Simulations and experiment support role of loop in liver alcohol dehydrogenase as a NAD+-activated switch for domain closure

Steven Hayward
School of Computing Sciences, University of East Anglia, Norwich, U.K.

LADH

-Enzyme, EC 1.1.1.1
-Catalyses reaction of alcohol to aldehyde using co-enzyme NAD+

- Homodimer
-Each subunit 374 residues
-Each subunit comprises two domains
\cdot NAD+ induces domain closure
catalytic domain
coenzyme-binding domain

NAD+-induced Domain Closure

Hayward \& Berendsen, 1998. "Systematic Analysis of Domain Motions in Proteins:New Results on Citrate Synthase and T4 Lysozyme" Proteins, Vol 30, 144-154

DynDom Database hthp://www.cmp.ueaacukkdvydom)

There are 72 LADH protomer structures in single family.
They separate into two tight conformational clusters corresponding to the open and closed domain structures.

All closed structures are liganded with NAD+ or analogue.
All open structures are either unliganded or liganded with molecule considerably different to NAD, or mutants.

Closed (62)

Open(10)

[^0]
Sequential Model of Binding and Actively Induced Closing

"Binding " Domain

Evidence suggests that NAD+ binds to coenzyme binding domain before inducing closure through interactions with catalytic domain

MD Simulations

-Performed using AMBER 7.0
-Full dimeric LADH molecule + water =approx 70,000 atoms
-In total five 10 ns simulations were performed
-NAD+ modelled onto co-enzyme-binding domain of open
S.Hayward, A. Kitao, "Molecular dynamics simulations of NAD+-induced domain closure in horse liver alcohol dehydrogenase", Biophysical Journal, 91: 1823-1831, 2006

Loop modelled as in closed X-ray structure
"Closing" Trajectory

NAD+ present in subunit A only

Cooperative domain closure

Zero time lag correlation in projection value is 0.38
Over first 5 ns it is 0.46

Cooperative domain closure - DynDom Analysis

Local DeformationLinear Inverse-Kinematics Method

$$
\begin{aligned}
& \boldsymbol{\delta} \boldsymbol{\varphi}=\sum_{i=1}^{N_{b}} \delta \tau_{i} \mathbf{n}_{i} \quad \begin{array}{l}
\text { Rotation vector for rotation of C-terminal flank } \\
\text { relative to N-terminal flank. }
\end{array} \\
& \boldsymbol{\delta} \mathbf{d}=\sum_{i=1}^{N_{b}-1} \delta \tau_{i} \mathbf{n}_{i} \times\left(\sum_{j=i+1}^{N_{b}} \mathrm{r}_{j} \mathbf{n}_{j}\right)=\sum_{i=1}^{N_{b}-1} \delta \tau_{i} \mathbf{D}_{i} \quad \text { Displacement vector }
\end{aligned}
$$

[^1]
From vector equations to matrix equations

$\mathbf{n}_{i}=\prod_{j=1}^{i-1} \mathbf{A}_{j}\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$
$\mathbf{A}_{j}=\left(\begin{array}{ccc}-\cos \theta_{j} & -\sin \theta_{j} & 0 \\ \sin \theta_{j} \cos \tau_{j} & -\cos \theta_{j} \cos \tau_{j} & -\sin \tau_{j} \\ \sin \theta_{j} \sin \tau_{j} & -\cos \theta_{j} \sin \tau_{j} & \cos \tau_{j}\end{array}\right)$

$$
\binom{\boldsymbol{\delta} \boldsymbol{\varphi}}{\boldsymbol{\delta} \mathbf{d}}=\sum_{i=1}^{N_{b}}\binom{\mathbf{n}_{i}}{\mathbf{D}_{i}} \delta \tau_{i}=\left(\begin{array}{cccc}
\mathbf{n}_{1} & . . & \mathbf{n}_{N_{b}-1} & \mathbf{n}_{N_{b}} \\
\mathbf{D}_{1} & . . & \mathbf{D}_{N_{b}-1} & \mathbf{0}
\end{array}\right) \boldsymbol{\delta} \boldsymbol{\tau}=\mathbf{Y}(\boldsymbol{\tau}) \boldsymbol{\delta} \boldsymbol{\tau}
$$

Null space condition for no movement of C-terminal end group relative to N -terminal end group

$$
\mathbf{Y}(\boldsymbol{\tau}) \boldsymbol{\delta} \tau^{0}=\mathbf{0}
$$

where $\quad \boldsymbol{\delta} \boldsymbol{\tau}^{0}=\left(\begin{array}{llllll}\boldsymbol{\delta} \boldsymbol{\tau}_{1}^{0} & \boldsymbol{\delta} \boldsymbol{\tau}_{2}^{0} & . . & \boldsymbol{\delta} \boldsymbol{\tau}_{j}^{0} & . . & \boldsymbol{\delta} \boldsymbol{\tau}_{\mathrm{N}_{\text {m }}-6}^{0}\end{array}\right)$ $\mathrm{N}_{\phi \psi}-6$ nullvectors

To constrain particular torsions simply remove corresponding columns from matrix \mathbf{Y}.

The loop 290-301 contains a "rigid arm"

Torsion Angle Targeting

Starting from open structure target torsions $\phi 291, \psi 291$, $\phi 292, \psi 292, \phi 293, \psi 293, \phi 294$ to their values in the closed structure.
ψ 294, \$295, ψ 295, $\phi 296$ constrained (WT)

Starting from open structure target torsions $\phi 291, \psi 291$, $\phi 292, \psi 292, \phi 293, \psi 293, \phi 294$ to their values in the closed structure.
ψ 295, $\phi 296$ unconstrained
(Pro296nonPro mutant)

世294, \$295 unconstrained
(Pro295nonPro mutant)

Conclusions

- Domain closure in LADH is driven by specific interactions between NAD+ and residues on the catalytic domain.
- The loop appears to block domain closure in the absence of NAD+.
- A cooperative mechanism acts between the subunits.
- Using a linear inverse-kinematics technique we have confirmed that the Pro-Pro motif on the loop creates a rigid arm for communicating the presence of NAD+ to the blocking region.
- This shows that in this enzyme a there is a NAD+ activated switch for domain closure.

Acknowledgements

Akio Kitao

Guoying Qi
Guru Prasad Poornam
Richard Lee

Applying forces to an elastic network model using haptic feedback

Download (mouse version also) from http://www.haptimol.com
Stocks, M. B., Laycock, S. D., Hayward, S., "Applying forces to elastic network models of large biomolecules using a haptic feedback device", Journal of Computer-Aided Molecular Design, 25, 203-211, 2011.

[^0]: Qi G., R. A. Lee, S. Hayward 2005. A comprehensive and non-redundant database of protein domain movements. Bioinformatics. 21(12):2832-2838

[^1]: S.Hayward, A.Kitao, "Effect of end constraints on protein loop kinematics", Biophysical Journal, 98(9), 1976-1985, 2010

