Quantum Information Science news
Elnaz's paper on single-photon spectroscopy published in Phys. Rev. A
We investigate the precision of estimating the interaction strength between a two-level system (TLS) and a single-photon pulse when the latter is subject to chirping.
For details, see https://journals.aps.org/pra/abstract/10.1103/PhysRevA.110.043710
Sharmila and Animesh publish new paper on spacetime fluctuations
New paper published in the IOP journal Classical and Quantum Gravity.
Andrew, Theo, and Animesh publish analogue accreditation paper in PNAS
We present an accreditation protocol for analogue, i.e., continuous-time, quantum simulators.
Francesco, Eva, Aiman, and Animesh's quantum spectroscopy paper is PRA Editor's Suggestion
A new paper on quantum information-theoretic formulation of electric dipole estimation in quantum spectroscopy of two-level systems is the Physical Review A Editor's suggestion.
Andrew, Theo, and Animesh publish partition function estimation paper
Andrew, Theo, and Animesh's paper, Partition-function estimation: Quantum and quantum-inspired algorithms, has been published in PRA.
Accreditation paper with Sam, IBM published
Sam's work on accreditation of quantum computations on IBM's hardware published.
Gravity paper published
Our paper on a signature of the quantum nature of gravity in the quantum mechanical squeezing of the differential motion of two identical masses has been published.
Aiman's paper in PRL
What happens at the molecular lever when a photon hits the eye or light shines on a leaf?
Physical processes occurring on nanometre length scales and femtosecond time scales typically undergo complex dynamics involving multilevel quantum systems. Understanding such complex quantum dynamics is a major open challenge. Foremost among them is the dimension of the Hilbert space involved, which determines the number of parameters necessary for understanding the dynamics. This is typically done by fitting models of various degrees of sophistication to experimental data.
Our work on the cover of PRL
In a work appearing on the cover of Physical Review Letters, volume 125, issue 8, we with collaborators at the University of Nanjing, China and the University of Ottawa, Canada, have shown that even noisy and saturating detectors can approach shot-noise-limited detection if used judiciously. Shot-noise-limited optical detection is the first, and often the most challenging, step to quantum-enhanced optical sensing. This work uses a technique called weak-value amplification and enables, over a range of input light intensity well beyond the dynamic range of the photodetector, shot-noise-limited detection. Weak-value amplification relies on the principle that only a subset of the photons contains almost all of the information about the sensed object.
Accreditation protocol published in New Journal of Physics
As the first generation of quantum computers are now reaching the point where they can answer such otherwise impossible questions, it is necessary to consider how the answers of these early devices can be confirmed correct. The full power of quantum computing includes a wide range of problems for which this is not possible, instead demanding new techniques to test quantum computers. A new test has now been proposed by Samuele, Theodoros, and Animesh which can be used to make sure the quantum computer is working correctly without using excessive additional resources while still testing the entire quantum computer. Published in the New Journal of Physics (DOI:10.1088/1367-2630/ab4fd6), this protocol uses circuits which have the same form as the desired circuit but are formulated to give known outcomes. Based on the accuracy of these circuits they are able to place a statistical bound on how close the distribution the quantum computer gives is to the correct distribution.
Paper on evaluating fundamental sensitivity limits in Physical Review Letters
Francesco, Jamie, and Animesh have published new work in Physical Review Letters which demonstrates that the Holevo Cramér-Rao bound, the fundamental limit to how precise any sensor can be, can be evaluated by numerically efficient methods. Computation of the Holevo Cramér-Rao bound requires the solving of a non-linear optimisation problem. In this publication Francesco, Jamie, and Animesh demonstrate that the necessary optimisation can be expressed as a convex optimisation problem. This realisation allows efficient numerical evaluation of the Holevo Cramér-Rao bound, opening up the possibility of practically applying it in quantum sensing problems.
Metrology papers published in Physical Review A
Two metrology papers from the group have recently been published in Physical Review A.
Theo and Animesh publish quantum verification paper in Quantum
Theodoros and Animesh have published a work which sets out a method to verify quantum computational supremacy in near-future quantum devices. This work published in Quantum (DOI:10.22331/q-2019-07-12-164) introduces a verification scheme for an Ising sampler, which if implemented could prove quantum computational supremacy.
Covert sensing paper published in PRA
Sensing has been in the centre of interest of the quantum information community in the last years. The main reason is that quantum mechanics allow for enhanced precision and the foremost focus has been to find optimal quantum probe states and measurements to attain the quantum enhanced precision.
In their recent work (DOI: 10.1103/PhysRevA.99.062321), Christos (Arizona, formerly at Warwick), Animesh, and colleagues from the University of Arizona, unlock another kind of feature: active covert sensing. The key element of covert sensing is that the sensing light can be hidden in the thermal environment. Specifically, it is shown that it is possible to sense a phase while an adversary remains unaware of the sensing process and they give the fundamental limit: The mean square error of any covert sensing task is lower bounded by the inverse square root of the probe's number of modes (or the number sensing attempts). Any attempt of the sensor to improve the precision necessarily leads to detection by the adversary
Quantum errors paper published in PRA
Quantum computing is entering a new era of remotely-accessible quantum machines and, given their recent development, computation is more than likely accompanied by errors. One such error—quantum leakage—is an often-overlooked imperfection that amounts to quantum information escaping from the desired computational space and whose presence is rarely identified by a remote user. In work published in Physical Review A (DOI:https://doi.org/10.1103/PhysRevA.99.032328) Armands, Animesh, and George adapt one of dimension witness protocols designed for the purpose of a remote discovery of leakage and equip it with statistically robust, user-defined confidence levels before applying to a remotely accessed quantum processor. They find a circuit component "transmon" acting in a higher computational space than advertised.
Quantum coherence paper published in PRA
Published this week in the journal Physical Review A, the paper "Subtleties of witnessing quantum coherence in nonisolated systems" (DOI: 10.1103/PhysRevA.98.052328) from George, Max, Luke, and Animesh could lead to experiments that help solve the debate on whether biological processes exploit quantum mechanics to their advantage, and whether evolution could provide us with a template for quantum technologies such as computers, sensors and energy sources.
Quantum metrology paper published in PRL
Working in collaboration with Haixing Miao (University of Birmingham), Dominic and Animesh have published a paper on the fundamental quantum limits of optomechanical sensors in Physical Review Letters (DOI: 10.1103/PhysRevLett.121.110505). Being able to measure very weak forces is central to many applications, such as the direct detection of gravitational waves and monitoring subterranean movement of magma in volancially-active areas. The strength of a force can be inferred through its effect of displacing a mass: the displacement can be sensed by illuminating it with a laser and observing the reflected light, a case of optomechanical sensing. In this work, Dominic, Haixing and Animesh study the best precision attainable by optomechanical sensors when multi-coloured light is used.
Quantum verification paper published in PRA
Samuele, Theodoros, and Animesh have published a paper on verification in Physical Review A (DOI: https://doi.org/10.1103/PhysRevA.98.022323) demonstrating an improvement on the existing requirements for schemes to verify quantum computations. Quantum computers are capable of solving certain problems whose scale lies outside that of classical computers. For some of these problems not even the solution can be efficiently checked with a classical computer. While schemes can verify an arbitrary quantum computation with a limited set of quantum operations, the minimum quantum resources to perform such a verification is an open question. In this work authors from the group demonstrate a verification scheme which works with a further reduced number of such quantum operations.
Theodoros publishes review on quantum verification
Working with former Edinburgh colleagues Alexandru Gheorghiu and Elham Kashefi, Theodoros has published a review paper exploring existing techniques for the verification of quantum computation (DOI:10.1007/s00224-018-9872-3) in Theory of Computation.
Quantum computers offer the prospect of solving computational problems which would take an infeasible amount of time to solve with classical devices. For some of these, the solutions cannot be checked without solving the problem again - which would require use of and trust in a quantum computer. Through quantum verification techniques it becomes possible to test the performance of a quantum computer and even test whether a claimed quantum computer is genuine.
Along with an overview of the fundamental obstacle, a number of schemes which allow verification if the user has access to basic quantum apparatus, which allows them to confidently prepare a handful of simple states or to perform a few simple measurements, are discussed and compared in the review paper.
George publishes in Science Advances
Working in collaboration with experimentalists at Heriot-Watt and Glasgow Universities, the paper entitled Attosecond-resolution Hong-Ou-Mandel interferometry (DOI:10.1126/sciadv.aap9416) has been published in Science Advances.
The team investigated an optical sensor that uses a type of interferometry based on the Hong-Ou-Mandel effect, whereby two identical photons deterministically bunch together at a balanced beam splitter. They were able to measure the optical thickness of an object by looking at the change in coincidence rate of a pair of photodetectors placed at the output of the beam splitter.