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Laboratory Activities

Crystallography (Biochemical and Biophysical analysis) of M. tuberculosis proteins:

Hsp60, Hsp65, Hspl0
AhpC, Trx’s, TrxR, Glutaredoxin
Chorismate mutase, toxin-antitoxin, CRP

Networks
Genome-wide protein interaction networks

Dynamics of networks
Prediction of genome-wide lethalities, synthetic lethalities



Protein Structures:
Beyond pretty pictures
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Nucleotide binding domain of DAP/dehydrogenase




Thermal fluctuations in proteins:
B-factor
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A typical B-factor represents isotropic movement of an atom around its mean position



Need to account for dynamic behaviour of proteins
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NMA
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Properties of NMA

« The eigenvalues describe the
energetic cost of displacing the
system by one length unit
along the eigenvectors.

 For a given amount of energy,
the molecule can move more
along the low frequency
normal modes

« The first six eigenvalues are O,
corresponding to rigid body
movements of the protein




M. tuberculosis thioredoxin reductase



Functions of the Thioredoxin System
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Domain Flexibility of Mtb TrxR

NADPH binding domain FAD binding domain

FAD binding domain NADPH binding domain






M. tuberculosis YefM anti-toxin



Overall structure
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Interactions within dimers

‘
' . Chain A

Buried area approximately 480 A2

Chain C

(



Conformational variability at the C-terminal

H5 helices in all the
monomers adopt
different conformations
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Conformational Transitions in the
Cyclic AMP Receptor Protein



Structure of the cAMP Receptor Protein
uett P ! -~~~ HTH motif

f DNA-binding domain

Kolb et al., Ann Rev Biochem, 1993



cAMP binding site comparison







1G6N chain B




3H3U chain B
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Dynamic Cross Correlation Map for 1G6N and model of E. coli cAMP-free CRP.






Normal Mode Analysis of 1G6N and E.coli model based on 3H3U structure
as a reference. Mode 13 shows 57.9 % collectivity and 43.9 % overlap.



Summary of Overall Conformational Changes Effected by cAMP-binding

1.

In absence of cAMP, the cAMP-binding and DNA-binding domains interact
closely with each other, reducing mobility of the DNA-binding domain

The reduced mobility prevents sequence specific recognition of DNA

Binding of cAMP triggers reorientation of side chains (especially Arg 123) in the
binding pocket of CRP

The cAMP-binding domain is drawn towards the C-helix closing over the bound
cAMP

Conformational change in the cAMP-binding domain forces out the DNA-binding
domain away from the C-helix

The DNA-binding domain remains sufficiently flexible, poised for sequence-
specific DNA recognition
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