Introduction to Linux
Extra Material (Part 2):
Shell Scripting

(2011 Course)

Tom Latham
Ben Morgan

e

THE UNIVERYITY TF

WARWICK



Shell Scripts

We saw earlier how basic commands could be linked and
chained.

In theory, one could perform most tfasks by just piping,
linking and redirecting.

- But you don't want fo go insane.

- Neither do you wanft to type out a chain of 6 commands
everytime you need to perform that one repetitive task.

Bash and (t)csh commands can be written into a text file
called a shell script which is executed by a given shell
(more generically called an interpreter ).

A shell script is really nothing more than a sequence of shell
commands.



Hello World!

In bash, the classic first program is written:
#!/bin/bash

echo “Hello world!”

The first line specifies the interpreter to use. The #! is known
as the 'shibang’ and is followed by the full path fo the
iInferpreter needed for the scripf.

Rest of scripf Is just statements suitable for that intferpreter.
Open a file, write the above and save the file as hello.sh.

You can run it directly using a shell:
[me@here ~]% bash hello.sh
Can make script executable — shibang conftrols interpreter

[ me@here ~] chmod u+x hello.sh
[me@here ~] ./hello.sh


mailto:me@here
mailto:me@here
mailto:me@here

Hello World! in (t)csh

Because the shbbang controls the interpreter, you could

- Use bash day to day, write your scripts in csh.

- QOr vice versa.

For instfance, copy hello.sh o hello.csh, and modify it as

follows:

#!/bin/tcsh

set message = “Hello world!”
echo $message

Running it as

[me@here ~]% tcsh hello.csh

Aside:
A fairly general practice 1is
to give (shell) script files
an extension matching the
interpreter, e.g.

.Sh for sh family

.csh for csh family

.py for python

.pl  for perl

works, but even if you're in a bash shell, you can also do

[me@here ~]$% ./hello.csh



mailto:me@here
mailto:me@here

source and .

Running a script as an executable or argument to a shell
executes commands in a subshell.

This means you can't affect current Environment Variables
from a script executed that way.

To overcome this we can, in bash AND (t)csh, use source
[ me@here ~]% source hello.(c)sh

In bash, the . command is equivalent
[ me@here ~]% . hello.sh

It's most common to see these used in the ‘login’ scripfts

- pbash: .bash _profile, .bashrc

- (Hesh: .cshrc, .tcshrc


mailto:me@here
mailto:me@here

Login scripts

A 'login shell' is a shell you obtain affer authenticating to the
system.

- e.g. From graphical or virfual ferminal login.

In bash, the scripts sourced are:

/etc/profile

~/.bash_profile, ~/.bash _login, ~/.profile (1* of these found readable)
In (t)csh, the scripts sourced are

- Jetc/csh.cshrc, /etc/csh.login (maybe)

- ~/.tcshrc, (~/.cshrc if not found), ~/.history, ~/.login, ~/.cshdirs

So if you want fo define Environment Variables that will be
available throughout your session, you should define them in
your .bash_profile or .login files.



Startup scripts

In a non-login inferactive shell, e.g. a ferminal started in the GUI,
running of scripts may be different.

In bash, only .bashrc is sourced.

In (t)csh, /etc/csh.cshrc (Maybe) and .tcshrc or .cshrc are
sourced.

These files should be used for per-session tasks.

Good example is To set up aliases for commands

[me@here ~]$ alias ssh-cern="”ssh -v myusername@lxplus.cern.ch”

[me@here ~]$ alias ssh-cern ssh -v myusername@lxplus.cern.ch

These are 'shell shorthand'.


mailto:me@here
mailto:myusername@lxplus.cern.ch
mailto:me@here
mailto:myusername@lxplus.cern.ch

Script Breakdown

Shell Scripting’ might be better titled 'Shell Programming’

We have all (well, almost all) the functionality of structured
programming:

- Variables

- Input from/Output o the user (>, < etc)

- Standard commands (cut, diff, grep, sed, and so on)
- Condifionals (if, case, switch)

- Loops (for, while).

- Functions (only in bash, won't consider these here).

Bash and (t)csh have different 'dialects’ for these, so as
before we'll concentrate on bash, but highlight the
differences.



Bash Variables

* Variables in bash are just the shell variables we saw last tfime
myVar="hello”

PR Note use of $§ to obtain value.
anotherVar=$myVar

* They are untyped, i.e. they don't specify whether they
contain a string, integer etc (more on ‘type' in C++ lafer).

 Normally interpreted as strings.

 However, can do integer arithmetic using the let keyword
A=1
B=1
strvar=$A+$B
let intvar=$A+$%B

* Exercise: Put the above in a script and oufput the values of
strvar and intvar. What do you nofice?



(t)csh Variables

Variables in (t)csh are also the same as the (1)csh shell
variables we saw before.

Like bash variables, they are untyped and usuadlly
iInterpreted as strings.

Integer arithmetic is done using the @ prefix
set A =1
set B =1
set strvar = “$A+$B”

@ intvar = $A + $B

Exercise: Puf the above in a script and output the values of
strvar and intvar. What do you nofice?



Command Substitution

 We can assign the result of a command to a variable using
backticks, like so

myFiles="1s *.dat"
 Exercise:

- Take all .dat files as input and output a list of the unique partficle
names.

- Hinf: You'll need fo pipe through sort and then uniq...
* My solufion:;



Command Substitution

 We can assign the result of a command to a variable using
backticks, like so

myFiles="1s *.dat"
 Exercise:

- Take all .dat files as input and output a list of the unique partficle
names.

- Hinf: You'll need fo pipe through sort and then uniq...

* My solution:
#!/bin/bash
#After the shbang, lines starting with a hash are comments
files="1s *.dat"
particles="cut -d “ “ -f 2 $files | sort | uniqg"

echo $particles



Input to Scripts

We have two ways to supply input directly fo the script

Firstly, the script can prompt for input and parse this using the
read builtin (bash only):

echo “Enter firstname and surname”
read fname sname

echo “You are $fname $sname”

In (t)csh we use $<

echo “Enter firstname and surname:”
set fname=%$<

set sname=%$<

echo “You are $fname $sname”

Exercise: Rewrite the previous exercise scripf to fake the file to
analyse from user input



Input to Scripts

The second way we can supply input to the script is through
command line arguments, i.e.

[me@here ~]$% script argl arg2 arg3

These are usable in the script as the special variables
$1,%2,9%3,...,$N where the integer represents they appeared
INn on the command line from left o right.

In bash, all command line arguments are available through
the special variable $@, (fry echoing this in a script and passing
the script arguments as abovel).

In (P)csh, all command line arguments are available through
the special variable $argv.

Exercise: Rewrite your particle name sorting script fo fake the
file fo be analysed as a command line argument.


mailto:me@here

Conditionals: if

* if adllows branching based on the result of a series of tests.

e |In bash, the basic syntax is as follows

if [ FIRSTEXPRESSION ]
then

echo “FIRSTEXPRESSION evaluated to true”
elif [ SECONDEXPRESSION ]

then
echo “SECONDEXPRESSION is true”

else Aside:
We can add as many

echo “Neither test passed” elif statements as
£ required.

* The expressions must evaluate to TRUE or FALSE.
 Note that for Unices, TRUE is O and FALSE is 1.




Conditionals: if

* ifin ()csh has a slightly different syntax.

if ( FIRSTEXPRESSION ) then

echo “Passed first test”
else if ( SECONDEXPRESSION ) then
echo “Passed second test”
else

echo “Neither test passed”

endif

* This is similar to the syntax in the C/C++ language.



Expressions in Bash

 The expression that if evaluates
if [ FIRSTEXPRESSION ]
takes unary (one arg) and binary (two args) forms.

* File tests:

[ -e FILE ]TRUE if FILE exists
[ FILEL -nt FILE2 ] TRUE if FILE1 newer (by time) than FILE2

« String comparison

[ STRING1 == STRING2 ] TRUE if strings are equal

[ STRINGL < STRING2 ] TRUE if STRING1 sorts before STRING?2
* Arithmetic comparison

[ NUM1 OP NUM2 ] OP is one of -eq, -ne, -1t, -1e, -gt, -ge.
* See the bash manual pages for more information.



Expressions in (T)Csh

e Expressions in (f)csh are fairly similar to bash

* File tests are possible, e.g.
( -e FILE )TRUE Iif FILE exists
out there are no binary file comparison operafors.

* However, you can combine unary operators (e.g. -A, -£)
with arithmetic comparisons (see below).

« String comparison only permits idenftity tests

( STRING1 == STRING2 ) TRUE if strings are equadl
( STRING1 != STRING2 ) TRUE if strings are not equal

* Arithmetic comparison is based on C-style operators
( NUM1 OP NUM2 ) OPcanbe== 1= <= >= < >
« See the (H)csh manual pages for more information.



An Exercise using if

* Using the script you've already written to output a list of
unigue particle names in our data files, add a check on the
existence of the file(s).

- Design issue: is it better to check for existence or readability?



An Exercise using if

* Using the script you've already written to output a list of
unigue particle names in our data files, add a check on the
existence of the file(s).

- Design issue: is it better to check for existence or readability?

* Quick bash solution:
#!/bin/bash
#After the shbang, lines starting with a hash are comments
files=$1
if [ -r $files ]; then
particles="cut -d “ “ -f 2 $files | sort | uniqg"
echo $particles

else

echo “$files does not exist or is not readable”
o



Conditionals: case

e case conditional allows complex conditfional choices to be
made. Basic structure in bbash is:

case VARIABLE in
OPTION1)

. . .Commands. ..

Aside:

L Opt?ons may be simple
strings/ints or more
complex regular

*) expressions, e.g.
[aA]rg)

. . .commands. .. would match 'arg' AND
'Ar‘g'

)

esac

* [f the value of VARIABLE is not matched by any OPTION,
then the default option *) is selected.

* Jypical 'use case' is processing command line opftions.



Conditionals: switch

* In (csh, case is replaced with the very C-like switch
statement that is writtfen as

switch (VARIABLE)
case OPTION1:

. . .Ccommands. .. ‘\\\\\\\\\\\\Asum;

breaksw Options may be simple
strings/ints or more
complex regular

default: expressions, e.g.
[aA]rg:
. . .commands. .. would match 'arg' AND
breaksw Arg
endsw

* As before, failure to match value of VARIABLE to any OPTION
results in default being selected.

* Typical 'use case' is again processing command line options.



Loops: for

* Loops enable a seguence of commands To be repeated a
defined number of times, potentially with different inpuf.

* Inbash, aloop can be performed using for:

for VARIABLE in LIST
do

. . .commands. ..
done

e |.e. commands are repeated for every value in the LIST, e.g.

for num in seq 1 10
do
let sgr=$num*$num
echo $sqgr

done



Loops: foreach

 (Hecshis quite un C-like here, as instead of for it uses
foreach written as

foreach VARIABLE (LIST)
. ..commands...

end

« Just like bash, commands are repeated for every value in
the LIST, e.g.
foreach num ("seq 1 10 )
@ sgr = $num * $num
echo $sgr

end



Exercise using for/foreach

Take your script for extracting partficle names from files and
mModify it to accepft n flenames as command line inputs, i.e.

[me@here ~]$% ./myscript filel file2 file3 (and so on)
Make sure 1o check that each file is readable.

Output the unique list of particle files for each file in a nice
formaft to the terminal.

Hints:

- You'll need to look up how to deal with command line
arguments in bash and (t)csh (man and Google).

- Big hint: the main issue is how to get a list of the command line
arguments.


mailto:me@here

Loops: while

* for loops only repeat a fixed number of times, whereas
while enables repeated execution until a conditional
expression evaluates to FALSE.

« Basic syntax in bash is * Whilst in ()csh we write
while [ EXPRESSION ] while ( EXPRESSION )
do . ..commands...

...commands. .. end
done

 The EXPRESSION can be any of those we saw earlier,
although the bash/(t)csh differences must be considered.



Fibonaccl Sequence

Write a script in bash or (f)csh to print out the first n numibers
INn The Fibonacci segquence.

- The user should be able to specify n.
The Fibonacci sequence is

- 0, Thnd Al 8. 13, ...
- In other words:
* F(0) =0
* F(1) =1
* F(n>1) = F(N-1)+F(N-2)
This is also a liffle exercise in thinking albout programming!

Hint: The main problem is how to treat the start of the
seguence, and a while loop will be useful!



Fibonacci Solution

Solution will be available on request, just send me an emaiil

Some further notes on this exercise:

Verifying that we have the correct input is always good practice
i_F [ (f$1)) —— €€y ]; .then

. Aside:
ex1it The expression
£i x$var == x”
is another common check
Note the use of “$1” rather than $1 against 'nothing’

If we didn't supply an argument then $1 is 'nothing' so bash sees
1 Ei P e e hen
which is an error because == expects two arguments.

If $1 is 'nothing’, then “$1” evaluates to “”, so we do get two
arguments.... (Aside: (H)csh seems happier with ‘'nothing’)



Where to go next

Even in a booklet we've only had time to look at the basic
features of shell scripting.

You can find lots more helpful information in the Linux
Documentation Project bash guides:

http://tldp.org/LDP/Bash-Beginners-Guide/Bash-Beginners-Guide.pdf
hitp://tldp.org/LDP/abs/abs-guide.pdf

There's much more documentation out there, so don't
forget to use Google!

However, as the Fibonacci example may have illustrated,
shell scripts only have limited numerical power.

There are other languages you should investigate.


http://tldp.org/LDP/Bash-Beginners-Guide/Bash-Beginners-Guide.pdf
http://tldp.org/LDP/abs/abs-guide.pdf

Perl

Until the advent of Python, probbably the most well known
scripting’ language.

Advantages:

- Easy to learn (especially with C/bash/csh background)
- Numeric and string based processing

- Supports array and hashtable data types

- Can do object oriented programming

- Many Perl ‘'modules’ available for common tasks/connectivity.
Disadvantages:

- 'There's more than one way to do it' affitude.
- Too expressive? Offen indecipherable code.

- Perl geeks.

O'Reilly has several excellent textbooks on Perl.



Python

 Comparatively modern language — and those of you
working on LHC will have to learn if!

* Advantages:

- Many builfin dafatypes.
- Supports full numerical programming (and fast!).
- Many, many existing modules for common fasks/connectivity.

- Very good at linking fogether libraries from different
languages.

- Simple yet expressive syntax (multi paradigm programming!)
* Disadvantages:

- Somewhat idiosyncratic if you 'grew up' with C/C++/Java

- Python evangelists.

* Once again, O'Reilly have many excellent textbooks.



Further Resources

* As with almost anything, O'Reilly provide some excellent
texts on Perl and Python.

mmmi!ag

l-l‘)"-‘?mﬁl

Bl

e There are also the welbsites

http://www.perl.com, http://www.perl.org
http://www.python.org


http://www.perl.com/
http://www.perl.org/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

