” particles_a.dat > elec.dat

● Or it can be fed into another command:

[me@here ~]$ grep “e-” particles_a.dat | cut -f 1

● The first example writes all the lines with electrons into a file 
called elec.dat

● The second finds all the lines with electrons in and then prints only 
the first field

mailto:me@here
mailto:me@here


xargs

● xargs allows you to use the output of one command as the 
command line arguments of another, e.g.

[me@here ~]$ ls *.dat | grep particles | xargs diff -q

● The above command lists all the names of all files in the current 
directory with the extension .dat and then filters that list to only 
those names that contain the string “particles” and finally passes 
them as the arguments to diff

● NB that we can provide other specific options to the executed 
command, e.g. the -q here

● There are, as always, various options available for the xargs 
command – see the man pages for details

mailto:me@here


sed
● sed (lit. Stream Editor) takes a stream of input from a file or stdin 

and performs operations on it, outputting the result.

● Most often used to match and replace text

[me@here ~]$ sed 's/oldtext/newtext/' file.txt

● Here the string oldtext is replaced where found with the string 
newtext in the output stream.

● Try this: Say we want to rename all pi+ in particles_a.dat to pion

[me@here ~]$ sed 's/pi+/pion/' particles_a.dat

● sed can perform much more advanced operations than this, we'll 
give details in a couple of slides.

mailto:me@here
mailto:me@here


awk
● awk (from surnames of its creators Aho, Weinberger, Kernighan) 

is actually a programming language.

● The awk command inteprets input to the awk language

● Naturally, it's quite complicated – but very useful for some tasks.

● Try this: Saw before that cut could not swap order of output 
fields, but this can be done using awk:

[me@here ~]$ awk '{print $2,$1}' particles_a.dat

● The quoted portion contains an awk script.

● As with sed, much more advanced operations are possible

mailto:me@here


More on sed and awk
● Such is the depth of sed and awk that there's an entire book 

devoted to them if you want to investigate further.

● As with most Linux/Unix 
information, there're tons of 
helpful guides just a Google 
search away.

● Whilst sed and awk are 
useful, if you find yourself 
writing long commands in 
them, you may well be better 
off using Perl or Python 
instead.



Text Editors
● So we've seen how to view the contents of a file with less.

● Since we'll soon be moving on to C++ programming we'll 
want to edit them as well
– Write C++/Java/Python/Shell script source files

– Write reports

– Edit system files

● Linux provides a wide range of text editors:

And many others...

vim emacs

nedit pico
kate/gedit



vim & emacs

● Whilst arguing about which editor is best is a common pastime, 
the best editor is the one that enables you to be most productive.

● It's therefore important that you try several editors and find 
the one that suits you best.

● To start vim:
vim <filename>

● Runs in terminal, but GUI 
interface may be available 
(e.g. gvim)

● Very useful for system and 
remote work.

● Cleaner than emacs, but 
steeper learning curve.

● To start emacs:
emacs <filename>

● May also be in menu.

● Good for desktop work.

● Runs in GUI or terminal.

● Extremely configurable, 
but that can lead to 
confusion... 



Cartoon courtesy of xkcd.com



Other Information Sources
● Our extra material booklet gives much more info:

http://www2.warwick.ac.uk/fac/sci/physics/staff/research/tlatham/teaching/computing2011/linux/

● We've seen that man pages provide help with the use of 
commands.

● Many other sources of more detailed info.

● Websites:

– http://www.tldp.org (Linux Documentation Project)

– http://www.linux.org

– Many, many others through Google and Wikipedia.

● Books:

– http://www.oreilly.com - the famous 'animal books'.

– HIGHLY recommended – always worth starting with the O'Reilly 
text on the subject of interest.

http://www2.warwick.ac.uk/fac/sci/physics/staff/research/tlatham/teaching/computing2011/linux/
http://www.tldp.org/
http://www.linux.org/
http://www.oreilly.com/


Exercises
● Exercise 1:

– Find all electrons in particles_a.dat

– Sort on p_z

– Get rid of the file extension on the data source file name

– Print out the data source file name, event number and p_z (in 
that order)

● Exercise 2:

– If you're happy with the above, can you find other ways of 
doing the same thing?

● Exercise 3:

– Sort all muons, firstly by p_x and then by charge

– Print out the p_x, p_y and event number (in that order) into a 
new file called selected-muons.dat


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46

