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The Quantum Bomb Detector
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Inside the black box may or may not be a bomb. The bomb will be
detonated if it detects even a single photon.

D2 clicks → we detect the bomb without blowing it up.



The Quantum Bomb Detector

R = 1
2 R = 1

2
No Bomb

Bomb

|0〉

|1〉 D1

D2
?

(
1
0

)
1√
2

(
1
1

) 1√
2

(
1
1

)
(

1
0

)
or

(
0
1

)
(

1
0

)

1√
2

(
1
1

)
or

No Bomb

Bomb

Inside the black box may or may not be a bomb. The bomb will be
detonated if it detects even a single photon.

D2 clicks → we detect the bomb without blowing it up.



Detecting More Than Bombs

I Phases exp (iφσz)

I Reflectivitives exp (iRσx)

I Passive unitaries generally

I Phase diffusion and decoherences

I Squeezings and displacements



Mach-Zehnder Interferomtery
Single phase estimation
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Mach-Zehnder Interferomtery
Some states are more equal than others
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I Single photons, |1, 0〉: δ2φ ∼ 1
N

I Coherent light, |α, 0〉: δ2φ ∼ 1
N

I Holland-Burnett, |N,N〉: δ2φ ∼ 1
N2

I Squeezed vacuum, |ξ, ξ〉: δ2φ ∼ 1
N2

Classical ⇔ Shot Noise Limit

Quantum ⇔ Heisenberg
Limit



Cramér-Rao Bound (CRB)
Finite resources = finite precision

Cov(φi , φj) ≥
1

M

(
F−1

)
ij

(1)

Fij =

∫
dx

1

P (x|φ)

∂P (x|φ)

∂φi

∂P (x|φ)

∂φj
(2)

I Precision is lower bounded by the classical Fisher information
(the Cramér-Rao bound)

I Best measurement is when
∑
i
δ2φi is minimised ⇔ when

Tr
(
F−1

)
is minimised

I Measurement dependent ⇒ always attainable



Quantum Cramér-Rao Bound (QCRB)

I CRB is measurement dependent ⇒ hard to calculate

I Quantum CRB is a measurement independent lower bound on
the CRB
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ij
≥ 1
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)
ij

(3)



Gaussian States

I Gaussian states are gaussian

*

*in terms of their characteristic function/Wigner
function/Husimi Q function/Glauber P funct...

I Single mode pure gaussian state |α, ξ〉 = D̂(α)Ŝ(ξ) |0〉

I Coherent (laser) light and thermal light both gaussian states
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Gaussian States (Wigner functions)
Phase space representations

Vacuum Squeezed vacuum

Coherent state Squeezed coherent state



Simultaneous Phase Estimation (Better Together)
What if I want to estimate a set of phases {φi}?

Individual
Estimating d phases with ETot., precision is ∼ d3

E2
Tot.

2−
d
2 (|N0〉+ |0N〉)⊗d

Simultaneous (Fixed Number States)

Estimating d phases with ETot., precision is ∼ d2

E2
Tot.

1
N (|N0 · · · 0〉+ |0N0 · · · 0〉+ |0 · · · 0N〉)

Improvement scales with the number of phases2

2Peter C. Humphreys et al. “Quantum Enhanced Multiple Phase
Estimation”. In: Physical Review Letters 111.7 (Aug. 2013), p. 070403. doi:
10.1103/PhysRevLett.111.070403.

http://dx.doi.org/10.1103/PhysRevLett.111.070403


Multiple Phase Estimation
(Multiple=Simultaneous)
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d + 1 gaussian states → general mixing unitary → phases →
detection scheme
Consider the measurement independent bound given by the QFI
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Global Phases
You can’t measure everything

One mode + one phase = zero observables

|ψ〉 φ e iφn̂ |ψ〉e i(φ+φ0)n̂ |ψ〉φ0 φ

Rewrite the Hamiltonian
Global phase is unknown⇔ Unitaries which evolve isolated systems

have indefinite determinant

H =
d∑

i=0

φi n̂i = φ̄n̂T +
d∑

i=1

ϕi (n̂i − n̂0) (4)

ϕi = φi − φ̄. Discard the unmeasurable φ̄, we’re left with traceless
generators—estimation of remaining parameters is estimation of
some U ∈ SU(n)
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Quantum Fisher Information

For phases QFI is expectation of covariance of number operators

Hij =
〈
Ĝi Ĝj

〉
−
〈
Ĝi

〉〈
Ĝj

〉
(5)

=Cov(n̂i , n̂j) + Var(n̂0)− Cov(n̂i , n̂0)− Cov(n̂j , n̂0)

Covariance matrix of {n̂i} is

C~n = −1 +
∑

2×2 Matrices

σU ◦
(

1

2
σU +

4

~
~dU ~d

T
U

)
(6)

Hij can be constructed entirely from C~n



The Analytics Are Painful

Want to have an analytically manageable system, time for
simplifying assumptions

I Surely some symmetry, set ξi = ξ, ∀i

I Want to use an interferometer, take U ∈ SO(d + 1)

Tr
(
H−1ij

)
=

d∑
i=1

1

ηi
−

(
d∑

i=0

1

ηi

)−1 d∑
i=1

1

η2i
(7)

ηi =2 sinh2(2|ξ|) + 4e−2|ξ|(<αi
′)2 + 4e2|ξ|(=αi

′)2 (8)

α′i =
d∑

j=0

Uijαj (9)



Optimisation

I Minimise Tr
(
H−1ij

)
⇔ maximise ηi

I ηi maximised when all energy in ith mode contributes to
squeezing |α, ζ〉 → |0, ξ〉

I Squeezed vacuum is best

Tr
(
H−1

)
=

d2(d + 1)

8ETot.

1

d + 1 + ETot.
(10)



So how does this match up?
Simultaneous vs Individual Estimations

Didn’t that last equation go as d3

E2
Tot.

?

Tr
(
H−1

)
= d2(d+1)

8ETot.

1
d+1+ETot.

Yes, yes it did /

What’s the simultaneous advantage with Gaussian states?

R =
Tr
(
H−1Sim.

)
Tr
(
H−1Ind.

) =
(d + 1)(ETot. + 2d2)

2d(ETot. + d + 1)
(11)

In the limit ETot. � d , R → 1
2
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3We’re using ~ = 1 units



In Conclusion

I Quantum mechanics allows us to do better sensing

I Gaussian states do not exhibit an unbounded advantage for
the purposes of multiple phase estimation

I What advantage there is is technically attainable

I In reality, the how is still an open question
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What Next?

I Did we ask an experimentally useful question?

I How do we attain the advantage?

I What happens when we acknowledge the existence of noise?
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