WARWICK
 THE UNIVERSITY OF WARWICK

Gaussian systems for quantum enhanced multiple phase estimation ${ }^{1}$

Dominic Branford

Postgraduate Seminars, University of Warwick (2nd June 2016)

[^0]
The Quantum Bomb Detector

Inside the black box may or may not be a bomb. The bomb will be detonated if it detects even a single photon.

The Quantum Bomb Detector

D2 clicks \rightarrow we detect the bomb without blowing it up.

Detecting More Than Bombs

- Phases $\exp \left(i \phi \sigma_{z}\right)$
- Reflectivitives $\exp \left(i R \sigma_{x}\right)$
- Passive unitaries generally
- Phase diffusion and decoherences
- Squeezings and displacements

Mach-Zehnder Interferomtery

Single phase estimation

- $P(\mathrm{D} 1)=\cos ^{2} \phi$

$$
\tilde{\phi}=\cos ^{-1}\left(\sqrt{\frac{N_{\mathrm{D} 1}}{N_{\mathrm{D} 1}+N_{\mathrm{D} 2}}}\right)
$$

Mach-Zehnder Interferomtery

Some states are more equal than others

- Single photons, $|1,0\rangle: \delta^{2} \phi \sim \frac{1}{N}$

Classical \Leftrightarrow Shot Noise Limit

- Coherent light, $\left.|\alpha, 0\rangle: \delta^{2} \phi \sim \frac{1}{N}\right\}$
- Holland-Burnett, $\left.|N, N\rangle: \delta^{2} \phi \sim \frac{1}{N^{2}}\right\}$ Quantum \Leftrightarrow Heisenberg
- Squeezed vacuum, $\left.|\xi, \xi\rangle: \delta^{2} \phi \sim \frac{1}{N^{2}}\right\}$ Limit

Cramér-Rao Bound (CRB)

Finite resources $=$ finite precision

$$
\begin{gather*}
\operatorname{Cov}\left(\phi_{i}, \phi_{j}\right) \geq \frac{1}{M}\left(F^{-1}\right)_{i j} \tag{1}\\
F_{i j}=\int \mathrm{d} \mathbf{x} \frac{1}{P(\mathbf{x} \mid \phi)} \frac{\partial P(\mathbf{x} \mid \phi)}{\partial \phi_{i}} \frac{\partial P(\mathbf{x} \mid \phi)}{\partial \phi_{j}} \tag{2}
\end{gather*}
$$

- Precision is lower bounded by the classical Fisher information (the Cramér-Rao bound)
- Best measurement is when $\sum_{i} \delta^{2} \phi_{i}$ is minimised \Leftrightarrow when $\operatorname{Tr}\left(F^{-1}\right)$ is minimised
- Measurement dependent \Rightarrow always attainable

Quantum Cramér-Rao Bound (QCRB)

- CRB is measurement dependent \Rightarrow hard to calculate
- Quantum CRB is a measurement independent lower bound on the CRB

$$
\begin{equation*}
\operatorname{Cov}\left(\phi_{i}, \phi_{j}\right) \geq \frac{1}{M}\left(F^{-1}\right)_{i j} \geq \frac{1}{M}\left(H^{-1}\right)_{i j} \tag{3}
\end{equation*}
$$

Gaussian States

- Gaussian states are gaussian
- Single mode pure gaussian state $|\alpha, \xi\rangle=\hat{D}(\alpha) \hat{S}(\xi)|0\rangle$
- Coherent (laser) light and thermal light both gaussian states

Gaussian States

- Gaussian states are gaussian*
*in terms of their characteristic function/Wigner function/Husimi Q function/Glauber P funct...
- Single mode pure gaussian state $|\alpha, \xi\rangle=\hat{D}(\alpha) \hat{S}(\xi)|0\rangle$
- Coherent (laser) light and thermal light both gaussian states

Gaussian States (Wigner functions)

Phase space representations

WARWICK
 THE UNIVERSITY OF WARWICK

Coherent state

Squeezed coherent state

Simultaneous Phase Estimation (Better Together)

What if I want to estimate a set of phases $\left\{\phi_{i}\right\}$?

Individual
Estimating d phases with $E_{\text {Tot., }}$, precision is $\sim \frac{d^{3}}{E_{\text {Tot }}^{2}}$
$2^{-\frac{d}{2}}(|N 0\rangle+|0 N\rangle)^{\otimes d}$

Simultaneous (Fixed Number States)
Estimating d phases with $E_{\text {Tot., }}$ precision is $\sim \frac{d^{2}}{E_{\text {Tot }}^{2}}$.
$\frac{1}{\mathcal{N}}(|N O \cdots 0\rangle+|0 N 0 \cdots 0\rangle+|0 \cdots 0 N\rangle)$
Improvement scales with the number of phases ${ }^{2}$

[^1]
Multiple Phase Estimation

(Multiple=Simultaneous)

$d+1$ gaussian states \rightarrow general mixing unitary \rightarrow phases \rightarrow detection scheme
Consider the measurement independent bound given by the QFI

Multiple Phase Estimation

(Multiple=Simultaneous)

$d+1$ gaussian states \rightarrow general mixing unitary \rightarrow phases \rightarrow detection scheme
Consider the measurement independent bound given by the QFI

Global Phases

You can't measure everything

One mode + one phase $=$ zero observables

$$
|\psi\rangle-\phi \quad e^{i \phi \hat{n}}|\psi\rangle
$$

Rewrite the Hamiltonian Global phase is unknown \Leftrightarrow

Unitaries which evolve isolated systems have indefinite determinant

$$
\begin{equation*}
H=\sum_{i=0}^{d} \phi_{i} \hat{n}_{i}=\bar{\phi} \hat{n}_{\mathrm{T}}+\sum_{i=1}^{d} \varphi_{i}\left(\hat{n}_{i}-\hat{n}_{0}\right) \tag{4}
\end{equation*}
$$

$\varphi_{i}=\phi_{i}-\bar{\phi}$. Discard the unmeasurable $\bar{\phi}$, we're left with traceless generators-estimation of remaining parameters is estimation of some $U \in \operatorname{SU}(n)$

Global Phases

You can't measure everything

One mode + one phase $=$ zero observables

$$
|\psi\rangle-\phi_{0} \quad \phi-e^{i\left(\phi+\phi_{0}\right) \hat{n}}|\psi\rangle
$$

Rewrite the Hamiltonian Global phase is unknown \Leftrightarrow

Unitaries which evolve isolated systems have indefinite determinant

$$
\begin{equation*}
H=\sum_{i=0}^{d} \phi_{i} \hat{n}_{i}=\bar{\phi} \hat{n}_{\mathrm{T}}+\sum_{i=1}^{d} \varphi_{i}\left(\hat{n}_{i}-\hat{n}_{0}\right) \tag{4}
\end{equation*}
$$

$\varphi_{i}=\phi_{i}-\bar{\phi}$. Discard the unmeasurable $\bar{\phi}$, we're left with traceless generators-estimation of remaining parameters is estimation of some $U \in \operatorname{SU}(n)$

Quantum Fisher Information

For phases QFI is expectation of covariance of number operators

$$
\begin{align*}
H_{i j} & =\left\langle\hat{G}_{i} \hat{G}_{j}\right\rangle-\left\langle\hat{G}_{i}\right\rangle\left\langle\hat{G}_{j}\right\rangle \tag{5}\\
& =\operatorname{Cov}\left(\hat{n}_{i}, \hat{n}_{j}\right)+\operatorname{Var}\left(\hat{n}_{0}\right)-\operatorname{Cov}\left(\hat{n}_{i}, \hat{n}_{0}\right)-\operatorname{Cov}\left(\hat{n}_{j}, \hat{n}_{0}\right)
\end{align*}
$$

Covariance matrix of $\left\{\hat{n}_{i}\right\}$ is

$$
\begin{equation*}
C_{\vec{n}}=-\mathbb{1}+\sum_{2 \times 2 \text { Matrices }} \sigma_{U} \circ\left(\frac{1}{2} \sigma_{U}+\frac{4}{\hbar} \vec{d}_{U} \vec{d}_{U}^{T}\right) \tag{6}
\end{equation*}
$$

$H_{i j}$ can be constructed entirely from $C_{\vec{n}}$

The Analytics Are Painful

Want to have an analytically manageable system, time forme unversity of warwick simplifying assumptions

- Surely some symmetry, set $\xi_{i}=\xi, \forall i$
- Want to use an interferometer, take $U \in \mathrm{SO}(d+1)$

$$
\begin{align*}
\operatorname{Tr}\left(H_{i j}^{-1}\right) & =\sum_{i=1}^{d} \frac{1}{\eta_{i}}-\left(\sum_{i=0}^{d} \frac{1}{\eta_{i}}\right)^{-1} \sum_{i=1}^{d} \frac{1}{\eta_{i}^{2}} \tag{7}\\
\eta_{i} & =2 \sinh ^{2}(2|\xi|)+4 e^{-2|\xi|}\left(\Re \alpha_{i}^{\prime}\right)^{2}+4 e^{2|\xi|}\left(\Im \alpha_{i}^{\prime}\right)^{2} \tag{8}\\
\alpha_{i}^{\prime} & =\sum_{j=0}^{d} U_{i j} \alpha_{j} \tag{9}
\end{align*}
$$

Optimisation

- Minimise $\operatorname{Tr}\left(H_{i j}^{-1}\right) \Leftrightarrow$ maximise η_{i}
- η_{i} maximised when all energy in ith mode contributes to squeezing $|\alpha, \zeta\rangle \rightarrow|0, \xi\rangle$
- Squeezed vacuum is best

$$
\begin{equation*}
\operatorname{Tr}\left(H^{-1}\right)=\frac{d^{2}(d+1)}{8 E_{\mathrm{Tot} .}} \frac{1}{d+1+E_{\mathrm{Tot}}} \tag{10}
\end{equation*}
$$

So how does this match up?

Simultaneous vs Individual Estimations

Didn't that last equation go as $\frac{d^{3}}{E_{\text {Tot. }}^{2}}$?

So how does this match up?

Simultaneous vs Individual Estimations

Didn't that last equation go as $\frac{d^{3}}{E_{\text {Tot. }}^{2}}$?
$\operatorname{Tr}\left(H^{-1}\right)=\frac{d^{2}(d+1)}{8 E_{\text {Tot. }}} \frac{1}{d+1+E_{\text {Tot. }}}$

Yes, yes it did : 2
What's the simultaneous advantage with Gaussian states?

$$
\begin{equation*}
R=\frac{\operatorname{Tr}\left(H_{\text {Sim. } .}^{-1}\right)}{\operatorname{Tr}\left(H_{\text {Ind. }}^{-1}\right)}=\frac{(d+1)\left(E_{\text {Tot. }}+2 d^{2}\right)}{2 d\left(E_{\text {Tot. }}+d+1\right)} \tag{11}
\end{equation*}
$$

In the $\operatorname{limit}^{3} E_{\text {Tot. }} \gg d, R \rightarrow \frac{1}{2}$

[^2]
In Conclusion

- Quantum mechanics allows us to do better sensing
- Gaussian states do not exhibit an unbounded advantage for the purposes of multiple phase estimation
- What advantage there is is technically attainable

In Conclusion

- Quantum mechanics allows us to do better sensing
- Gaussian states do not exhibit an unbounded advantage for the purposes of multiple phase estimation
- What advantage there is is technically attainable
- In reality, the how is still an open question

What Next?

- Did we ask an experimentally useful question?
- How do we attain the advantage?
- What happens when we acknowledge the existence of noise?

[^0]: ${ }^{1}$ Christos N. Gagatsos, Dominic Branford, and Animesh Datta. "Gaussian systems for quantum enhanced multiple phase estimation". In: arXiv:1605.04819 [quant-ph] (May 2016).

[^1]: ${ }^{2}$ Peter C. Humphreys et al. "Quantum Enhanced Multiple Phase
 Estimation". In: Physical Review Letters 111.7 (Aug. 2013), p. 070403. DOI: 10.1103/PhysRevLett. 111.070403.

[^2]: ${ }^{3}$ We're using $\hbar=1$ units

