Skip to main content Skip to navigation

Theory Group Lunchtime Seminars

Scheduled seminars are listed below.

Announcements and reminders will be posted to the physics-theory-group-seminar list.

To join this list:

  1. Sign into your university email account via webmail.
  2. Click the settings icon along the top icon bar (looks like a cog/gear).
  3. In the "Search Outlook settings" box type "distribution groups" and click the top search result.
  4. Under "Distribution groups I belong to" click the icon with two little people and a "+" sign.
  5. Search for physics-theory-group-seminar and double click on the result.
  6. Click "join". You will then be added to the email list once approved by a moderator.

To leave this list:

  1. Sign into your university email account via webmail.
  2. Click the settings icon along the top icon bar (looks like a cog/gear).
  3. In the "Search Outlook settings" box type "distribution groups" and click the top search result.
  4. Under "Distribution groups I belong to" click physics-theory-group-seminar.
  5. Click the "leave" icon above the list (looks like two people with a minus sign to their bottom right).

[If you are a member of Theory group, you will receive seminar announcements via physics-theory or physics-theory-staff. You do NOT need to subscribe to the above mailing list as well.]

Show all calendar items

Theory Seminar: Elsen Tjhung (Cambridge), Time reversal symmetry breaking in scalar field theory, 1300 in PS1.28

- Export as iCalendar
Location: PS1.28

Active matter is a class of non-equilibrium systems where energy is injected to the system continuously by the constituent particles themselves. Many examples of active matter are biological in nature, for example, bird flocks, bacterial suspensions and biological tissues. In the case of bacterial suspensions, the fluid solvent is continuously stirred by the swimming motion of the bacteria, driving it out-of-equilibrium. Active matter is an interesting class of non-equilibrium systems because it often displays large-scale time reversal symmetry breakdown at steady state. For example, when we put an asymmetric gear into a bath full of bacteria, the gear will start to rotate in one direction at steady state. This is a manifestation of large-scale time reversal symmetry breaking because if we reverse the arrow of time, the gear will rotate in the other direction. In this talk, I will present a simple scalar field theory which can capture such large-scale time reversal symmetry breaking.

More…

Show all calendar items