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Chapter 1

Introduction and Background

A phenomenon that cannot be understood without using quantum theory explicitly is what we
call a quantum phenomenon. Examples include most properties of matter (Does it conduct
electricity? Is it transparent?) as well as things like ‘wave-particle’ duality and the uncertainty
principle which we will mention during the module. Classical physics, on the other hand,
is physics that makes no reference to quantum theory. Newton’s laws and Einstein’s theory
of general relativity are classical physics. You should avoid thinking that classical physics is
old physics. Some problems are classical, some problems need a quantum treatment, some
problems are unsolved.

Motivations for studying quantum phenomena include:

i. To understand and marvel at the phenomena we observe. We can also exploit this un-
derstanding. Integrated circuits, which are ubiquitous in IT, only work because they
exploit quantum phenomena. Calculations performed by current IT are still called clas-
sical computing as the operations performed by the integrated circuits operate on what
we call classical bits. These can be 1 or 0. (Quantum computing works with qubits,
where information is encoded in linear combinations of classical bits.)

ii. The development of quantum theory is an intriguing story. It is interesting to see how
hard it was to find the correct ideas. Fortunately not all the ideas are mathematically
complicated, which means that we can crack on with computing their implications.

iii. The philosophical questions about the nature of the Universe posed by quantum the-
ory are fun to think about. Famously there is Einstein’s belief ‘dass der [Alter] nicht
wuerfelt’—that God does not play dice.

This module concentrates on ii) and then i). Most modules on quantum theory concentrate
on i). There is a sort of ‘shut up and calculate’ feel to them. The theory is so successful, and
there are too many interesting numbers that we can compute, that we would be mad not to
do this. Freeman Dyson even said the doing of the sums is all there is:

For me, the important thing about quantum mechanics is the equations, the math-
ematics. If you want to understand quantum mechanics, just do the math. All the
words that are spun around it don’t mean very much. It’s like playing the violin.
If violinists were judged on how they spoke, it wouldn’t make much sense.
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1.1 Pre-Quantum Theory

Before 1905, when quantum theory was born, physicists knew a lot about

i. Waves. Light waves were where quantum theory started
ii. Particles. Newton’s laws and relativity gave an excellent account of their behaviour
iii. Thermodynamics. The equilibrium properties of simple systems were understood. The

theory had been developed to help make better steam engines, and it had done this well.

There was even an air of complacency—”We understand almost everything”. However, people
knew that there were problems at the boundaries between the three sub-areas. When the
laws of thermodynamics were applied to wave systems, they predicted a nonsense called the
ultra-violet catastrophe. When people studied gas particles interacting with light, they saw
emission and absorption lines that could not be explained using Newton’s laws.

Taking these incompatibilities seriously led to what we now call quantum theory. The story
brings out the nature of discovery and should help understand how the boundaries between
disciplines, in this case mathematics and physics, change as a result of progress in the under-
standing of phenomena.

To begin with we should remind ourselves of some terminology.

Waves
Waves are spatial patterns which fill space and vary as a function of time.

Note Figures 
Tuesday, 4 June 2024 13:52 

Waves on a tight string are a sim-
ple example. The displacement from
equilibrium is u(x, t). Fixing the dis-
placement from equilibrium at the ori-
gin and at x = L to be zero leads
to boundary conditions u(0, t) =
u(L, t) = 0. The boundary con-
ditions restrict the modes of oscil-
lation to have the form u(x, t) =

A sin(nπx/L), here shown for the case n = 1. This is an example of a standing wave.
The wave pattern is not moving to the right or left.

Light waves are another example. Light waves are oscillating patterns of electric and magnetic
fields E(r, t) and B(r, t), with E(r, t) · B(r, t) = 0 everywhere in free space. The sketch
shows a travelling wave, travelling in the positive z−direction at the speed of light:

Note Figures 
Tuesday, 4 June 2024 13:52 
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The wave form for a sinusoidal travelling wave is (A = |A|eiϕ)

u(x, t) = A ei(kx−ωt) = |A| [cos(kx− ωt+ ϕ) + i sin(kx− ωt+ ϕ)] .

Here the quantity A is the complex-valued amplitude which can be written in terms of its mag-
nitude |A| and phase ϕ. If u is a real quantity, for example the displacement from equilibrium
of a tight string, we should understand that we need to take either Re[u] = cos(kx− ωt+ ϕ)
or Im[u] = sin(kx − ωt + ϕ). One thing to be wary of in quantum theory is that the wave
forms are complex-valued.

The quantity λ is called the wavelength while k = 2π/λ is called the wavenumber. The
wavenumber has a natural generalisation as a vector for waves in three dimensions which is
why we tend to refer to k instead of λ. If the period of the wave (the time taken for the
pattern to repeat) is T , the frequency ν = 1/T and the angular frequency ω = 2πν = 2π/T .
Everyone has their shorthands and ω is often referred to as the frequency.

Particles

Note Figures 
Tuesday, 4 June 2024 13:52 

 

Particles were thought to be simpler
than waves. Ideally they are points
with well-defined mass momentum
position and energy. They can also
be charged. Newton’s laws (after in-
cluding relativity if necessary) explain
how particles behave as a function of
time.

Thermodynamics
Laws of thermodynamics had been established. They appeared to govern heat and had a long
list of triumphs to their name

• Ideal gas law. This explains things like the pressure of a gas as a function of temperature
and why hot air rises

• Thermal energy. This should be distributed ‘fairly’ amongst all the available degrees of
freedom of a system. The theory states that in a gas there should be kT/2 for each of
the three independent directions the particle can move (the different components of the
velocity are the degrees of freedom). Here k is called Boltzmann’s constant. This give
a total average kinetic energy of 3kT/2.

This was a major insight into systems in general. Like many insights it can seem obvi-
ous with hindsight. Unless you have added information you have to assume that each
independent way of exciting the system is equally likely to be excited.

• Probabilities. Boltzmann had established that the probability of thermal excitation of a
mode of excitation, sometimes called a degree of freedom, with energy E is

p(E) ∝ e−E/kT . (1.1)

Degrees of Freedom
Degree of freedom is a commonly used expression. Take it to mean anything that can vary
independently when defining the state of a system. Classically, a point particle’s position and
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its momentum must be specified to characterise its behaviour. In classical thermodynamics,
any degree of freedom, that can change the energy of the system independently of the others,
should have an average thermal energy kT/2.

The problem with applying thermodynamics to wave systems is that there are always infinitely
many degrees of freedom even in finite systems. According to classical thermodynamics, there
should therefore be infinite thermal energy in any finite system (∞× kT = ∞).

1.2 Outline of Part I of Module

The structure of the module will follow loosely the historical development of quantum theory.
Following the thinking behind the ideas helps understand the structure of the theory (I hope!).
In the case of quantum theory many experimental results preceded the theory. These are what
guided the development of the theory. An alternative approach (taken in later modules) is to
state some postulates and see what they imply.

Photons—light as particles
We will look first at the idea that light consists of particles, which we call photons. This was
introduced to get round the so-called ultraviolet catastrophe associated with the infinitely
many light wave modes that can fit into any cavity. According to classical thermodynamics,
each of these modes should have thermal energy kT associated with them (kT/2 for both the
kinetic and the potential energy of the mode). There would therefore be an infinite thermal
energy in the cavity. As some of this energy would “leak out” and radiate away, any body (not
just a cavity) should radiate at an infinite rate. This is not observed and is logically impossible.

Planck proposed in 1900 that light particles have energy hν (or equivalently h̄ω). Here h or
h̄ = h/2π is a fundamental physical constant, which we call Planck’s constant.

This idea was developed by Einstein in 1905 to explain the photoelectric effect. Light incident
on a metal surface leads to the emission of electrons. Einstein showed that observations of the
emitted current were consistent with the idea that light particles, the photons, were absorbed
by individual electrons. If the extra energy given to an electron were sufficient, it would escape
from the system. This explained the dependence of the collected current on the frequency of
the light incident on the system.

The Compton effect was discovered in 1923. Here light is scattered by electrons. The
wavelength of the light is shifted in a way that cannot be explained classically but is accounted
for perfectly by treating the scattering as a collision between a photon and an electron.

Particles as waves
The absorption and emission of light from molecules in a gas was known from experiment to
be limited to discrete frequencies. One series of lines for Hydrogen had been known since 1885.
(Remember that discrete means detached or non-continuous, while discreet means something
like judicious in one’s speech or unobtrusive.) This implied that the energies of electrons in an
atom, ie bound to a nucleus, were restricted to discrete values. If the initial and final energies
of the electron were Ei and Ef , the frequency of the absorbed photon given by hν = Ef −Ei.

Bohr (1913) suggested thinking about atomic levels classically but with angular momentum
only taking particlar allowed values. This condition automatically ensures that the energy levels
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allowed for an electron encircling a proton are discrete. Better than that, assuming classical
orbits with angular momentum nh̄ with n an integer gives the observed frequencies for the
Balmer series for a hydrogen atom. This is sometimes referred to as the Bohr atom.

An important idea came in 1924 with de Broglie’s hypothesis. If waves can behave like
particles, he argued, then particles should also behave like waves. de Broglie postulated that
the wavelength of a particle with momentum p should be given by p = h

λ
.

Wave Mechanics
Following de Broglie’s hypothesis quantum mechanics followed quickly. Heisenberg (1925)
proposed that systems were described by matrix mechanics (observables like momentum were
described by infinite-dimensional matrices), while Schrodinger proposed that systems should be
described by wave mechanics. The two approaches are equivalent. However, it is usual to start
with wave mechanics rather than the more abstract matrix formulation and this is what we
will do. The idea is motivated by de Broglie’s hypothesis. If particles are to behave like waves,
what is the correct wave equation to describe these waves? It is the Schrodinger equation.

Looking for solutions to the Schrodinger equation (there are other similar equations) is what
most quantum mechanics modules do. How to solve the equation, how to find approximate
solutions to more involved problems, and how to extract predictions for observations is the
goal. We will look at two idealised problems where we can solve the equation easily.



Chapter 2

Photons

Planck introduced the notion of quantisation to explain the spectrum of light emitted by bodies
as a function of temperature T .

All objects emit radiation. Hot stoves emit infra-red radiation, hotter objects emit light as in
red hot or white hot. In fact everything not at temperature absolute zero emits radiation. It is
usual to concentrate on black-body radiation. A black body is defined to be one that absorbs
all incident light independent of wavelength. (Coloured bodies are ones that preferentially
absorb and emit some frequencies.)

Light waves are generated by thermal excitation. A premise of classical thermodynamics is that
all possible excitations of light waves, that are possible in a body, are equally likely and should
carry on average kT of energy (k is Boltzmann’s constant). On this basis, we can predict how
the energy radiation rate should vary with wavelength. This leads to a nonsense—the so-called
ultraviolet catastrophe—and motivated Planck to set quantum theory rolling.

The problem is illustrated by a hypothetical 1D cavity of length L (we will quote but not derive
the result for a 3D body later). The em-modes (em stands for electromagnetic) in the 1D
body are

u(x, t) = A sin
nπx

L
eiωnt where ωn =

nπc

L
, n is a positive integer. (2.1)

These satisfy the conditions that u(0, t) = u(L, t) = 0, ie there is no amplitude at the
boundaries. Here the quantity u would be either the electric or magnetic field. (There is no
need to be precise here and worry about different polarisations in 1D. This is a hypothetical
1D system and the result we are looking for is the functional dependence on wavelength.)

The modes labelled by n in 2.1 are the degrees of freedom for the light. As there is no bound
on the integer n, there are infinitely many of them. According to classical thermodynamics,

7
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Figure 2.1: The observed spectral radiance, I(λ, T ), for a black-body at different temperatures
as well as the prediction of classical theory.

each of the modes has thermal energy kT on average. The cavity should therefore contain an
infinite thermal energy.

The wavelengths of the modes in 2.1 are λn = (L/2n). For large n, or small λ, we can
treat λ as a function of a continuous variable n and find the number of different modes with
wavelengths between λ and λ− dλ

n(λ) =
L

2λ
and ∆n =

dn

dλ
(−dλ) = L

2

λ2
dλ. (2.2)

Assuming each of these modes has energy kT , the total thermal energy with wavelengths
between λ and λ− dλ at temperature T , e(λ, T ), is kT times ∆n

e1D(λ)dλ = kT
dn

dλ
(−dλ) = L

2kT

λ2
dλ. (2.3)

(We use −dλ as λ is decreasing with increasing n. We count modes starting from the longest
wavelength. The 1D subscript denotes that we are working with an idealised 1D model.)

3D Black Body
A similar calculation for a 3D system gives the result

I(λ) dλ = V
2kT

λ4
dλ. (2.4)

Taking account of how frequently the light hits a wall (every L/c seconds for a box of side
L) and is reradiated, the energy radiated per unit time per unit area and per steradian1 with

1A steradian is the SI unit for solid angle. It is dimensionless.
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wavelengths between λ and λ− dλ is

Iclλ (T )dλ =
2c kT dλ

λ4
. (2.5)

Iclλ (T ) is called the spectral radiance. The superscript cl is denotes classical. The λ−4 depen-
dence suggests a rapidly increasing radiated intensity as λ gets smaller. For blue and red light
λblue ∼ 380 nm and λred ∼ 760 nm and(

1

λblue

)4

≈ 16

(
1

λred

)4

.

If correct it would mean that 16 times as much blue light as red light should be radiated
from any body. Everything would appear blue (including the Sun). This problem is called the
ultraviolet catastrophe.

The dependence predicted in 2.5 is not observed as can be seen in Figure 2.1. The classical
theory predicts the spectrum that diverges in the limit λ→ 0. What is needed is an explanation
for why the spectrum is cut off at small wavelengths/large frequencies.

Planck’s Solution
Planck suggested that energy is only emitted or absorbed from or into a light field in units of
hν where ν is the frequency of the light:

∆E = hν where h is (now) called Planck’s constant. (2.6)

Each mode can only take on energy 0, hν, 2hν, · · · .

Thermodynamics says that the average occupation of one of these levels is given by Eq 1.1
p(nhν) ∼ e−nhν/kT ≡ e−βnhν , where β = 1/kT . The constant of proportionality is given by
the requirement that the probability distribution is normalised

p(nhν) =
e−βnhν

Z
where Z = 1 + e−βhν + e−2βhν + e−3βhν + · · · = 1

1− e−βhν
.

The right-hand side follows as the sum is a geometric progression with ratio r = e−βhν . The
final result is

p(nhν) = e−βnhν(1− e−βhν). (2.7)

The average energy in a mode with frequency is no longer kT as assumed classically, but

⟨E⟩ =
∞∑
n=0

nhν p(nhν) =
∞∑
n=0

nhν e−βnhν(1− e−βhν)

= (1− e−βhν)
∞∑
n=0

(
− d

dβ
e−βnhν

)
= −(1− e−βhν)

(
d

dβ

∞∑
n=0

e−βnhν

)

= (1− e−βhν)
hν e−βhν

(1− e−βhν)2
.

Planck’s result for the energy in a mode with frequency ν is therefore

⟨E⟩ = hν

eβhν − 1
, where β = 1/kT. (2.8)

This solved the problem and generated a result that explained the experimental observations
perfectly. To see how 2.8 explains things let’s look at two limiting cases
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• High temperatures
If βhν ≪ 1, we can expand the exponential in the denominator to find

hν

eβhν − 1
=

hν

1 + βhν + (βhν)2

2!
+ (βhν)2

3!
+ . . .− 1

≈ hν

βhν
=

1

β
= kT.

This is the classical result. The energy in the mode is kT . (Classical thermodynamics
says that both the kinetic energy and the potential energy in the mode should be kT/2
on average giving kT in total.) This is going to be a recurring theme. The results of
quantum theory must reproduce the classical results where we expect them.

• Low temperatures
Low temperature means kT ≪ hν and so eβhν ≫ 1:

hν

eβhν − 1
≈ hνe−βhν .

The expected energy in a high frequency (short wavelength mode) is exponentially small.

The suggestion that energy could only come in quanta of hν eliminated the ultraviolet catas-
trophe. Better than that, it predicted a form for the spectral radiance (replace ν by c/λ and
kT by ⟨E⟩ in 2.5)

Iλ(T )dλ = c
(2hc/λ)

(eβhc/λ − 1)

dλ

λ4
=

2hc2

(eβhc/λ − 1)

dλ

λ5
. (2.9)

This is plotted in Figure 2.1 for 3 different temperatures. Theory and observation match.

People wanted to understand why Planck’s formula worked so well. Some seemed to think that
quantisation had something to do with the emission process but not that quantisation was a
property of the light itself. Einstein was suggested this to explain the photoelectric effect.

2.1 Photoelectric Effect

Experimental data on the photoelectric effect had been collected over many years and by
1902 (Lenard) the phenomenon was well characterised experimentally. Light incident on a
metal surface can lead to the emission of electrons, see Fig. 2.2. Electrons are collected at an
electrode at a voltage V with respect to the metal surface. This voltage allows measurement
of the energy of the emitted electrons (it is used to stop the electrons reaching the electrode).

According to classical physics the energy given to electrons by the light depends on its intensity
and cannot explain the observed dependence on frequency.

Einstein’s Hypothesis
Einstein (1905) argued that light rays consist of discrete particles, now called photons, with
energy E = hν. An electron in the metal absorbs a photon’s energy. If hν is large enough the
electron has the energy to escape. To escape, it has to have enough energy to overcome the
attractive potential of the ions, which is called the work function ϕ0. Electrons that escape
have kinetic energy

Ee = hν − ϕ0
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Figure 2.2: The photoelectric effect. Light with frequency ν is incident on a metal plate. This
leads to electrons being emitted (image on left), which travel towards another metal plate.
A voltage applied to this plate stops the electrons (they lose kinetic energy as they approach
the negatively charged plate). The stopping voltage is plotted against the frequency of the
incident light (right). The result is not consistent with classical physics which associates energy
in light waves with their intensity. There may be corrections close to the threshold frequency
associated with higher order effects.

after leaving the surface. This is the energy measured by the stopping voltage.

Worked Example
Ultraviolet (uv) light with wavelength 350 nm and intensity 1Wm−2 is directed at a potassium
metal surface with ϕ0 = 2.2 eV.

i. Find the maximum kinetic energy of photoelectrons. Put your answer in eV .
ii. If 0.5% of incident photons produce photoelectrons, how many are emitted per second

if the surface area is 1 cm2.

Answer

i. The photon energy is according to Planck’s hypothesis

Ee(eV) =
hν

e
= 6.6× 10−24 × 3× 108

350× 10−9
× 1

1.6× 10−19
≈ 3.5 eV.

The kinetic energy

KE(= Ee) = E − ϕ0 = 3.5− 2.2 = 1.1 eV.

ii. Number of electrons emitted per second, 0.005× photons per second,

in = 0.005× Energy per second

hν
=

0.005× intensity× area

h× (c/λ)

=
0.005× 1× 10−4

6.6× 10−34 × (3× 108/350× 10−9)
≈ 8.8× 1011 s−1.

Remember to think about any answer like this. Is 1.1 eV reasonable? Probably, because
the energy is comparable to the work function. One wouldn’t want to set up an experiment
which needed kilovolts to stop the emitted electrons. The 1011 for in might seem large but
corresponds to a tiny current (ie = e× in ∼ 1.4× 10−4A).
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2.2 Compton Effect

The Compton effect was reported in 1923. It is a beautiful demonstration that light photons
are genuinely behaving as particles with well-defined energy and momentum. As particles they
can collide with other particles. Compton showed that we can treat this collision using notions
from classical mechanics.

Note Figures 2 
Friday, 14 June 2024 17:29 

Figure 2.3: Schematic diagram showing Compton’s experimental setup. X-rays (high frequency,
short wavelength light) scatter off electrons in a graphite target. The slit, crystal and ionisation
chamber together allow the photon wavelength of the scattered light to be measured as a
function of the scattering angle θ. The slit selects the angle, the crystal selects for wavelength
and the ionisation chamber counts photons.

The theory of special relativity forces the photon rest mass to be zero. If not

hν = E = mc2 = γmoc
2 =

1√
1− v2/c2

m0c
2 (v=c)

= ∞ ≠ hν.

We have used that fact that the photon’s velocity v = c (light travels at the speed of light).
The only solution to this is that m0 = 0 and the assumption of a non-zero m0 is wrong.

Using the formula (again from special relativity with p the momentum) E2 = p2c2+m2
0c

4, we
find that m0 = 0 means

p =
E

c
=
hν

c
=
h

λ
. (2.10)

This result relating momentum and wavelength is central to all of quantum theory. Under-
standing that this result applies to all particles and fields, and not just to photons, is central
to quantum theory. Together with de Broglie’s hypothesis, which we will study in the next
chapter, it led to the rapid development of what we call quantum mechanics and quantum
field theory.

Compton’s Experiment
Compton shone X-rays on a graphite target and studied the wavelength of the waves emitted,
see Fig 2.3.

If an incident photon collides with an electron in the graphite layer the total momentum of
the photon and electron pair as well as their energy should be conserved. According to the
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quantum hypothesis the frequency of the X-rays would imply that the photon energy hν will
be much larger than the kinetic energy of individual electrons in the graphite target. Compton
argued that the electrons in the graphite are effectively stationary (their initial momentum
pe ≪ h/λ and should be well approximated by zero).

Compton 
Friday, 14 June 2024 17:29 

A photon with frequency ν collides with a sta-
tionary electron. After the collision the elec-
tron has energy Ee and momentum pe and
the scattered photon has frequency ν ′ and mo-
mentum p′.

The energy of the photons is pc and p′c and
the rest mass energy of the electron is m0c

2.
Conservation of energy and momentum give

pc+m0c
2 = Ee + p′c

⇒ p+m0c− p′ = (Ee/c) (energy)

p− p′ = pe (momentum).

Squaring both sides of the second equation and taking the dot product with itself on both
sides of the momentum equation gives, using Einstein’s result that E2

e = p2ec
2 + (m0c

2)2,

p2 + p′2 + (m0c)
2 + 2(pm0c− p′m0c− p p′) = p2e + (m0c)

2

p2 + p′2 − 2pp′ cos θ = p2e.

Subtracting the second equation from the first (and dividing by 2) gives

m0c (p− p′)− p p′(1− cos θ) = 0 ⇒
(
1

p′
− 1

p

)
=

1

m0c
(1− cos θ).

This result is usually written in terms of the difference in wavelength of the photons (remember
the hypothesis of quantum theory that p = h/λ for a particle):

λ′ − λ = λC(1− cos θ) where λC =
h

m0c
. (2.11)

λC is called the Compton wavelength. The variation of wavelength predicted by this calculation
matches what is observed.

The difference in wavelength in 2.11 is a quantum phenomenon. The wavelength of light
scattering off a stationary particle cannot change according to classical physics (some changes
associated with the Doppler effect if the particle is moving, or in very intense light, are possible
but nothing along the lines predicted here). This effect is an excellent examples of what is
sometimes called wave-particle duality in quantum theory. The experiment here uses wave
theory to describe the diffraction by the crystal used to analyse the wavelength of the scattered
light. However, it analyses the interaction with the graphite target by treating the light as a
stream of particles which collide with electrons.

2.3 Summary

We have looked at three quantum phenomena:
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Black-body Radiation This made clear that classical physics was in difficulty. There are
infinitely many em-wave modes (degrees of freedom) in any body. According to classical
thermodynamics these should each have (on average) kT thermal energy. The infinity
of modes would lead to a body radiating at an infinite rate at any non-zero temperature.
Planck suggested that energy in light modes is radiated in quanta of hν. If hν ≫ kT ,
the probability of these modes radiating is exponentially reduced by the Boltzmann factor
e−hν/kT . This hypothesis correctly describes observations.

Photoelectric Effect The dependence of the energy of electrons, emitted from an irradi-
ated surface, on the frequency of the incident light is inconsistent with classical theory.
Einstein interpreted the results of the experiment in terms of particles of light carrying
energy hν which interacted with individual electrons.

Compton Effect The scattering of light by a stationary electron can be understood if the
light particles carry momentum h/λ as well as energy hν. The scattering of the light is
correctly accounted for as a collision between a photon and an electron, which conserves
energy and momentum.

Describing light fully requires quantising what in physics is called a field (not to be confused
with what mathematicians call a field2). Classically, the electric and magnetic fields need to
be defined everywhere as a function of time. This is why there are infinitely many degrees
of freedom (there are infinitely many points in space). Planck’s hypothesis may have dealt
with the thermal excitation of these degrees of freedom. However, this was not the end of the
matter. Fields with their infinitely many degrees of freedom have been (and remain) difficult
for quantum theory.

We will leave photons behind from now on and concentrate on the quantum theory of individual
matter particles—electrons and protons principally. The second half of the module will discuss
other elementary particles. The classical description of a single particle is simpler than light.
If we can treat the particle as a point particle we need only fix its position as a function of
time r(t). In 3D, there are therefore only 3 things to specify as a function of time (the three
coordinates of the particle). This is one reason why quantum mechanics came (albeit shortly)
before quantum field theory.

2Roughly speaking, a field in maths is a set. The operations of addition and multiplication should be defined
on the elements of this set and behave as they do for real numbers.



Chapter 3

Matter and Spectra

Emission and absorption spectra of atoms show sharp spectral lines. Understanding these
was what quantum theory applied to matter was initially concerned with. Rutherford (1911)
had showed that matter consisted of atoms with a heavy positively-charged nucleus and light
negatively-charged electrons bound to this nucleus. Describing the nature of these bound
states of electrons and nuclei is a major first challenge for quantum theory.

Something on Names
What are spectra and what are spectral lines? A spectrum is usually taken to mean the
amplitude of some signal as a function of frequency. The word spectrum in this context
was introduced by Newton to describe the range of colours seen after white light passes
through a prism. His motivation is thought to relate to his observation that light remained
visible in his eyes after closing them in a way reminiscent of ghosts. (Spectrum means
apparition in Latin.)

Spectrometers used prisms to split light beams according to frequencies. Different freqen-
cies showed up as lines on photographic plates. This graphic (source) illustrates schemat-
ically what the emission spectrum of some atomic species looks like as a function of
wavelength in Å.

15
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The lines associated with absorption and emission of light observed for atomic Hydrogen are
fitted by the following formula:

1

λ
= R̃

(
1

m2
− 1

n2

)
, m < n. (3.1)

Here R̃ = 1.0968 × 107m−1 is called the Rydberg constant. The tilde indicates that the
constant is quoted in inverse meters. (More commonly the Rydberg constant is quoted as an
energy R = 13.6 eV as we will see.) The series for hydrogen are named after the people who
reported them first

• m = 1 Lyman series (1906) which is in the ultraviolet
• m = 2 Balmer series (1885), some of these lines are in the visible
• m = 3 Paschen series (1908) in the infra-red

For other atoms (ones with more electrons) the spectral lines obey formulas

1

λ
= Tm − Tn, m < n, (3.2)

with corresponding ‘Term Numbers’ Tn.

These discrete lines were a problem for classical physics, which quantum mechanics was able
to resolve. In classical physics electrons orbiting a nucleus in similar way to planets orbiting a
star would not be stable and would not explain the observation of discrete spectral lines.

Bohr Atom 
Monday, 17 June 2024 17:55 

All frequencies would be possible depending on the orbit of the electron. Charged electrons
orbiting a nucleus would be oscillators (looked on sideways they are a charged particle oscillating
backwards and forwards as in a radio antenna) and would radiate away all their energy as
electromagnetic waves.

3.1 Bohr’s Atom

If light is absorbed as photons with energy hν then a discrete spectral line suggests a transition
between orbits with well-defined initial and final energies Ei and Ef :

hν =
hc

λ
= Ef − Ei, with Ef > Ei for absorption.

Bohr postulated (1913) that only states with a discrete set of energies En is possible (here n
is an integer). Rydberg’s formula would become using Planck’s formula (E = hν = hc/λ)

1

λ
=
Ef

hc
− Ei

hc
. (3.3)
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Comparing 3.2 and 3.3 suggests identifying (m < n)

Ei

hc
= − R̃

m2
or Ei =

hcR̃

m2
≡ − R

m2
, and Ef = −R

n2
. (3.4)

Here R = hcR̃ is the definition of the Rydberg constant as an energy (see just after 3.1). The
energies need to be identified as negative, otherwise the electron would not be bound to the
nucleus.

Quantisation of Angular Momentum
Bohr also suggested that electrons describe circular orbits with quantised angular momentum

ma2ω = nh̄, h̄ =
h

2π
. (3.5)

This empirical suggestion is the extension of Planck’s original idea. If energy can be quantised
with the introduction of the constant h, it seems reasonable that angular momentum might
also be quantised given particularly given that h has dimensions of angular momentum. The
quantisation in units of h̄ (rather than h) cannot given deduced just by considering dimensions.
It is the following calculation that confirms this.

Bohr Atom 
Monday, 17 June 2024 17:55 

For the H atom we set the centrifugal force equal to
the attractive (Coulomb) force between the electron
and the nucleus: mrω2 = e2/4πϵ0r

2. The angular
momentum mr2ω = nh̄ (by Bohr’s hypothesis). We
rewrite these results as

r3ω2 =
e2

4πϵ0m
and ω2 =

n2h̄2

m2r4
. (3.6)

Inserting the expression for ω2 into the first equation gives

r = n2 h̄
24πϵ0
me2

≡ n2a0. (3.7)

The allowed radii of the orbits are given in terms of the quantity called the Bohr radius

a0 =
h̄24πϵ0
me2

= 0.53 Å. (3.8)

Using the result from 3.6 that r3ω2 = e2/4πϵ0m, gives the energy of the circular orbit

E = KE+ PE =
1

2
mr2ω2 − e2

4πϵ0r
=

1

2

e2

4πϵ0r
− e2

4πϵ0r
= −1

2

e2

4πϵ0r
.

When we set r = n2a0 (from 3.7), we obtain

En = −1

2

e2

4πϵ0

1

a0

1

n2
≡ −R

n2
. (3.9)



CHAPTER 3. MATTER AND SPECTRA 18

This is a beautiful result. It is exactly the dependence needed to explain experiment, see 3.4,
and gives the Rydberg constant in terms of other fundamental constants

R =
1

2

e2

4πϵ0

1

a0
=

1

2

e2

4πϵ0

me2

h̄24πϵ0
=
m

2

(
e2

4πϵ0h̄

)2

≈ 13.6 eV. (3.10)

These results 3.9 and 3.10 explained the spectra observed for atomic hydrogen. It was difficult
to explain quantitatively the more complicated cases seen in many-electron atoms 3.2. This is
not surprising as solving for the orbits of many electron atoms is not easy classically either. It
would also not be clear how to incorporate relative angular momentum of the different electrons.
What is also not wholly satisfactory is why angular momentum should be quantised—we do not
want to need to assert that each new quantity needed to describe some problem is quantised.
The resolution to this problem was provided by de Broglie.

3.2 de Broglie’s Hypothesis

de Broglie (1924) suggested that all particles behave like waves with

λ =
h

p
or equivalently p =

h

λ
= h̄k. (3.11)

Here k = 2π/λ is the wavenumber. It only seems natural that, if light waves can behave
like particles, particles should also behave like waves. Eq 3.11 is the equivalent relation to the
one that Compton had used for photons 2.10. It also gives a rough and ready justification for
Bohr’s quantisation of angular momentum:

De Broglie 
Monday, 17 June 2024 18:02 

If the electrons behave like waves then Bohr’s suggestion that l = rp = nh̄ implies

rp = rh̄k = nh̄ ⇒ r
2π

λ
= n or

2πr

λ
= n.

The circumference of a classical orbit of the electron around the nucleus, 2πr, must be an
integer number of wavelengths around the ring.

The idea that particles behaved like waves was quickly verified in experiment. Thomson (1925)
found evidence for diffraction (a wave phenomenon) when scattering electrons off a crystal.
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Summary
I have presented the early development of quantum theory as a sort of detective story. The
evidence suggested that classical physics had got something wrong. Various detectives (Planck,
Einstein, Bohr, de Broglie and others) formulated hypotheses to pin down what this was.
Theories were validated by whether they explained and predicted new observations and data.
Essentially all sciences, including social sciences, work like this. It is called empiricism. The
principal exception to this is pure mathematics which relies on proof to validate conjectures
rather than comparison with data taken from observation or experiment.

As we will see, quantum theory developed quickly after de Broglie’s hypothesis. The main ideas
were there but they needed to be pieced together into a predictive new theory. From 1924
until 1932 or so most of what could be done was done. This has left us with the tools needed
to explain the quantum properties of matter such as atoms, molecules and solids. They are
being used all the time nowadays to explain and predict phenomena across physics, chemistry,
biology, engineering and computer science.

Quantum theory then ran into another huge problem which held things back for another decade
and a half. While the issue with the thermal excitation of the infinitely many modes in a body
is resolved by suppressing short wavelength excitations using a Boltzmann factor, the systems
still have infinitely many degrees of freedom. Once interactions between these degrees of
freedom (between light and charges for example) are switched on, the theory predicts many
observable quantities which are infinite. The partial resolution of this problem appeared in the
1940’s (Tomonoga, Bethe, Schwinger, Feynman and Dyson all made important contributions).
This involved the ideas of regularisation (”chopping off” sums at short wavelength to eliminate
the infinities) and renormalisation (making the ”chopping-off frequencies” disappear from all
predictions of observable quantities). Look up Quantum Electrodynamics for more on this

The nature of the module will change now. We will look at the construction of the new
mechanics, quantum mechanics, and its assumptions. Most of the work will be in setting up
the equations and thinking about what their solutions imply in a few simple cases.



Chapter 4

Quantum Mechanics

Quantum mechanics became the new mechanics for particles. The theory developed quickly
following de Broglie’s hypothesis (1924). Heisenberg (1925) with Born and Jordan developed
the theory on the basis of matrices while Schrodinger (1925/6) introduced an equivalent version
based on wave mechanics. We will concentrate on Schrodinger’s approach.

Felix Bloch in his reminiscences1 said that Schrodinger had been criticised at a colloquium
where he had explained de Broglie’s idea (essentially the sketch on page 18 showing an integer
number of wavelengths). He was told that he needed a wave equation if he wanted to talk
about waves. Bloch writes

Just a few weeks later he [Schrodinger] gave a talk in the colloquium which he
started by saying: ”My colleague Debye suggested that one should have a wave
equation; well, I have found one”.

We will see how a correspondence principle attributed to Bohr, put together with de Broglie’s
hypothesis and Planck’s relation, led Schrodinger to the correct wave equation for matter.

The argument is unusual but only in the sense that it works backwards from the answer. The
canonical approach would be to deduce the correct wave equation for something from the tested
or postulated laws of motion (Newton’s laws in classical mechanics, laws of electromagnetism
for light, general relativity for gravitational waves), and then solve it to find wave-like solutions.
Here we are in the unusual position of knowing the solutions (particles behave like waves) but
don’t know their equation of motion.

We expect the simplest travelling waves to have the form

ψ(x, t) ∼ ei(kx−ωt) = eik(x−vt) and ψ(x, t) ∼ ei(−kx−ωt) = e−ik(x+vt). (4.1)

These describe right-travelling ψ ∼ eik(x−vt) and left-travelling ψ ∼ ei(−k)(x+vt) waves. The
quantity v is called the phase velocity, v = ω/k = λν. From here we will consider k to have a
direction and think of it as a vector. Positive k is the wavevector for a wave travelling in the
positive x−direction and negative k for a wave travelling in the negative x−direction.

The displacement variable in 4.1 is called ψ. In mechanical systems the displacement might be
the displacement of a string from its equilibrium configuration as a function of position along

1Physics Today 29(1976)23

20
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the string and of time. One issue, that Schrodinger and others had to resolve for quantum
theory, was what ψ described.

The relation between the angular frequency ω(k) and the wavevector k for a wave is called
the dispersion relation. Normally it comes from inserting wave solutions of the type 4.1 into
the known equation of motion:

∂2ψ

∂t2
− v2

∂2ψ

∂x2
= 0

(wave)⇒ (−ω2 + v2k2)ψ = 0 hence ω = ±v k

∂ψ

∂t
+ v

∂ψ

∂x
= 0

(wave)⇒ (−ω + v k)ψ = 0 hence ω = v k. (4.2)

The first of these equations is often called the wave equation. Here ψ(x, t) might be the
deviation from equilibrium of points on a tight string. The second equation is called the
advection equation and is sometimes used to describe traffic flow problems with ψ(x, t) the
traffic density as a function of position and time along a road.

We will combine Bohr’s correspondence principle with the relations between frequency and
energy, and between momentum and wavevector, to deduce the dispersion relation for particles
in quantum theory. We will then reverse the argument in 4.2 to find the equation describing
ψ. We will multiply the dispersion relation by ψ(x, t). Where we see ω × ψ we will guess
that this comes from taking a time-derivative of ψ and where we see k × ψ we relate this to
a spatial derivative of ψ. In summary, we

replace ω ψ by i
∂ψ

∂t
, and replace ± k ψ by

1

i

∂ψ

∂x
(4.3)

to find the equation of motion.

Correspondence Principle
The correspondence principle is not as well-defined as its name suggests. It is essentially the
common sense idea that, when a physical theory is overthrown, the new theory and the old
theory must agree in those realms where the old theory has been tested and shown to describe
reality correctly. In the context of mechanics the old theory is Newton’s laws of motion and
the new theory is quantum mechanics. In this case the classical limit is identified with systems
far from their ground state (sometimes referred to as “the limit of large quantum numbers”).

4.1 Schrodinger Equation

The correspondence we need to take account of is that in classical physics the kinetic energy
is p2/2m. Planck tells us that E = h̄ω and de Broglie says that p = h̄k. This means

E =
p2

2m

(wave)⇒ h̄ω − h̄2k2

2m
= 0. (4.4)

We imagine the relation between ω and k multiplies a function ψ and write it using the
identifications in 4.3:(

h̄ω ψ − h̄2k2

2m

)
ψ = 0

Eq 4.3→
(
ih̄
∂ψ

∂t
+
h̄2

2m

∂2ψ

∂x2

)
= 0. (4.5)
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This gives the equation

ih̄
∂ψ

∂t
= − h̄2

2m

∂2ψ

∂x2
. (4.6)

Equation 4.6 is called the Schrodinger equation , actually the Schrodinger equation for free
particles as we have not yet included the effect of a potential energy. It is the answer. The
reason we know it is right is because it predicts correctly what can be observed. You should
think of the argument given here, as Schrodinger did, as a plausibility argument. The test that
matters is “does it work?”.

In fact this line of argument throws up alternative equations. We could have demanded
correspondence with the classical result from special relativity E2 = p2c2+m2

0c
4. It is reported

that Schrodinger did consider this but rejected it because it did not correctly describe the energy
levels of a hydrogen atom. The resulting equation is called the Klein-Gordon (KG) equation
after the people who first published it. It turns out that a variant of the KG equation describes
well the behaviour of the Higgs boson (see second half of the module).

Equation 4.6 was constructed to have wave-like solutions with the right dispersion, see Eq 4.4.
But what does it mean? Given the presence of the factor i, it is inevitable that solutions will
be complex-valued. (This is not the same as using the complex exponential form and taking
the real part as you may have seen elsewhere.) No measurement device can measure imaginary
Amps or imaginary Volts or any other imaginary quantity. We can only measure real-valued
quantities, which means ψ itself cannot be a directly measurable quantity.

Interpreting ψ
Much of the early discussion about what ψ meant related to what happens in measurements
(look up Copenhagen Interpretation for more on this). It is natural to assume that, where ψ
is large, is where the particle is likely to be. This suggests that ψ is related to the probability
of finding the particle. Leaving out questions related to what happens in measurements, the
usual interpretation is that

|ψ(x, t)|2dx = ψ∗(x, t)ψ(x, t) dx (4.7)

gives the probability of finding the particle at time t between x and x + dx. This makes
|ψ(x, t)|2 a probability density, and means that |ψ(x, t)|2 should be normalised∫

L

dx |ψ(x, t)|2 = 1, (4.8)

where L is the space on which ψ is defined. This condition states that, if there is a particle
somewhere in the system, the probability of finding it there has to be 1.

Superpositions—Standing Waves
Equation 4.6 involves a linear operator acting on ψ. (You have probably met the notion of a
linear operator in maths modules. The reminder on page 31 recaps the ideas.) This means
that linear superpositions of the solutions we already know (those in 4.1) will also be solutions.
We will look at combinations of two waves and at the more general idea of a wave packet.

Consider the superposition

ψ = Aeikx−iω(k)t) + Ae−ikx−iω(−k)t).

https://iopscience.iop.org/article/10.1088/1361-6404/aba7dc
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The amplitude A is the same for each component and may be complex. Since h̄ω(−k) =
h̄2ω(k) (= h̄2k2/2m), this reduces to

ψ = 2Ae−iω(k)t cos kx and |ψ|2 = 4|A|2 cos2 kx = 2|A|2 (1 + cos 2kx) . (4.9)

ψ in 4.9 describes a standing wave oscillating at each point in space with angular frequency
ω(k) and amplitude 2A cos kx. The probability distribution |ψ|2 is time-independent:Superpositions 

Saturday, 22 June 2024 18:01 
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The probability density of finding the particle, given by |ψ|2, is largest when cos 2kx = 1 and
a minimum when cos 2kx = −1.

Standing waves oscillating at a constant frequency are called stationary states in quantum
theory (we will discuss these further in the next chapter). They describe a system with a
constant energy and no measurable quantities which depend on time (|ψ|2 is time-independent).
Atomic orbitals are probably the best-known examples of such states. They will be the solutions
of the Schrodinger equation including the interaction of the particle with a potential. The
boundary conditions will be that the wave function ψ must be single-valued (it must map onto
itself when going round any axis through the nucleus) and must vanish as r → ∞, where r is
the distance of the electron from the nucleus.

Superpositions—Group Velocity
Now consider the superposition of two waves with the same amplitude but slightly different
wavevectors k1 > 0 and k2 > 0:

ψ = Aeik1x−iω(k1)t + Aeik2x−iω(k2)t (4.10)

and set k1 = k0 +∆k and k2 = k0 −∆k. Taking the case ∆k/k0 ≪ 1, we can expand ω(k)
in a Taylor series about k0 and keep only the constant and the term linear in ∆k:

ω(k0 ±∆k) ≈ ω(k0)±∆k
dω

dk

∣∣∣∣
k0

≡ ω0 ±∆k ω′
0. (4.11)

The vertical bar with the subscript k0 means that dω/dk should be evaluated at k = k0. The
superposition can be written

ψ = Aei(k0x−ω0t+∆kx−∆kω′
0t) + Aei(k0x−ω0t−∆kx+∆kω′

0t)

= 2Aei(k0x−ω0t)

[
ei∆k(x−ω′

0t) + e−i∆k(x−ω′
0t)

2

]
= 2Aei(k0x−ω0t) cos∆k(x− ω′

0t).

The probability distribution is

|ψ|2 = 4|A|2 cos2∆k(x− ω′
0t) = 2|A|2 [1 + cos 2∆k(x− ω′

0t)] . (4.12)

which looks like
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Superpositions 
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It is common to call the quantity vg = ω′
0 the group velocity. The pattern in |ψ|2 is a function

of (x−vgt). It describes a right-travelling wave moving at speed vg. Using h̄ω(k) = h̄2k2/2m
from 4.4 we find

ω′ =
d

dk

(
h̄k2

2m

)
=
h̄k

m
⇒ vg = ω′

0 =
h̄k0
m

=
p0
m
, (4.13)

where p0 is the average momentum of the particle (p0 = h̄(k1 + k2)/2). This is reassuring.
The speed at which the pattern in the probability density moves is what we should expect from
classical physics.

Normalisation
None of the solutions of Schrodinger’s equations that we have looked at

i. ψ = A eikx−iω(k)t (plane wave)
ii. ψ = 2A e−iω(k)t cos kx (standing wave)
iii. ψ = 2A ei(k0x−ω0t) cos∆k(x− ω′

0t)

can be normalised. We argued that wave functions need to be normalised according to 4.8
because of the identification of |ψ|2 as a probability density. For example, for i)∫ ∞

−∞
dx |ψ|2 =

∫ ∞

−∞
dx |A|2 = ∞ if A ̸= 0.

However if A = 0 we have no wave function. One of way round this problem is to think of
working with a large finite length 2L:∫ L

−L

dx |ψ|2 =
∫ L

−L

dx |A|2 = 2L |A|2 ⇒ |A| = 1/
√
2L.

Another is to work with wave packets.

4.2 Wave packets

We call a linear superposition of waves with wavenumbers k grouped around some value, say
k0, a wave packet or wave group. We looked at the case of two waves with k1 = k0+∆k and
k2 = k0 −∆k in the last section. We are going to generalise this to the case where we sum
over a continuous distribution of wave amplitudes a(k) and replace the sum by an integral:

ψ =

∫
dk a(k) ei(kx−ω(k)t). (4.14)
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We haven’t specified the region of integration. This can be taken as the real line even when
the region is finite, so long as we set a(k) = 0 for the values of k outside the region in which
a(k) ̸= 0.

Superpositions 
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We assume that |a(k)|2 looks as in
the sketch. We show |a(k)|2, and
not a(k), because it is real and can
be measured. When we need to be
precise about the width of the distri-
bution in k we will use the standard
or root mean squared (rms) devia-
tion σ where

σ2 =

∫
dk |a(k)|2(k − k0)

2∫
dk |a(k)|2

.

(4.15)

We expand ω(k) about k0 as we did in 4.11

ω(k) ≈ ω(k0) + ω′(k0)(k − k0) = ω0 + ω′
0∆k.

This will be a good approximation if the distribution of k about k0, characterised by σ (see
sketch), is narrow. Narrow means that the effect of the corrections to the expansion is small
compared to that of the terms we keep. These corrections are of order σ2|d2ω/dk2|. We will
assume that it is a good approximation in all cases we will look at. With the expansion for
ω(k) we obtain

ψ ≈
∫
dk a(k) eik0x+i(k−k0)x−iω0t−iω′

0 ∆k t = eik0x−ω0t

∫
dk a(k) ei∆k(x−ω′

0t)︸ ︷︷ ︸
a function f(x− vgt)

, (4.16)

where we have identified the group velocity vg with ω′
0. As indicated by the brace under the

integral, ψ is a function of (x− vgt). It therefore describes a right-travelling wave moving at
speed vg. The shape of the waveform described by f will be determined by the function a(k).
For some standard cases it can be computed analytically.

Gaussian wave packet
As an example, we will take a(k) to be a Gaussian. We introduce the variable s = x − vgt
and identify the domain of integration as the real line (−∞ to ∞). Eq. 4.16 gives

a(k) = A e−(k−k0)2/2σ2

put k′ = (k − k0)

f(s) = A

∫ ∞

−∞
dk′ e−k′2/2σ2

eik
′s

= Aσ

∫ ∞

−∞

dk′

σ
exp

[
−
(
k′

σ
− isσ

)2 − s2σ2

2

]
put k̃ = k′/σ

= A e−s2σ2/2σ

∫ ∞

−∞
dk̃ exp

[
−
(
k̃ − isσ

)2
/2

]
︸ ︷︷ ︸

a standard integral =
√
π

= Aσ
√
πe−s2σ2/2.
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The wave function ψ for the Gaussian wave packet is (s = x− vgt)

ψ = ei(k0x−ω0t)Af(s) = Aei(k0x−ω0t)σ
√
πe−s2σ2/2,

and the corresponding probability distribution

|ψ|2 ≈ |A|2σ2πe−s2σ2

. (4.17)

This is approximate because the dispersion relation ω(k) has been approximated by a Taylor
expansion.

Two features in 4.17 are particularly important as they apply to a class of wave packets. The
probability distribution |ψ|2 is normalisable. The other important property is the reciprocal
relation between the width in wavenumbers σ and the width of the propagating waveform in
real space ∼ 1/σ. A narrow width in the space of wavenumbers becomes a large width in real
space and vice versa:

Superpositions 
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Summary
The concept of the wave packet and the group velocity are important as is the result 4.17.
While it is not true that the functional forms of f(s) and a(k) will be the same (here they
were both Gaussians), the reciprocal relation between the two widths is true for wave packets
where the Taylor series for ω(k) is a good one. In Appendix A we give two more examples of
standard wave packets and derive explicitly the reciprocal relation between the width of the
distribution in wavenumbers and the width of the wave packet.

Wave packets help us resolve some of the conceptual issues:

i. We can use waves of the form eikx−iω(k)t to form wave functions which are localised in
space. A wave packet which is localised in space means a width 1/σ which is small. The
corresponding width in the space of wavenumbers σ is large.

ii. The quantity |ψ|2 for wave packets is normalisable and the difficulty of the non-normalisability
of the corresponding quantity for the waves eikx−iω(k)t is no longer present.

iii. A particle described by a wave packet moves with the group velocity derived in 4.13

vg =
dω

dk
(k0) =

h̄k0
m

=
p0
m
.

This is consistent with expectation. Anything else would have contradicted the corre-
spondence principle (v = p/m is what we expect from classical physics).

iv. The result helps understand the idea of wave-particle duality as we will discuss next.
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4.3 Heisenberg’s Uncertainty Principle

Writing wave functions as wave packets as in 4.14 shows that we can think of the wave function
ψ as a sum over waves or as a function in real space. A broad distribution in wavenumbers
(large σ) corresponds to narrow distribution in real space (small 1/σ) and vice versa.

Choosing σ small (see 4.15) corresponds to a small uncertainty in momentum and energy.
Remember that quantum theory assumes that p = h̄k and E = h̄ω(k). In this case the
particle position will not be well-defined as 1/σ will be large. The particle will appear more
wave-like. Choosing σ large means the particle has a reasonably well-defined position. The
uncertainty in position ∼ 1/σ is small while the uncertainty in its momentum is large.

At least for the Gaussian wave packet we looked at explicitly, the product of the uncertainty
in wavenumber and the uncertainty in position appears to be constant.

Heisenberg introduced this as a principle of quantum theory (1927). He stated that

∆x×∆p ≥ h̄

2
where (∆p)2 = ⟨(p− p̄)2⟩, (∆x)2 = ⟨(x− x̄)2⟩. (4.18)

To use this inequality accurately would need being precise about the definitions of ∆x and
∆p. The principle uses the RMS definition which we introduced in 4.15 in the context of
wave packets. The quantities p̄ and x̄ are the average (sometimes called expected) values of
the observable quantities momentum and position. The angle brackets also denote average or
expected values (of the square of the deviation from the average values).

Quite often Heisenberg’s uncertainty principle (HUP) is used to give order of magnitude esti-
mates of quantities. We will look at two examples.

Classical Limit
Describing the position and momentum of a cricket ball is not expected to require a quantum
theoretic treatment. To see why we can appeal to the HUP. Suppose we measure the position
of the ball to an accuracy of 10 µm = 10−5m. We can estimate the quantum limit on the
accuracy of a measurement of its speed (take its mass to be 200 g)

∆p ∼ h̄

∆x
=

10−34

10−5
= 10−29 kgm s−1 ⇒ ∆v =

∆p

m
≈ e− 29

0.2
= 5× 10−30ms−1.

We would not measure anything like this accuracy. Quantum uncertainty is irrelevant for
the cricket ball—and almost all aspects of the macroscopic world. There are two well-known
exceptions to this, namely superconductivity and the quantum Hall effect. In macroscopic
samples the measured response to electric and magnetic fields in both cases is given exactly
in terms of h and e.

Bohr’s Hydrogen Atom
Bohr’s empirical suggestion was that angular momentum is quantised in units of h̄, see 3.5.
This led to the requirement that the classical orbits of the electrons were at a distance r = n2a0
from the nucleus where a0 = 0.53 Å is the Bohr radius, see 3.8. If we take the ground state
(n = 1) we find that the electron’s position is localised on a scale of a0. HUP gives∆p ≥ h̄/a0.
On the other hand, the quantised angular momentum means l = mva0 = h̄. This would mean

|p| = mv =
h̄

a0
and from HUP

∆p

|p|
≥ h̄/a0
h̄/a0

= 1. (4.19)
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This suggests that the uncertainty in momentum is comparable to (or larger) than its expected
value. The hydrogen atom is clearly in the quantum limit. It is something of a fluke that Bohr’s
hypothesis yielded the frequencies of the absorption and emission lines correctly.

Some Background
Heisenberg clearly got there first with his formulation of quantum theory. But Schrodinger’s
approach gained traction quickly. Heisenberg did not like Schrodinger’s approach and even
called it Mist (look up Misthaufen in google translate to get a feeling for what he meant).
Heisenberg argued that quantum theory should be based only on observable quantities.
These are represented by infinite-dimensional matrices. Schrodinger’s approach appeared
to contain phantom information associated with features in the wave function which are
not observable. The approaches were subsequently shown to be equivalent and both ap-
proaches can help understanding. If you are interested in the historical background to the
uncertainty principle, the Stanford Encyclopedia of Philosophy includes a good account.

https://plato.stanford.edu/entries/qt-uncertainty/#Heis


Chapter 5

Applying Schrodinger’s Equation

Schrodinger’s equation is hugely successful. With some modifications the equation is the basis
for most of the theory of matter. Dirac wrote in 1929

The fundamental laws necessary for the mathematical treatment of a large part of
physics and the whole of chemistry are thus completely known, and the difficulty
lies only in the fact that application of these laws leads to equations that are too
complex to be solved. It therefore becomes desirable that approximate practical
methods of applying quantum mechanics should be developed, which can lead to
an explanation of the main features of complex atomic systems without too much
computation.

This quotation annoys some chemists and is not strictly true, but the bit about equations being
too complex to solve is true. This is why we will concentrate on simplified models for which
we can solve Schrodinger’s equation. It is also why physics, and science in general, almost
always works with approximate methods for making predictions.

In this chapter we will do three things

i. Include in Schrodinger’s equation the effects of a potential

ii. Look at systems which conserve energy. If energy is conserved, we will see that we can
work with what are called stationary states, introduced on page 23. These are states for
which all observable properties are independent of time.

iii. Study the phenomenon of tunneling. This is where a system can exist in configurations
which are classically forbidden. It is how we describe phenomena such as nuclear decay.

Schrodinger’s Equation including a Potential
Working from the correspondence principle, we argued that a free particle of mass m should
be described by 4.6

ih̄
∂ψ

∂t
= − h̄2

2m

∂2ψ

∂x2
. (5.1)

In the presence of a potential energy, which we will assume depends on position, classical physics
gives E = p2

2m
+V. With Planck’s hypothesis E = h̄ω and de Broglie’s relation p = h̄k, we use

29
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the correspondence principle to put the two quantities into the relation h̄ω = h̄2k2/2m + V
and multiply by ψ. This suggests the equation (see argument leading to 4.5)

ih̄
∂ψ

∂t
= − h̄2

2m

∂2ψ

∂x2
+ V (x)ψ. (5.2)

Eq. 5.2 is the full Schrodinger equation. Its justification is ultimately empirical. Where we
can solve it, it correctly describes the properties of matter. One of its first successes was to
predict the energy levels of a hydrogen atom (the equation had to be generalised to 3 spatial
dimensions). It is now widely accepted as ‘the theory’.

We need to find the equivalent of the waves, eikx−iω(k)t, to give us a basis of states with which
to form linear superpositions. Finding these states in the presence of a potential is where most
of the interesting results are to be found.

Stationary States
If all components of a wave function oscillate with the same frequency,

ψ(x, t) = e−iωtϕ(x) = e−iEt/h̄ϕ(x), (5.3)

the system is said to be in a stationary state. If the wave function for a system can be

written as in 5.3, the probability distribution is time-independent (see 4.7)

|ψ(x, t)|2 dx = |ϕ(x)|2dx.

Measurable properties of the system are independent of time—hence the name stationary state.

(Note: We will use ψ(x, t) for the time-dependent wave function. In the case of stationary
states, we work with a function of spatial coordinates which we have labelled ϕ. Many authors
will refer to both ψ and ϕ as the wave function. It should be clear from the context what is
meant. Not everyone uses the same notation so you need to be on your guard.)

The concept of stationary (and non-stationary) states also applies in the case V = constant,
which we considered in the previous chapter. The solutions of Schrodinger’s equation we
looked at were

i. The wave
ψ(x, t) = eikx−iω(k)t = e−iω(k)teikx = e−iω(k)tϕ(x)

is a stationary state with ϕ = eikx.

ii. The standing wave, see 4.9,

ψ = 2Ae−iω(k)t cos kx = 2Ae−iω(k)tϕ(x)

is already in the form of a stationary state. Here ϕ(x) = 2A cos kx.

iii. The wave-packet 4.14

ψ =

∫
dk a(k) ei(kx−ω(k)t),

is not in general a stationary state. Different k can have different frequencies ω(k).
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5.1 Time-independent Schrodinger Equation (TISE)

Understanding stationary states is how we find what quantum theory predicts for many systems.
This is because of energy conservation. Essentially all systems not being driven by an external
source of energy conserve energy. Their properties can be deduced from their stationary
states. In many experiments we deliberately perturb systems with an external source of energy
and, provided the driving is small, we can usually understand the response to this driving by
considering the stationary states of the system.

Assuming that a system is in a state of the form 5.3 the left-hand side of Schrodinger’s
equation 5.2 gives

ih̄
∂ψ

∂t
= ih̄

∂

∂t
e−iωtϕ(x) = ih̄(−iω)︸ ︷︷ ︸

h̄ω = E

e−iωtϕ(x) = Ee−iωtϕ(x),

while the right-hand side becomes

− h̄2

2m

∂2ψ

∂x2
+ V (x)ψ = − h̄2

2m

∂2

∂x2
e−iωtϕ(x) + V (x)e−iωtϕ(x) = e−iωt

[
−d

2ϕ

dx2
+ V (x)ϕ

]
.

Because ϕ(x) depends only on one variable the partial derivative has become an ordinary
derivative. Setting the left- and right-hand sides equal and cancelling the common factor of
e−iωt gives the time-independent Schrodinger equation or TISE :

− h̄2

2m

d2ϕ

dx2
+ V (x)ϕ = E ϕ. (5.4)

Note on Terminology
The left-hand side of 5.4 involves an operator acting on a function. An operator takes a
function and maps it to another function. For example taking the derivative would map
the function ϕ(x) to dϕ/dx. In the TISE the operator takes the second derivative of ϕ,
multiplies it by a constant, and subtracts it from V (x) multiplying ϕ(x):(

− h̄2

2m

∂2

∂x2
+ V (x)

)
︸ ︷︷ ︸

Hamiltonian

ϕ = Hϕ

For historical reasons, this operator is denoted by H and called the Hamiltonian .
Hamilton (1833) had introduced a formulation of classical mechanics with a function
called H which played an analogous role to the operator in the TISE. The Hamiltonian
operator in quantum mechanics is a linear operator because acting on the sum of two
functions gives the sum of the operator acting on the two functions separately.

The TISE is solved by functions ϕ(x) which, when acted on by the Hamiltonian operator,
yield the original function multiplied by a constant. We say that solutions for ϕ(x) are
eigenfunctions of the operator H with E the corresponding eigenvalue.

You will notice that the language of quantum theory is similar to that of linear algebra
with functions playing the role of vectors and operators that of matrices. This is not a
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coincidence. Hilbert and others had shown in the early twentieth century that in many
cases functions should be thought of as elements in an infinite-dimensional vector space.
There are natural generalisations from finite-dimensional vector spaces of the inner product
(sometimes called dot product), basis vectors and sizes (or norms) of the functions.

The study of stationary states normally follows the procedure

i. Set up the TISE with appropriate potential and establish the boundary conditions;
ii. Solve the resulting boundary value problem (TISE + boundary conditions) for states

with fixed energy E. Often only certain values of E will lead to solutions;
iii. Think about the answer.

We will look at two examples: the infinite potential well and a potential barrier. The first
will illustrate how bound states arise in quantum theory. Examples of bound states are the
orbitals occupied by electrons in atoms and molecules. The electrons are bound to the nucleus.
While the calculations for atoms involve the TISE in 3D and are hard work, our 1D calculation
will show how the spectrum of allowed energies becomes discrete. The second example, the
potential barrier, will illustrate the final quantum phenomenon of the module namely quantum
tunneling. In quantum theory systems explore configurations which are classically forbidden.
This is how we understand the decay of some unstable nuclei.

Particle in an Infinite Potential Well

Potential Well 
Friday, 28 June 2024 17:40 

 

We take the potential to be

V (x) = ∞ x < 0, x > L

V (x) = 0 0 ≤ x ≤ L .

We want to solve the TISE with this potential

− h̄2

2m

d2ϕ

dx2
+ V (x)ϕ = Eϕ.

What happens at x = 0 and x = L? For x < 0 and x ≥ L, we have

Eϕ = − h̄2

2m

d2ϕ

dx2
+∞× ϕ ⇒ ϕ = 0, otherwise E = ∞.

This leads to the boundary conditions ϕ(0) = ϕ(L) = 0.

Introducing k2 = 2mE/h̄2, we need to solve

d2ϕ

dx2
= −k2ϕ, 0 ≤ x ≤ L, subject to ϕ(0) = ϕ(L) = 0.

The solutions are

ϕ = A sin kx+B cos kx or ϕ = αeikx + βe−ikx.

(We can use either form.) Using the first, the boundary conditions give

ϕ(0) = 0 ⇒ B = 0

ϕ(L) = 0 A sin kL = 0 ⇒ k =
nπ

L
, n integer

ϕn(x) = A sin
nπx

L
, with En =

h̄2k2

2m
=

h̄2

2m

n2π2

L2
.
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We have labeled the states and energies by the positive integer n. Normalisation requires

1 =

∫ L

0

dxA2 sin2 nπx

L
=

∫ L

0

dx
A2

2

[
1− cos

2nπx

L

]
=
A2

2

[
x− sin 2nπx/L

2nπ/L

]L
0

=
A2L

2
.

This is satisfied if A =
√

2/L.

Potential Well 
Friday, 28 June 2024 17:40 

 

What have we learnt? The energy quantisation is the result of the
boundary condition, which restricts the wavenumber k to be:

k =
nπ

L
.

Only an integer number of half-wavelengths fit in the potential well.

If we were to make a spectroscopic measurement (absorption or emis-
sion of light as a function of frequency), we could only expect to see
absorption or emission lines at frequencies

hν =
h̄2

2m

π2

L2
(n2 − n′2),

where n and n′ label the two states involved in the transition. Ac-
tually, there may also be restrictions on which transitions would be
possible as the form of the coupling between the light and the levels
in the well may mean some transitions are not allowed by symmetry.
These are called selection rules.

The quantities n and n′ are examples of what are called quantum numbers. These are the
numbers or labels that specify quantum states. If you are lucky enough to have studied some
chemistry, you may have studied the quantum numbers which identify the allowed quantum
levels of a hydrogen (or hydrogen-like) atom. These are (n, l,m, σ) where n is the principal
quantum number, l and m relate to angular momentum and σ is the spin quantum number.

Boundaries
The boundary condition in the previous example was particularly simple. Choosing V = ∞ for
x < 0 meant that ϕ(x) had to be zero to avoid infinite energies. In the more general case of
boundaries between regions in which V (x) changes between finite values, we need that

ϕ(x) and
dϕ

dx
are continuous . (5.5)

This ensures that the terms in Schrodinger’s equation are well-defined.

Particle incident on a potential step

Potential Well 
Friday, 28 June 2024 17:40 

 

We take the potential to be

V (x) = 0 x < 0

V (x) = V0 x > 0 .

We want to solve the TISE with this potential

− h̄2

2m

d2ϕ

dx2
+ V (x)ϕ = Eϕ.
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We rewrite the equation as

Region I x < 0 :
d2ϕ

dx2
= −k2ϕ, k2 =

2mE

h̄2

Region II x > 0 :
d2ϕ

dx2
= −k′2ϕ, k′2 =

2m(E − V0)

h̄2
. (5.6)

We will assume E > V0 which makes k′ is real. The solutions to the equations are of the form

ϕI(x) = eikx + re−ikx and ϕII(x) = teik
′x + se−ik′x.

We have taken the amplitude of the term varying as eikx in Region I to be one.

If we add back in the factors of e−iω(k)t from the original (time-dependent) Schrodinger equa-
tion, we see that these solutions correspond to a right-travelling wave, eikx−iω(k)t, and a
left-travelling wave e−ikx−iω(k)t in region I, with the same on the right with k′ instead of k.

We will consider the case of a right-travelling wave incident on the barrier from the left. There
will be a reflected wave re−ikx in region I and a transmitted wave teik

′x in region II. As there
is no wave incident from the right s = 0.

Now apply the boundary conditions 5.5

ϕI(0) = ϕII(0) ⇒ 1 + r = t

dϕI(0)

dx
=
dϕII(0)

dx
⇒ ik(1− r) = ik′t.

Inserting t from the first relation into the second and simplifying gives

r =
k − k′

k + k′
and t =

2k

k + k′
. (5.7)

The variables r and t are called reflection and transmission amplitudes. In general they can
be complex, although here they are real. The probabilities of reflection and transmission are
given by |r|2 and (k′/k)|t|2 if k′ real. Then

|r|2 + k′

k
|t|2 = 1

(k + k′)2
(
(k − k′)2 + 4kk′

)
= 1, (5.8)

which we need. We expect that flux should be conserved. We have not derived this formally
here, but we would interpret 5.8 in terms of a flux incident from the left. The flux moving
away from the barrier, in the reflected and transmitted waves, should equal the incident flux.
We should expect the flux to be proportional to both the velocity and the density. (The factor
k′/k multiplying |t|2 in 5.8 is the ratio of the two velocities.) Talking about the flux rather
than the number of particles gets round the problem with normalisation of the waves eikx−iωt,
see page 24, and is why we were able to choose the amplitude of the incident wave to be one.

5.2 Tunneling

What happens when E < V0 for the potential step? In Eq 5.6 the wavenumber in Region II
becomes imaginary with k′ = ±iκ, where κ is real. This gives

ϕI(x) = eikx + re−ikx and ϕII(x) = te−κx + se+κx. (5.9)
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We must set s = 0 otherwise we would have an unbounded wave function. (This component
can be important if the system does not continue to x = ∞ as we will see later.) We have an
incident and reflected wave in Region I, but the wave in Region II is exponentially decaying (it
is sometimes called an evanescent wave).

Potential Well 
Friday, 28 June 2024 17:40 

 

Applying the boundary conditions, see 5.7, gives:

r =
k − iκ

k + iκ
and t =

2k

k + iκ
. (5.10)

Now the incident wave is totally reflected |r|2 = 1.
The non-zero value of t means that the wavefunction
is non-zero for x > 0 but there is no flux for x > 0
(multiplying by e−iωt does not give a travelling wave).

The phenomenon of finding particles where classically they cannot be found is a quantum
phenomenon. One consequence is quantum tunneling. A particle can come out on the other
side of a finite potential barrier.

Potential Well 
Friday, 28 June 2024 17:40 

 

An incident left-travelling wave impinges on a barrier. The energy of the wave is less than the
height of the barrier and the wave has a decaying amplitude inside the barrier. Satisfying the
boundary conditions 5.5 at both boundaries leads to a non-zero amplitude for the transmitted
wave beyond the barrier (x > L). We say that a particle has tunneled through the barrier.
The exponentially decaying solution from 5.9 suggests that the amplitude at x = L will be
∼ e−κL and that the probability of particles tunneling through the barrier |t|2 ∼ e−2κL. The
calculation given after the discussion of α−decay confirms that this is what happens.

α-decay

Alpha Decay 
Friday, 28 June 2024 17:51 
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A process which illustrates tunneling is the α-decay of a nucleus. This is a radioactive decay
process in which an α-particle is emitted from a nucleus. For example, uranium-238 decays to
thorium-234 via this process. The α-particle is a helium nucleus and is a bound state of two
protons and two neutrons. Inside a large nucleus it can form as an excitation. This excitation
can be treated approximately as a single particle in a potential. Classically it is trapped inside
the nucleus by the strong force but the potential barrier holding it inside the nucleus is finite.
There is a small probability that it tunnels through this barrier. When it does, we say that the
original nucleus decays into a daughter nucleus and an α particle.

Full solution for the 1D barrier with length L
Solving the Schrodinger equation for the finite-width barrier needs to account for the
boundary conditions at two boundaries. We are assuming V0 > E.

Region I x < 0 :
d2ϕ

dx2
= −k2ϕ, k2 =

2mE

h̄2

Region II 0 < x < L :
d2ϕ

dx2
= −k′2ϕ, k′2 = −κ2 = −2m(V0 − E)

h̄2

Region III x > L :
d2ϕ

dx2
= −k2ϕ, k2 =

2mE

h̄2
. (5.11)

This gives

ϕI(x) = eikx + re−ikx, ϕII(x) = ae−κx + be+κx, and ϕIII(x) = teik(x−L).

We will consider the case with no incident flux from the right (no term of the form e−ikx in
region III) . Writing teik(x−L) for region III is equivalent to writing t′eikx with t′ = te−ikL.

Alpha Decay 
Friday, 28 June 2024 17:51 

 

Requiring ϕ and its derivative to be continuous at x = L, see 5.5, gives

ae−κL + be+κL = t and − ae−κL + be+κL =
ik

κ
t

⇒ a =
t

2
eκL
(
1 +

k

iκ

)
, b =

t

2
e−κL

(
1− k

iκ

)
.

Matching at x = 0 gives, using these results for a and b in terms of t, gives

1 + r = a+ b = t

[
eκL + e−κL

2
+
k

iκ

eκL − e−κL

2

]
= t

[
coshκL+

k

iκ
sinhκL

]
1− r =

κ

ik
(−a+ b) =

iκ

k
(a− b)

=
iκ

k
t

[
eκL − e−κL

2
+
k

iκ

eκL + e−κL

2

]
= t

[
coshκL+

iκ

k
sinhκL

]
.
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Adding the equations for 1 + r and 1− r gives

t = 1/

[
coshκL+ sinhκL

(
k

2iκ
+
iκ

2k

)]
. (5.12)

This result for t is less fearsome than it might look. The hyperbolic functions are

cosh y =
ey + e−y

2

y≫1
≈ ey

2
and sinh y =

ey − e−y

2

y≫1
≈ ey

2
.

When the barrier is thick, κL ≫ 1, |t|2 ∼ e−2κL which is what we expected. The
corresponding formula to 5.12 for E > V0 can be found with the substitution κ → −ik′
as shown in Appendix B.

5.3 Conclusion

The properties of systems which conserve energy are determined by their stationary states.
These are the solutions of the time-independent Schrodinger equation or TISE. We have
looked at the states in a potential well and at waves incident on a potential barrier. Even
though the solutions in the latter case describe a particle flux, the states are stationary states.

An important prediction of quantum theory is that particles can have a non-zero probability
of being found where classically they are forbidden—inside a potential barrier with energy less
than the barrier height is an example. Particles can also tunnel through these forbidden regions.
Tunneling is how the phenomenon of nuclear decay by α-particle emission is understood.

The Schrodinger equation accounts for most phenomena in matter. The methodology is clear.
Solve the equation subject to the relevant boundary conditions and interpret the results. Many
of the triumphs of quantum theory follow from this approach. While some results like the
stationary states of a hydrogen atom (usually called energy-levels in this context) can be
found analytically, this is rare. As Dirac explained (see page 29) we usually need to make
approximations to progress from the equation to a prediction for an observable.

There are things that need adding. Once there is more than one identical particle in the
system, we need to worry about the symmetry of the wave function under interchange of the
coordinates of different particles. Quantum mechanics can be made consistent for two cases:
if the wave function is invariant for this interchange, or if it changes sign. When the wave
function maps to itself, the particles are called bosons. Examples include the photon and the
Higgs boson. When the wave function changes sign under interchange of particle coordinates,
the particles are called fermions. Elementary matter particles like electrons are fermions. The
existence of these two separate types of particles appears naturally in the theory once the
theory has taken account of special relativity.



Appendix A

Wave Packets

Provided the dispersion relation ω = ω(k) for solutions to the Schrodinger equation can be
approximated by a Taylor expansion (see 4.11) we can talk of a group velocity vg = dω/dk
and work with the idea of a wave packet.

An important feature relevant to the idea of wave-particle duality is that the uncertainty
in momentum (the width of the distribution of wave vectors of the wavefunction) is inversely
proportional to the uncertainty in position (the corresponding width in real space). It is also an
illustrative example of the Heisenberg uncertainty principle. We derived this relation explicitly
for the Gaussian wave packet in 4.17.

Here we introduce two other standard examples where we can compute the waveform (see 4.14)
analytically given the distribution a(k):

ψ =

∫
dk a(k) ei(kx−ω(k)t). (A.1)

Top Hat distribution
If we take {

a(k) = A k0 − σ ≤ k ≤ k0 + σ

a(k) = 0 otherwise ,

we can compute the integral in A.1. We write k = k0 + ∆k and use the expansion ω(k) ≈
ω(k0) + vg∆k. Using this in 4.16 gives (s = x− vgt, k

′ = k − k0)

f(s) = A

∫ σ

−σ

dk′ eik
′s = 2A

[
eik

′s

2is

]σ
−σ

= 2A
sinσs

s

and

|f(s)|2 = 4|A|2σ2

∣∣∣∣sinσsσs

∣∣∣∣2
for the probability distribution.

38
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Superpositions 
Saturday, 22 June 2024 18:01 

(By using the variable s we are in the frame in which the wave packet is moving to the right
at speed vg.) The width of the distribution in real-space can be taken as the distance to the
first zero at σs = π so s = π/σ. As expected the width of the distribution in wavenumbers
∼ σ and the width of the distribution in real space ∼ 1/σ are inversely related.

Lorentzian
Another commonly used distribution is called the Lorentzian

a(k) =
A

σ2 + k′2
where k′ = k − k0

f(s) = A

∫ ∞

−∞
dk′

eik
′s

k′2 + s2
=
πA

σ
e−σ|S|.

(We have used a theorem from complex analysis to compute the integral.) This gives

|f(s)|2 = π2A2 e
−2σ|s|

σ2
.

Superpositions 
Saturday, 22 June 2024 18:01 

Again the width of the distribution in k, characterised by σ, is inversely proportional to the
width in real space 1/σ.



Appendix B

Potential Barrier

We solved the Schrodinger equation with a finite-width barrier assuming V0 > E. We took this
as a simple model for quantum tunneling. The case with V0 < E is also interesting. Instead
of 5.11 we have

Region I x < 0 :
d2ϕ

dx2
= −k2ϕ, k2 =

2mE

h̄2

Region II 0 < x < L :
d2ϕ

dx2
= −k′2ϕ, k′2 =

2m(E − V0)

h̄2

Region III x > L :
d2ϕ

dx2
= −k2ϕ, k2 =

2mE

h̄2
. (B.1)

The solutions are

ϕI(x) = eikx + re−ikx, ϕII(x) = aeik
′x + beik

′x, and ϕIII(x) = teik(x−L).

Alpha Decay 
Friday, 28 June 2024 17:51 

We are considering an incident flux from the left and none from the right. The boundary
conditions require ϕ and ϕ′ to be continuous at x = L:

aeik
′L + be−ik′L = t and aeik

′L − be−ik′L =
ik

ik′
t =

k

k′
t

⇒ a =
t

2
e−ik′L

(
1 +

k

k′

)
b =

t

2
eik

′L

(
1− k

k′

)
.

Continuity at x = 0 gives, after substituting for a and b in terms of t,

1 + r = a+ b = t

[
eik

′L + e−ik′L

2
+
k

k′
e−ik′L − eik

′L

2

]
= t

[
cos k′L− i

k

k′
sin k′L

]
1− r =

k′

k
(a− b) =

k′

k
t

[
e−ik′L − eik

′L

2
+
k

k′
eik

′L + e−ik′L

2

]
= t

[
cos kL− i

k′

k
sin k′L

]
.

40
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The result for t is

t = 1/

[
cos k′L− i sin k′L

(
k

2k′
+
k′

2k

)]
.

This result is similar to Eq 5.12 with trigonometric functions replacing the hyperbolic functions.
(In fact we could have written this answer down directly from there with the replacement
κ− → ik′.) One thing to notice from this result is that when sin k′L = 0, which occurs
when k′L = nπ or with n an integer, the wave is completely transmitted and there is no
reflection. The condition is satisfied when the wavelength of the particle in the barrier region
λ′ = 2π/k′ = 2nL. This happens when the particle wave making a return journey through
the barrier and back again arrives with the same phase it entered with. This phenomenon is
common to wave systems and is well-known in optics.
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