
Year 2021-22 PX263 Electromagnetic theory and optics

PX263 problems

These problems are not for credit. You will get most from them by trying to solve them
yourself first. Information that may prove useful in solving them is given at the end. I will
keep adding to these as PX263 progresses. ** (***) indicates questions of above-average
(way-above) difficulty; don’t worry if you can’t manage these. To start with there is a
little more emphasis on electrostatics than in the lecture notes.

1. These are questions to check that you are happy computing gradients and diver-
gences primarily. Show that

(a) ∇r = r̂,

(b) ∇x = x̂,

(c) ∇φ = (r sin θ)−1 φ̂,

(d) ∇rn = nrn−1 r̂,

(e) ∇.~r = 3,

(f) ∇.r̂ = 2/r,

(g) ∇× ~r = ~0. (Why is this last result “obvious”?)

In part (c), r, θ and φ are the usual spherical polar coordinates.

2. These are actually questions which require you to compute the curl of some vectors
(Remember that an electrostatic field is conservative and can be written as the
gradient of a potential. A check on whether a field is conservative is whether its
curl vanishes (∇× (∇φ)) = 0, for all φ). Which, if any, of the following, represent
electrostatic fields?

(a) ~E = z x̂+ x ŷ + y ẑ,

(b) ~E = −(y/r) x̂+ (x/r) ŷ, where r =
√
x2 + y2,

(c) ~E =
(3x2 − r2)

r5
x̂+

3xy

r5
ŷ +

3xz

r5
ẑ, where r =

√
x2 + y2 + z2,

(d) ~E = −(y/r2) x̂+ (x/r2) ŷ, where r =
√
x2 + y2.

3. This question is included to provide an illustration of the divergence theorem. It
asks you to compute the charge density from the electric field in a spherically sym-
metric system using Gauss’s law in integral form and in differential form (Maxwell’s
first equation). A static, spherical distribution of electric charge produces an electric
field at position ~r relative to the centre of the symmetry given by

~E(~r) = αr2 r̂,

where the radius r = |~r|, α is a constant and r̂ is the unit vector in the radial
direction.

Use Gauss’s law in integral form to deduce the charge density as a function of
radius.

Confirm that the differential form of Gauss’s law (one of Maxwell’s equations) leads
to the same result.
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4. This question asks you to do the same type of calculation as the previous question
but for a system with cylindrical coodinates.

An electric field has strength E = E0

(
1− e−|z|/L

)
, where E0 and L are constants,

and points away from the plane z = 0. Derive expressions for

(a) the electrostatic potential ψ, and

(b) the charge density ρ.

5. Derive an expression for the electrostatic potential ψ (which you may assume exists)
that corresponds to the electric field

~E =
(2x2 − r2)

r4
x̂+

2xy

r4
ŷ,

where r =
√
x2 + y2.

Specify a charge distribution that would cause such a field.

(If you take the ∇ · ~E it should be zero except when r → 0. So we’ll have to
use guesswork. Nothing depends on z, so the distribution is going to involve line
charge(s). Look up the potential for a line charge. Imagine two lines of opposite
charge a small distance s apart in, say, the x-direction and compute the corre-
sponding potential. Write your answer as s∂ψ/∂x and compare with your answer
above.)

Show that, in charge-free regions, each component of an electrostatic field satisfies
Laplace’s equation.

Apply this result to a Coulomb-like potential ψ = −1/r, by interpreting the cor-
responding x-component, Ex, as a potential, i.e. what sort of potential does it
represent?

6. Write down Maxwell’s equations in free space and the continuity equation from
memory. Check against your notes and mark yourself out of five.

7. ** How would you generalise Maxwell’s equations in free space to allow for the
(hypothetical) discovery of magnetic charges (“monopoles”)?

***! If you want to try you could also look for an argument to the the amended
Lorentz force law. [To work out the modified Lorentz force, consider the force
between electric and magnetic charges, and apply Newton’s third law.]

8. An infinite, dielectric medium of relative permittivity εr is uniform everywhere
except for an empty spherical cavity of radius a. There are no free charges. Far
from the hole, the electric field is uniform in the z-direction and of strength E0.
The question is to determine the exact fields and potentials inside and outside the
spherical cavity.

(a) Show that there are solutions to Laplace’s equation in spherical polar coordi-
nates of the form ψ = rn cos θ, and determine possible values of the exponent
n.

(b) Show that one of the solutions to part (a) can describe the uniform field far
from the cavity.
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(c) By satisfying boundary conditions at the surface of the cavity and as r →
∞, determine the electric potentials both inside and outside the spherical
cavity. [Hint: consider potentials which are the superposition of the solutions
of part (a), with different coefficients inside and outside the cavity.]

9. **

B

E

Two parallel plates separated by distance d have a voltage difference between them
that leads to an electric field E as shown in the figure above. At the same time, a
magnetic field B is applied perpendicular to E (in the figure it is directed out of
the page). A particle of positive charge q and mass m is initially stationary on the
lower plate and then starts to move under the influence of the electric and magnetic
fields, as approximately indicated above.

(a) Use the Lorentz force to write down equations of motion for the particle.

(b) Solve them to work out the nature of the particle’s motion.

(c) Show that a sufficiently strong magnetic field will prevent the particle from
reaching the upper plate. Derive an expression for the limiting value of B in
terms of q, m, d and E.

10. Write down Maxwell’s equations in matter in terms of ~E, ~B, ~D and ~H , and the
relations between ~D and ~E and ~H and ~B involving ~P and ~M . Do this from
memory. Check against your notes and mark yourself out of six.

11.

Q 2 3 4 5 61 7

A point electric charge Q is surrounded by three, uncharged spherical shells of inner
and outer radii a1, b1, a2, b2, a3, b3, going from the innermost to the outermost shell,
i.e. a1 < b1 < a2 < b2 < a3 < b3. In the figure above the shells are represents by the
shaded annuli. The innermost and outermost shells are isotropic dielectrics with
relative permittivities ε1 and ε2; the middle shell is a conductor.

(a) Derive expressions for the electric field strength as a function of radius r from

the charge in regions 1 to 7. You should use Maxwell’s equation ∇ · ~D = ρf
and know that the answer in the conductor is zero (why?).
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(b) Calculate the potential difference between the inside of the innermost shell
and the outside of the outermost shell.

12. ***The Biot-Savart law can be written

~B(~r) =
µ0

4π

∫
V ′

~J(~r′)× (~r − ~r′)
|~r − ~r′|3

dV ′.

It contains within it both the solenoidal condition and Ampère’s law, as this ques-
tion shows. Before starting this question, I advise reading through the 5 relations
given under item (4) at the end of this sheet. Part a) asks you to show that this

expression gives ~B as the curl of something. This something is actually called the
vector potential, denoted by ~A and is the field that Maxwell used to set up the
equations. This is discussed in Appendix D section 2.

(a) Show that the expression for ~B may be written as

~B(~r) =
µ0

4π
∇×

∫
V ′

~J(~r′)

|~r − ~r′|
dV ′.

Here ∇ indicates derivatives with respect to the components of ~r not ~r′.

(b) Hence show that ∇ · ~B = 0.

(c) Show that

∇× ~B =
µ0

4π

[
∇
∫
V ′

~J(~r′) · ∇
(

1

|~r − ~r′|

)
dV ′ −

∫
V ′

~J(~r′)∇2

(
1

|~r − ~r′|

)
dV ′
]
.

(d) Hence show that ∇× ~B = µ0
~J .

13. In the next two problems it is necessary to approximate how the electric and
magnetic fields vary close to a point of interest. Considering just the x compo-
nent of some vector field ~W , show that to first order in the small displacement
~r = x x̂+ y ŷ + z ẑ, Wx near a point at position ~r0 can be written

Wx(~r0 + ~r) = Wx(~r0) + x ∂xWx(~r0) + y ∂yWx(~r0) + z ∂zWx(~r0).

Here, the ~r0 in the derivative terms indicates that the derivatives are to be evaluated
at that point.

Hence justify the following more compact formulation of the same result:

~W (~r0 + ~r) = ~W (~r0) + (~r · ∇) ~W (~r0).

** Can you work out an expression for the expansion to higher-than-linear order in
~r?

14. Modelling an electric dipole as two equal-but-opposite charges of ±q separated by
a vector ~̀ from −q to +q, such that ~p = q~̀, show that in the limit of small ~̀, the
force and torque on the dipole in an electric field ~E are given by

~F = (~p · ∇) ~E,

~τ = ~p× ~E.

[Hint: to calculate the force, use the linear order expansion given in the previous
question; in the case of the torque, assume the field to be constant.]
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15. A loop of wire carrying a current I is placed in a magnetic field ~B = ~B(~r).

(a) Starting from the expression for the Lorentz force acting on a particle, convince
yourself that the force on an element of wire, d~r, carrying a current, I, is

d ~F = Id~r × ~B.

Hint: The velocity of the charges is ~J/ρ.

(b) Show that the total force and torque acting on the loop are given by:

~F = I

∮
C

d~r × ~B(~r),

~τ = I

∮
C

~r × (d~r × ~B(~r)),

where C denotes a circuit around the wire defined by ~r the position vector of
the line elements along the wire.

(c) Show that if ~B is constant, then the total force is zero.

(d) Assume that the loop is flat and that it lies in the x–y plane. Show that

~r × (d~r × ~B) =(Byy dx−Bxy dy +Bzz dx)x̂+

(Bzz dy −Byx dx+Bxx dy)ŷ + (−Bzx dx−Bzy dy)ẑ.

(e) Use the result of parts (b) and (c) to show that, if ~B is constant, then

~τ = ~m× ~B,

where ~m is the magnetic dipole moment of the loop.
[You will need to use Green’s theorem once you have simplified the integrals
in the expression for ~τ . Green’s theorem says that∮

C

Ldx+M dy =

∫
D

(
∂M

∂x
− ∂L

∂y

)
dx dy,

where D is the domain in the xy-plane, bounded by C, on which L and M
have continuous derivatives. It is a special case of Stokes’s theorem.]

(f) ** Now consider the relation for the force for the case of spatially varying ~B.
By expanding to first order in position, i.e. making the approximation

~B(~r0 + ~r) = ~B(~r0) + (~r · ∇) ~B(~r0),

for small ~r where the ~r0 in the last term means that the values of any deriva-
tives are those evaluated at ~r0, show that

~F = ∇( ~m · ~B).

(You should again assume that the loop lies in the x–y plane.)
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16.

d

L

I

The figure shows a schematic picture of an electromagnet with N turns of a wire
carrying current I wrapped around an iron core that has a length L and a toroidal
shape but with a small air gap of width d. Show that

(a)
LHI + dHa = NI,

where HI and Ha are the magnetic field strengths in the iron and air respec-
tively, which you may assume to be the same at all points within the iron core
for HI and the air gap for Ha. [Hint: use Ampere’s law adapted for matter,

i.e. the integral form of ∇× ~H = ~Jf .]

(b)
Ba = BI ,

where Ba and BI are the magnetic flux densities in the air and iron. [Assume
no lateral spreading of the field within the air gap.]

(c) Hence, assuming that within the iron B = µ0µrH, derive an expression for the
magnetic flux density in the air gap. What is the maximum possible value of
B?

17.
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Permanent magnets: Suppose now a magnet of the same configuration as the pre-
vious question, except there is now no wire coil or electric current, and the material
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of the magnet does not satisfy B = µ0µrH, but instead lies somewhere on the
hysteresis curve of magnetisation M -vs-H shown above. Show that in this case

(L+ d)H + dM = 0,

where H and M are the magnetic field strength and magnetisation in the material
of the magnet.

Hence estimate graphically the magnetic flux density B for L = 20 cm and d = 5 cm.
[NB The units used for both axes of the plot are kA m−1.]

What is the maximum field this magnet could have, assuming that you could alter
the width of the air gap?

18. When discussing EM waves in conductors, the current density was set proportional
to the electric field, ~Jf = g ~E, neglecting the ~v× ~B magnetic term. Is this is a fair
assumption? Use the following to estimate the relative sizes of the two terms in the
Lorentz force for copper: (1) ~Jf = nq~v, where n is the density of charge carriers, q
is the charge each carries, and ~v is their mean velocity, (2) g = 5.96× 107 Ω−1 m−1

for Copper, (3) sensible assumptions for n and q, (4) relations between E and B
for EM waves inside conductors, (5) assumed values for E and ω.

19. A coaxial cable consists of inner and outer cylindrical perfect conductors. The inner
conductor has outer radius a while the outer conductor has inner radius b. A battery
of voltage V is connected between the conductors at one end of the cable, while
a resistance R is connected at the other end. Work out the electric and magnetic
fields, E and H, inside the gap between the conductors and hence the Poynting
vector. Hence calculate the total power carried by the Poynting flux in the cable.

20. In lectures, the following equation was derived for imaging at a single spherical
surface

n1

u
+
n2

v
=
n2 − n1

R
,

where the centre of the spherical surface lay to the right of the surface itself. Show
that if instead the centre of curvature lay to the left of the surface, the right-hand
side of this equation switches sign.

21. In geometrical optics, the quantity 1/f where f is the focal length of a lens is
referred to as its “power”. Show that two thin lenses of focal lengths f1 and f2,
placed right next to each other, act as a single lens with a total power equal to the
sum of the powers of each lens = 1/f1 + 1/f2.

22. A lens is made of glass with refractive index n that varies linearly with wavelength
as characterised by the derivative, dn/dλ. Derive an expression for the derivative
of the power of the lens with respect to wavelength, i.e. d(1/f)/dλ in terms of f ,
n and dn/dλ.

23. An “achromat” is a lens made by joining lenses made from different glasses having
different values of n and dn/dλ (see previous question). The aim is to make a lens
that has non-zero power 1/f 6= 0 but at the same time the power is achromatic,
that is it does not vary with wavelength d(1/f)/dλ = 0. Use the results of the
previous two questions to write down conditions that ensure that this will be the
case.
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24. In lectures, the lensmaker’s equation and thin lens equation were derived by con-
sidering phase. An alternative approach is to consider the geometry of refraction
and Snell’s law. Use this approach to derive the equation

n1

u
+
n2

v
=
n2 − n1

R
,

for a single spherical surface from which the other results were deduced. Make use
of small angle approximations (i.e. assume paraxial rays).

25. Consider an object being imaged onto a detector by a lens (similar to a camera or
human eye). Sketch a ray diagram with the object in focus and also another object
somewhat closer to the lens which is out of focus. If everything is fixed, apart from
the diameter of the lens, convince yourself the out-of-focus object becomes more
blurred as the lens diameter increases.

26. The simplest of all imaging systems is a pin-hole camera, which is simply a small
hole and a screen some distance away from the hole. Light from the far side of the
hole with respect to the screen propagates in a straight line through the hole to hit
the screen, giving a one-to-one mapping of the external scene onto the screen. If
the hole is too large, the image becomes blurred because of the geometry, but if it
is too small, diffraction will dominate. Labelling the angular resolution set by these
two effects as θgeom and θdiff , the total resolution of a pin-hole camera, θpin, is given
by

θ2
pin = θ2

geom + θ2
diff

Use this and expressions for θgeom and θdiff to show that there is an optimum diam-
eter for the hole that gives minimum θpin and derive an expression for it in terms
of the wavelength of light λ, and the distance between the pin-hole and screen d.

With no fancy optics or need to focus, what’s not to like about a pin-hole camera?

27.

α

θ

Q’Q

P P’

The figure shows a prism of apex angle α, with light entering and leaving symmet-
rically, a configuration that leads to the minimum angular deflection θ. The figure
shows two wavefronts PQ and P’Q’. The optical path travelled by the rays between
these two wavefronts is the same, thus O.P.(PP’) equals O.P.(QQ’). Use this to
show that

n sin
(α

2

)
= sin

(
α

2
+
θ

2

)
.

Hence derive an expression for θ in terms of n and α in the limit of small angles.
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28.
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Suppose that I want to demonstrate magnification using the visualiser during lec-
tures. I don’t want the visualiser to try to focus on the lenses or my hands during
the demonstration, so I have to switch off the autofocus. Therefore any lens or
lenses I insert must give a virtual image located on the visualiser display surface,
because then the image will also be in focus on the visualiser.

(a) Show that no single lens inserted between the visualiser’s objective (“V” in
the figure above) and the display surface will work for this demonstration.

(b) Show that a two lens configuration as illustrated with f1 = 5 cm, L1 = 7 cm,
f2 = 10 cm and L2 = 32.126 cm will work as desired in terms of the location
of the image seen by the visualiser.

(c) Calculate the linear magnification of the final image compared to the object
in this case.

29. Show that the telescope drawn in lectures with two convex lenses will have inverted
images.

30. **Both anti-reflection and dielectric mirror coatings are made with quarter-wave
layers. Show that, rather counter-intuitively, half-wave layers have no effect on
reflectivity, i.e. the reflectance is the same as if they were not there. Assume
normal incidence and account for all reflections from the interfaces, not just the
first two that we considered when discussing anti-reflection layers. You should
obtain a geometric series, which you need to sum to prove the result claimed.

31. We considered optical coatings in normal incidence. At non-normal incidences, the
individual reflection and transmission coefficients at each interface change as one
would expect according to Fresnel’s relations. However the phase change for the
ray to traverse the thin layer (medium 2) and back, is more subtle. At normal
incidence we used ∆φ = 2k2d. For non-normal incidence, you might guess that it
would become ∆φ = 2k2d/ cos t, i.e. longer, where t is the angle of transmission
through the 1–2 interface. Show instead that it becomes shorter, ∆φ = 2k2d cos t.

32. In the consideration of the FP etalon the maximum amplitude, we showed that the
maximum transmitted amplitude (which occurs whenever sinφ = 0) was t2t′2/(1−
r2)2. Show that, in the absence of losses in the medium, this is equal to 1. If
materials are lossy how qualitatively would this change the theory?
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33.

∆

**Rainbows form when light is scattered by spherical drops of water (n = 1.33).
The primary rainbow is formed by rays that enter the drops, are reflected once
internally, and then leave the drop. You may sometimes see secondary rainbows
from rays that are reflected twice internally as striking double rainbows. Depending
upon the angle of incidence, rays can be deflected through a wide range of angles,
∆, (see figure), all the way up to straight in and straight back (∆ = 180°), but
there is a minimum value for ∆ where multiple close-by rays exhibit the same or
similar deviations causing a pile-up that we see as a bright arc, i.e. the rainbow.

(a) Why is the internal reflection clearly not a “total internal” reflection?

(b) Calculate the minimum deflection angle ∆ for a single internal reflection.

(c) Do the same as above for the secondary rainbow.

(d) Try to explain (i) why rainbows appear as arcs, (ii) where one should look for
them on the sky, (iii) why the region between primary and secondary rainbows
appears dark, (iv) the ordering of colours in each type.

(e) Why would you not easily see a rainbow near midday in the summer in the
UK? How about the winter?

(f) ***Calculate the polarisation induced by the path of the figure, expressing
your answer as a percentage = 100(Imax− Imin)/(Imax + Imin) where Imin and
Imax are the minimum and maximum intensities of orthogonal polarisations
with the E-vector in the plane and perpendicular to the plane of the figure.
Assume that the ray is initially unpolarised.

(g) Show that “diamond rain”, as hypothesised for Jupiter and Saturn, if it came
in spherical form (unlikely), would not exhibit a primary rainbow. (Refractive
index of diamond = 2.42.)

To see much more about rainbows, including many nice pictures, discussion of
diffraction phenomena they exhibit and some of the answers to this question, I
recommend the website https://www.atoptics.co.uk/bows.htm
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Useful information:

1. In the following f and ~W represent arbitrary scalar and vector fields, and ∇ and
∇′ should be taken to act upon ~r and ~r′ independently.

∇× (f ~W ) = f∇× ~W + ~W ×∇f, (1)

∇× (∇× ~W ) = ∇(∇ · ~W )−∇2 ~W , (2)

∇ [f(|~r − ~r′|)] = −∇′ [f(|~r − ~r′|)] , (3)

∇
(

1

|~r − ~r′|

)
= − (~r − ~r′)

|~r − ~r′|3
, (4)

∇2

(
1

|~r − ~r′|

)
= −4πδ(~r − ~r′). (5)

2. If a vector field in spherical polar coordinates is written as ~W = Wrr̂+Wθθ̂+Wφφ̂,
then its divergence is given by

∇ · ~W =
1

r2

∂(r2Wr)

∂r
+

1

r sin θ

∂

∂θ
(Wθ sin θ) +

1

r sin θ

∂Wφ

∂φ
.

3. In spherical polar coordinates, Laplace’s equation is given by

∇2ψ =
1

r2

∂

∂r

(
r2∂ψ

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+

1

r2 sin2 θ

∂2ψ

∂φ2
= 0.

4. Green’s theorem: ∮
C

P dx+Qdy =

∫∫
S

(
∂Q

∂x
− ∂P

∂y

)
dx dy.

5. In the following f and ~W represent arbitrary scalar and vector fields, and ∇ and
∇′ should be taken to act upon ~r and ~r′ independently.

∇× (f ~W ) = f∇× ~W + ~W ×∇f, (6)

∇× (∇× ~W ) = ∇(∇ · ~W )−∇2 ~W , (7)

∇ [f(|~r − ~r′|)] = −∇′ [f(|~r − ~r′|)] , (8)

∇
(

1

|~r − ~r′|

)
= − (~r − ~r′)

|~r − ~r′|3
, (9)

∇2

(
1

|~r − ~r′|

)
= −4πδ(~r − ~r′). (10)
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