Introduction to Linux
Extra Material (Part 1): Advanced
Commands and Shell Usage

(2011 Course)

Tom Latham
Ben Morgan

)

THE UNIVERYITY TF

WARWICK

Overview

In this booklet we provide a large amount of extra material

We start with a few addifional things about file permissions,
monitoring disk space and basic image manipulation

Then we go through how to use Secure Shell (SSH) To
connect to remote machines, CVS for source control and
PBS for submitting batch jolbs

We then move on to more advanced use of the shell,
iIncluding a more in depth examination of |/O redirection

Environment Variables 1

You can store your editor preference in an
“environment variable” called SEDITOR

Some programs that need to call an editor will query
this variable to discover which to use, the default is vi

There are many such variables, the most important is
probably SPATH

This is a list of directories where programs can be
found:

105t5-137-205-164 -2 28 | IR LI
fusrfkerberos /bin: fusrflocalsbin: fbin: fusr/bin: fusr/¥X11RG6/bin: fhome/tlatham/bin

This is used by the shell to locate a program, e.g. | s,
without you having fo type the full path

Similarly SLD_LIBRARY_PATH is used to tell the linker
where 1o find shared libraries

Environment Variables 2

INn addition o the system environment variables there
are some associated with particular programs that
allow you to tweak their behaviour, e.g. SCVSROOT

You can also set ones of your own, e.g. as a short cut
for a given path or printer/computer name

Environment variables are set as follows:
- Inbash: export VARNAME=val ue
- In fcsh: set env VARNAME val ue

You can examine the value of an env var by doing:
- echo $VARNAME

You can list the names and values of all environment
variables by typing pri nt env or env

Job Control 1

Start the gv viewer by issuing the command:
gV

You'll notice that in the terminal window you have no
prompt again until you exit gv

This is because gv is running in the tferminal’s
“foreground”

To run it in tThe “background” you do:
gv &

Adding the "&” character to the end of any command
line will run that command in the background.

However, this is self defeating for programs that run in
the terminal, e.g. vi m pi ne etc.

Job Control 2

What if you forget to add the "&”?
In The ferminal you can type Cir | +z

This “suspends” the job

- You'l see that you can't do anything in the gv window

- Butf you get your command prompt back again

If you type: j obs you'll get a list of the jobs running in
the current shell and their status:

Klgau-lgl ~ = jobs

[1] - Suspended gv --Sswap

[2] Running acroread

[3] + 5Suspended root -1 JdataB8/CCC-ntuples/5P-1218-1.root

You can put a suspended job info the background
using the bg command, e.g.

bg %4 or bg %3

Job Control 3

You can of course suspend any job using Ctr | +z

Using the f g command you can then bring jolos back
to the foreground

You can kill foreground jobs using Ct r | +c

Background or suspended jolbs can be killed using:
kKill % or kill “id”
- where "id” is The unigque process |ID

You can find this out by typing: ps

This lists information about all e TIME CMD

processes running in the current | 5722 pts/3 00:00:00 tcsh
5851 pts/3 00:00:00 gv

tferminal window 5852 pts/3 00:00:00 acroread
5872 pts/3 00:00:00 root
5873 pts/3 00:00:00 root.exe
5883 pts/3 00:00:00 ps

Job Control 4

The ps command has many, many options, here are a
couple of the most common ones

To list information on all processes running under a
particular username you can do

pPS -U user

To list all processes running on a machine do

PS aux

The ki | | command can actually do a lot more than
just Kill jobs, it can send any “signal” to a given process

The most common signals are:

- 19; sfop/suspend, 15; terminate, 9: Kill
- The default signal is 15

File Permissions 1

* File permissions fell you who is allowed tfo do what fo a
given file or directory

* There are 3 basic permission types:
- read, write and execute

* There are 3 sets of people to be given permissions on A
file:

- the owner of the file, users in the file's group and users not
IN the file's group

* The group allows great flexibility, since group
membership is confinuously configurable

1 ~fcnde.} 1s —lﬁ.——cnlnr=tty

File owner has read and write permission. total 2Z1M :
Users in file's group have read permission. - pp -rwW-r--r-- 1 phsdba epp 42K 2811-1&-13 18:15 LauAbsFitModel.cc

Other users have read permission. -rw-r--r-- 1 phsdba epp 11K 2811-18-13 18:15 LaufbsFitModel.hh

-rwxr-x»x--- 1 phsdba epp 21M 2011-1©-13 18:14 myfit

For this file “other” users do not have any permissions. drwxr-xr-x 2 phsdba epp 6 2811-1©-13 18:13 src

/Additionally to the permissions detailed above, the owner

and members of the file's group have execute permission, The “d” here indicates the item is a directory.

which permits those users to execute the program/script. The execute permission on directories indicates the ability to “cd” into that directory.

File Permissions 2

There is a command o change the permissions of a
given file, chnod e.g.

chnod g+w nyfile
chnmod 640 nyfile
The first example adds write permission for the group,

while the second sets rw for owner, r for group and no
permissions for other users

There are two commands fo change the owner or
group of a file, chown and chgr p

In general these operations can only be performed by
the “root” user (or super-user) or sometimes the owner
of the file

Look at the man pages for more information

Disk Space 1

You'll often need to check the remaining space on a disk

For this task there is the command df

Used without any arguments it lists the disk usage and remaining
free space on all currently mounted devices

The "-h" argument converts these amounts to units of kB, MB, GB

etc.

You can also specify a directory as an argument.

- Will only show info for disk that holds that directory

EFELRS] ~ = df -h
Filesystem
Jdev/sdb5
fdev/sdbl
fdev/sdb7
Jdew/sdbb
Jdew/sdal
Jdew/sdas
fdev/sdab
Jdev/sdb9
Jdev/sdbl@
JSdev/sdbll
AFS

Size
2.50G
122M
BBG
5.0G
508G
506G
126G
9.906

lae4M

2.06
8.606

Used Avail Use% Mounted on

626M 1.8G
9.8M 1losM
B6OG 240G

2.86 3.06
166G 356G

396G 126G

2.26 9.7G
2.56 b6.9G
171M TEB3M
58M 1.8G

B B.6G6

26% /

9% fboot

72% /fdata

40% /home

31% /mnt/win c
7% /mnt/win_ d
19% /mnt/win_e
27% fusr

18% fvar

4% Jfvar/fcache/openafs
B% /mnt/afs

Disk Space 2

It is often useful to know exactly how much space you
are using in a certain directory or with a certain set of
files

For this there is the command du

Without any arguments it recurses through all sulo-
directories of the working directory and prints the disk
usage information for each

The "-s” argument prints information only for the current
directory

The "-h" argument works as for df

The "--max-depth=N" command only recurses N
directories deep

For many other options see the man pages

ImageMagick Tools 1

The ImageMagick toolkit contains many tools for
manipulafting images

Two very useful commands are

- convert

- di spl ay
convert can perform many complex functions on
the command line
Two simple examples of its use:
convert 1 nmage.| pg | hage. png
convert image.gif -resize 50% i nage-snall.gif

SO can resize pictures and also change their
format with one simple command

ImageMagick Tools 2

« Simplest use for di spl ay is viewing images:
di spl ay i mage. eps

* Can then save images in other formats (graphical
interface to some convert functions)

« Other powerful feature is screen grabbing

- Start display with no flename argument
di splay &

- Select the "Grab” button

- Enter a fime delay to allow you to navigate to
the part of the screen you wish to grab

- Select the portion of the screen required
- Can then save this out as any image format

SSH - Secure SHell

The SSH protocol allows secure, authenticated
connections o remote machines

It also allows you 1o treat a shell on a remote machine
as if it were local — graphical oufput etc. is funnelled
back to the local machine

To connect fo a remofe machine type:

ssh <options> user nane@ enot ehost . renot edonai n

In general you won't need to supply any options since
the defaults are generally sensible

Here are a few that you may need occasionally:

» -x disables forwarding of graphics
» -X enables forwarding of graphics
* -C enables compression (only for VERY slow connections)

scp

e Copies files from one machine to another
* Uses the ssh protocol

 Copy aremote file to local machine:

scp “user@enote. host:/path/to/file” local file

 Copy a local file fo a remote machine:

scp local file user@enote. host:/path/to/file

* |f nO remote path supplied defaults fo home
directory (but you always need the colon)

« Can copy directory structures using “-r* option

Klgau-lgl ~ = scp tlatham@iris.slac.stanford.edu:public html/public/ichepB&/Llatha
m-ichepB&-v5.pdf .
tlatham@iris.slac.stanford.edu's password:

latham-ichepB6-v5.pdf 1808% 1908KEB 318.0KB/s 00:06
[ortler) pEE

Public/Private Keys

Public/private key cryptography was a great step
forward in computer security

A pair of keys is created:

- The public key encrypfts
- The private key decrypts
The private key is kept secret (hence the namel)

The private key cannot be determined from the public
key

The public key can therefore be transmiftfed freely over
unsecured connections

Forms basis of the SSH protocol itself but can also be
used o provide an alternative authentication method

SSH Keys

You can create SSH keys using the command:
ssh-keygen -t rsa -b 1024

- can also specify dsa key type

Will ask you for a passphrase, which you should
give and should NOT be the same as your system
login

Creates a pair of keys, public and private

Can then add the public key info the
~/ . ssh/ aut hori zed _keys file on aremote
machine

When you next affempt to log in to that machine
SSH will use the keys to authenticate

SSH Agents

You are now being asked for your SSH key passphrase
when you authenticate rather than your remote login
password

Not a great step forward, would rather we didn't need
to type anything

Could use a null passphrase but this is not at all secure
and is NOT RECOMMENDED

Much befter fo use an SSH agent:

- Agents securely store private keys to be used for
subsequent authentications with remote systems

- You only need 1o provide the passphrase once, when
first adding a key to the agent

- Through use of environment variables the agent is
contacted for the keys by any program requiring them

Portable Batch System

PBS is a system for sutbbmitting jolbs to a queue for processing
by dedicafted batch machines

The job is a shell script that you provide
Job is submittfed using gsub command, e.g.
gsub -o job.out -e job.err -q long jobscript

The "-0" and "-e” options specify the log files fo hold the
stdout and stderr from the jolb (can combine these using "- |
oe -0 job.out?)

The "-g” opftion specifies the queue (not always needed)

Can also provide specific resource requests using the "-I”
option, e.g. cputime=04:00:00 (can also be done using a
special comment line in the jobscript):

#PBS -1 wal | ti1 ne=04: 00: 00

PBS - continued

 Once jobs are submitted can check on their progress
using the gqst at command

 The "-u username” option can be used o limit output
tfo info on your jobs

Kelhgcryl ~/Kspipi/workdir/bias-test-acp = gstat -u tel

epct@2.ph.bham.ac.uk:
Req'd Req'd Elap
Job ID Username Queue Jobname SessID NDS TSK Memory Time 5 Time

132096 .epcfB2.ph.bha tel cflong resexJob 3223 1 -- -- B4:08 R

 Most fields are self explanatory, the “S” field shows the
status, "R” meaning running, "Q” meaning queued i.e.
waiting to starf. See the man pages for more possible
states.

* When the job ends the log files are refurned from the
patch worker 1o the specified location

Other handy tools

There are many handy command line tools installed on
Most Linux systems

If you run into a problem there will, in many cases,
adlready be a tool written fo do the job

e.g. The format of text files is different between UNIX
and Windows/DOS

The command line tools dos2uni x and uni x2dos allow
you to convert from one to the ofher.

The tools outlined up to this point provide you with all
you need to find new commands and information
about them - if's up to you to explore further.

Shells in more detail

The shell provides a Command Line Interface between the
user and the OS.

Note that it's nothing more than another program.
So far we've looked at using the shell to run programs.
We can do much more with the shell though.

In this section we'll look at

- Shell variables

- More useful cormmands

- Input and Output redirection

- Chaining and linking commands

- Shell scripting

Shell Flavours

-+ Severdadl different shells
~available.

~« bash and (t)csh are the
-~ most common of the two
main families.

~+ Unfortunately, the different

~ families have different
syntax and behaviour for
certain operations.

_ « This booklet is a little bash
specific, but we'll point out
the main (t)csh variations.

* Shell choice is personal — so experiment — and argue about
the relative merits of each with other users!

Changing Shell

As the shell is just another program, you can start a shell
within your existing shell, e.g.

[me@here]$ tcsh

- (NB - I'll write the command prompt from now on for clarity)
[me@here]$...Some tcsh stuff...
[me@here]$ exit

You can find out which shell you're using through the SHELL
environment variable (more on these later):

[me@here]$ echo $SHELL
/bin/bash

To change your default shell use the chsh command:
[me@here]$ chsh /bin/bash

But - change doesn't happen until you login again.

mailto:me@here
mailto:me@here
mailto:me@here
mailto:me@here
mailto:me@here

Complex Commands

* As we go through this section, commands will get longer.

* Whilst the shell will wrap text onto a new line automatically,
you can also force this with a '\'" as follows.

 NB: <RET> means press

[me@here]$ 1s \ <RET> return (just here for clarity).
> -larth \ <RET>

>\ « See that you can split up
> grep SOMETHING <RET> command and its options.
RESULTOFCOMMAND

« Don't worry about the ' |
and the grep command,
we'll deal with those later.

[me@here ~]%

* A\ will be used to indicate when we have a single
command in cases where it might not be obvious

* It'll also be useful later in scripts fo clarify commands.

mailto:me@here
mailto:me@here

Shell Variables 1: bash

 You can define variables inside the shell

[me@here ~1% myVar="hello” « Variable value

Variable name 7 \ Note lack of spaces!

* To get the value held in the variable, preface name with $

e Use unset to 'delete’ value in variable.

[me@here ~]%$ varB=$myVar
[me@here ~]$ echo $varB

hello
[me@here ~]% unset myVar
[me@here ~]$ echo $myVar

* Many builtin variables, e.g. $SHELL (current shell).

* Nofte that shell variables are only visible in (‘have scope in’)
the shell they're defined in.

mailto:me@here
mailto:me@here
mailto:me@here
mailto:me@here
mailto:me@here

Shell Variables 2: (t)csh

 Unforfunately, bash and (t)csh differ even at the level of
variables...

Spaces optional!

* In (PHcsh, variables are defined using‘set/

[me@here ~]% set myVar = ~hello”

[me@here ~]1% set varB=$myVar * Otherwise, use of
[me@here ~]$% echo $varB variables is The same as

hello iN bash.
[me@here ~]% unset myVar | |
[me@here ~]$ echo $myVar e unset is also the same Iin
myVar: Undefined variable. (Hcsh.

[me@here ~1%

* It's a good idea fo read up on and experiment with these
bash and (t)csh sublelies.

mailto:me@here
mailto:me@here
mailto:me@here
mailto:me@here
mailto:me@here
mailto:me@here

Environment Variables: bash

* |f we want variables to be visible in child processes of our
shell we, in bash, '‘export’ Them to Environment Variables.

* Inbash, fry this example: Define the variable,

‘me@here ~]$ myVar="hello” _ — then start a subshell,
‘me@here ~]$% bash
‘me@here ~]$% echo $myVar

" Oops, no variable! Exit
me@here ~]% exit the subshell.
::::gr,zi ,\,:i Ezzﬁrt e & T We export our variable
‘me@here ~]$ echo $myvar and restart a subshell.
hello Bingo! Variable visible
[me@here ~]% exit INn subshell.

* Try This: What happens to the value of myVar in the main
shell if you change its value in the main shell (and vice
versa)?

mailto:me@here
mailto:me@here
mailto:me@here
mailto:me@here
mailto:me@here
mailto:me@here
mailto:me@here
mailto:me@here

Environment Variables: (t)csh

* (Hcsh uses setenv to specify environment variables.

 Whereas bash ‘promotes’ variables to the environment,
(Hcsh freats them separately: if we did want to have

[me@here ~]$ set myVar="hello” an EV “hello” we'd use
[me@here ~]$% echo $myVar SmyVar here

hello

 me@here ~]$ setenv myVar “goodbye”

me@here ~]% echo $myvar Shell variables have
hello priority

 me@here ~]$ tcsh N |
‘me@here ~]$ echo $myvar /BUT EV visible in subshell

goodbye Have to use unsetenv to

[me@here ~]% exit ‘///
[me@here ~]$ unsetenv myVar unset EVs.

 There's much more on these wonderful differences in the
main ftextbooks on bash and (t)csh (see Iafer).

mailto:me@here
mailto:me@here
mailto:me@here
mailto:me@here
mailto:me@here
mailto:me@here
mailto:me@here
mailto:me@here

More Environment Variables

e Linux (and other Unices) uses many environment variables,
a complete list of those declared can be output via

[me@here ~]% env [me@here ~]% printenv
 Some of the more important/useful ones are:

HOME <+ Path to your home directory, e.g. /home/me

PATH <« Colon separated list of directories searched (from L fo
R) for commands, e.g.

[me@here ~]$% echo $PATH
/jusr/bin:/bin:/usr/local/bin:/usr/X11R6/bin

* You can use which to see if a command is available through
your PATH:

[me@here ~]$ which bash
/bin/bash

mailto:me@here
mailto:me@here
mailto:me@here
mailto:me@here

Chaining Commands

Whilst the commands we've looked at are useful on their
own, they become Readlly Useful when chained together.

Linux enables this chaining through 1/O redirection.

It provides three main |/O 'files' or streams:

- stdin, standard input, usuadlly the keyboard
- stdout, standard output, usually the ferminal
- stderr, standard error, error messages output fo the terminal

Each open file' gets assigned a file descriptor”:

- stdin has FD O
- stdout has FD 1
- stderr has FD 2.

Yet again this is an area where bash and (1)csh are REALLY
idiosyncratic...

Basic I/0 redirection

« Simplest case — we want to record the output of a
command into a file:

[me@here ~]% 1s -1 1>output.txt

\ '‘Connect FD I(stdouft) fo outfput.ixt’

* Inbash, if no LHS FD is given, stdout is assumed, so idenfically
[me@here ~]% 1s -1 >output.txt

‘Connect (implicit) FD 1(stdouft) to output.txt’

* In (H)csh, no LHS FD can be given, so we can only do
[me@here ~]% 1s -1 >output.txt

mailto:me@here
mailto:me@here
mailto:me@here

Basic I/0 redirection

With >, if the file redirected to exists, it'll be overwritten

If we want to append to the file instead, we do
[me@here ~]% 1s -1 1>>output.txt

\

‘Connect and append stdout fo output.txt’

As before, no LHS FD in bash means implicit stdout:
[me@here ~]% 1s -1 >>output.txt

‘Connect and append (implicit) stdout fo output.txt’

Yep, (Hcsh, cannot take a LHS FD, so we can only do
[me@here ~]$ 1s -1 >>output.txt

mailto:me@here
mailto:me@here
mailto:me@here

Multiple Streams, One File

Sometimes we want to redirect stdout (FD 1) and stderr (FD2)
to the same file (e.g. moniforing batch jolbs, compilations)

To do this in bash we use >&FD
[me@here ~]$% 1s -1 *.dat *.tex 1>all.txt 2>&1

_

Connect stderr fo where FD 1 is poinfing’

Swapping order does nof produce the same result!
[me@here ~]$ 1s -1 *.dat *.tex 2>&1 1>all.txt

You can read this L to R as: 'FD2 pointed fo where FD1 is
pointing, then FD 1 poinfed away to all.txt": i.e. FD2 does not
follow the redirection of FD1...

As before, in (f)csh we just leave off the FD numbers
[me@here ~]$ 1s -1 *.dat *.tex >& all.txt

mailto:me@here
mailto:me@here
mailto:me@here

Output to Multiple Files

IT's often more useful To redirect stdout to one file and stderr
tfo another (typical example is code compilation).

To do this in bash we do
[me@here ~]$% 1s -1 *.dat *.tex 1>out.txt 2>err.txt

This is non-frivial in ()csh — why?

We have to use a tfrick with >& and a subshell
[me@here ~]$ (1s -1 *.dat *.tex >all.txt) >& err.txt
Everything inside the (...) runs in a separate shell

As we redirect stdout -inside- the subshell, only stderr is
output by the subshell itself...

mailto:me@here
mailto:me@here

Multiple Streams: Append

With mulfiple streams we can of course append to the
resultant outpuft files using >>

To do this in bash we can, for example, do

[me@here ~]$% 1s -1 *.dat *.tex 1>out.txt 2>>err.txt
[me@here ~]% 1s -1 *.dat *.tex 1>>allout.txt 2>&1

Whilst in (t)csh we have 1o use the forms

 me@here ~]$% (ls -1 *.dat *.tex >>all.txt) >& err.txt
 me@here ~]$% (ls -1 *.dat *.tex>>all.txt) >>& err.txt
‘me@here ~]% 1s -1 *.dat *.tex >>& allout.txt

One final nofe — sometimes you want to suppress ALL output.
You can do this by redirecting to0 /dev/null

[me@here ~]% 1s -1 *.dat *.txt 1>/dev/null 2>&1
/dev/null is a 'device file' that acts as a 'black hole'...

mailto:me@here
mailto:me@here
mailto:me@here
mailto:me@here
mailto:me@here
mailto:me@here

Input Redirection

Input redirection works in very similar way to output:

[me@here ~]$% program @<input.txt

‘Connect stdin to file inpuft.txt’

If no LHS FD is given for <, stdin is assumed, giving the
shorthand (and, you've guessed it, tThe only way in (t)csh):

[me@here ~]$ program <input.txt
The << operator works in a slightly different way.
For both bash and (f)csh, we can write

[me@here ~]% program <<STRING
This will read input from stdin UNTIL it reads STRING.

STRING can be any string you want, e.g. END, EOF eftc.

mailto:me@here
mailto:me@here
mailto:me@here

Combining Input/Output

Input and output redirection can be easily combined, for
iINnstance:

[me@here ~]$% program @<input.txt 1>output.txt 2>&1

Even if you prefer (f)csh, it's useful to look at the bash forms as
their FD use can make things clearer.

If you use bash, it's worth explicitly writfing the Fds in to start
with so the redirection is obvious.

The preceeding slides cover the majority of common use
CaSes.

Of course, you should refer to the shell documentation for
more information.

Now we'll move on to see how we use 1/0O to chain
commands together.

mailto:me@here

Pipes

 We can connect the stdout of one program to the stdin of
another through pipes:

[me@here ~]$ cat particles a.dat | grep “e-”

=

'‘Connect stdout of command on LHS with stdin of command on RHS'

* JO pipe both stdout and stderr to the subsequent chained
command we use the special forms:

e |In bash:

[me@here ~]$% 1s *.dat 2>&1 | grep “particles”
* |In (Hcsh:

[me@here ~]$% 1ls *.dat |& grep “particles”

mailto:me@here
mailto:me@here
mailto:me@here

Multiple Pipes

Pipes are extremely powerful as they allow us to chain
several commands together:

[me@here ~]$% 1s *.dat | grep “particles” | sort -d

Here, we list all .dat files, find those with “parficles” in the
filename and then sort The results alphabetically.

Exercise: Find all electrons in particles_a.dat, sort on p_f,
get rid of the file extension on the data file name, print out
the data file name, event number and p_t in that order.

Exercise: if youre happy with the above, can you find
other ways of doing the same thing?

mailto:me@here

Combined Pipes and 1/0

Naturally, we can combine pipes with |/O redirection

[me@here ~]$ 1s *.dat | grep “particles” > out.txt

We can also redirect the |/O before the pipe, at least in
ash:

[me@here ~]$% 1s *.dat 2>/dev/null | grep \

“particles” > mydata.txt

It's also possible To capture and redirect stdout in
iIntermediate pipes using the tee command

[me@here ~]$% 1ls *.dat | tee alldata.txt | \

grep “particles” | sort -d > mydata.txt

mailto:me@here
mailto:me@here
mailto:me@here

Linking Commands

« Commands can be linked to be executed in sequence
based on the success or failure of previous commands

e Simplest link is via ;
[me@here ~]$% 1s *.tex ; 1ls *.dat

*

'Execute LHS command, then RHS command, no matter result of LHS'

e Better way is via conditionals:
[me@here ~]$ 1s *.tex & & 1ls *.dat

*

'Execute LHS command, then RHS command IF LHS was successful’

[me@here ~]% 1s *tex || 1s *.dat

*

'Execute LHS command, then RHS command IF LHS was unsuccessful’

mailto:me@here
mailto:me@here
mailto:me@here

Further Resources

 We've dlready covered quite a lof.

e |f you need further information, there's lots more in the man
pages for bash and (f)csh (and don't forget Googlel).

* O'Rellly also have a couple of really good textlbooks:

O'REILLY”

Using

O'REILLY*

csh & tcsh

FParid DuBois

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

