Ultrasonics Industry Association 47

Analysis of Flexural Ultrasonic Transducers for High Frequency Applications

Andrew Feeney¹, Lei Kang¹, and Steve Dixon^{1,2} **Department of Physics¹ EPSRC** School of Engineering² HIFFUT **University of Warwick Engineering and Physical Sciences** Research Council

CIU **Centre for Industrial Ultrasonics**

Overview of Our Research

- The FUT is currently used primarily for flow measurement, proximity sensing and industrial metrology
- Designed for ambient conditions and low ultrasonic frequencies, up to approximately 50 kHz

How can we adapt FUTs for operation at higher frequencies, in high pressure and temperature environments?

Application	Example Pressure (bar)	
Domestic water meters	20	
Industrial gas meters	300	
Industrial flow meters	300+	
Environment	Example Temperature (°C)	
Oil production	120	
District heating	250	
Petrochemical	350-450	
Power plants	560	

The development of <u>high frequency</u> <u>flexural ultrasonic transducers</u> (HiFFUTs), a new class of ultrasonic transducer.

Grant Number EP/N025393/1

Engineering and Physical Sciences Research Council

CIU Centre for Industrial Ultrasonics

Applications of FUTs

Robotics, Obstacle Avoidance

Proximity and Parking Sensors

NDT Inspection

Short-Range Wireless Communication

Flow Measurement and Metrology

Phased Arrays

Applications of FUTs

Robotics, Obstacle Avoidance

Proximity and Parking Sensors

NDT Inspection

Short-Range Wireless Communication

Flow Measurement and MetrologyPhased ArraysTARGET HIGH FREQUENCY APPLICATIONS FOR OUR HIFFUTs (> 100 kHz)

CIU Centre for Industrial Ultrasonics

The Flexural Ultrasonic Transducer

CIU Centre for Industrial Ultrasonics

www.ciu.ac.uk

5

Operating Characteristics

CIU Centre for Industrial Ultrasonics

Dynamic Characterisation

- FUTs characterised with acoustic microphone, LDV, or a receiver FUT
- Function generator and oscilloscope can be used for rapid resonance check

CIU Centre for Industrial Ultrasonics

Dynamic Characterisation

- **Resonance and off-resonance responses of the FUT** measured
- Cross-correlation of responses at 40 kHz and 110 cycles computed

ULTRASOUND

GROUP

CIU **Centre for Industrial Ultrasonics**

Mathematical Analog Model

• Relationships governing the three response regions separately are:

```
Region 1 M\ddot{x} + C\dot{x} + Kx = Fsin\omega t. H(t_0 - t)^{\text{Ref}}

Region 2 M\ddot{x} + C\dot{x} + Kx = Fsin\omega t

Region 3 X(t) = Fe^{-\zeta \omega_n t} cos(\omega_d t + \theta)
```

• The equations for Region 2 and Region 3 are familiar. For Region 1:

 $H = 1 \text{ for } 0 < t \le t_0 \quad \text{ and } \quad C^2 < 4 \text{MK}$

• The full solution is:

$$x = N_{P} e^{-at} (\cos \overline{a}t + i \sin \overline{a}t) + N_{N} e^{-at} (\cos \overline{a}t - i \sin \overline{a}t) + \sqrt{G_{1}^{2} + G_{2}^{2} (\sin(\omega t + \theta))}$$

• Or simplified, with the real part of the equation:

$$\mathbf{x} = \mathbf{N} \left(\mathbf{e}^{-\alpha t} \mathbf{cos} \bar{\mathbf{a}} \mathbf{t} \right) + \mathbf{R} (\mathbf{sin}(\boldsymbol{\omega t} + \boldsymbol{\theta}))$$

<u>Ref</u> S. Dixon, L. Kang, M. Ginestier, C. Wells, G. Rowlands, and **A. Feeney**, "The electro-mechanical behaviour of flexural ultrasonic transducers," *Applied Physics Letters*, vol. 110, no. 22, p. 223502, 2017.

CIU Centre for Industrial Ultrasonics

Correlation of Analog and Experiment

CIU Centre for Industrial Ultrasonics

www.ciu.ac.uk

ULTRASOUND

GROUP

Dynamic Nonlinearity

- Sample of 5 aluminium FUTs analysed
- Electrical properties measured
- LDV used to assess nonlinearity

Dynamic Nonlinearity

- FUTs driven around resonance with burst sine signals
- Steady-state and resonant decay isolated
- Zero-crossings calculated for nonlinearity in Region 3

Dynamic Nonlinearity

- Dynamic properties of five FUTs summarised
- Characteristics variable between nominally identical FUTs

	Electrical Impedance analysis			Laser Doppler Vibrometry	
FUT	Coupling Coefficient k ²	Quality Factor Q _M	Resonance Frequency f _r (kHz)	f _r , nom. 4 V _{p-p} (kHz)	f _N - f _S (Hz) nom. 4 to 20 V _{p-p}
1	0.33	71.01	39.51	40.00	300
2	0.32	56.13	40.64	41.00	200
3	0.33	56.71	39.97	40.40	200
4	0.31	54.17	38.23	37.90	200
5	0.32	49.75	39.72	40.10	200
Mean	0.322	57.55	39.59	39.66	220
Standard Deviation	0.007	7.16	0.88	0.90	40

Transmitter

 Function
 Oscilloscope

 Generator
 Burst sine signal, 150 cycles, 10 V_{P.P}

High Frequency Operation

- Propagation of ultrasound in air
- Efficient driving mechanism required
- Bespoke amplifier adopted
- Two FUTs, one as a transmitter, one as a receiver, both with a (0,0) mode of 40 kHz

Measurement distance: 500 mm

Receiver

Amplifier

High Frequency Operation

CIU Centre for Industrial Ultrasonics

HiFFUT Design: Operating Modes

- FUT membrane equivalent to an edge-clamped thin plate
- Differential equations used to approximate the normal mode frequencies

$$D\nabla^4 w(\boldsymbol{r},t) + \rho \frac{\partial^2 w(\boldsymbol{r},t)}{\partial t^2} = 0$$

Transverse Displacement

Mode frequencies
 dependent on plate
 geometry and material

]

- Online design tool designed, available on project website
- Estimated mode frequencies instantly generated for different materials, including custom

HiFFUT Design Tool Estimator of HiFFUT Operating Frequency	
HiFFUT Membrane Diameter (mm):	
HiFFUT Membrane Thickness (mm):	
HiFFUT Membrane Material:	Titanium 🔻
Density (kg/m³):	
Young's Modulus (GPa):	
Poisson's Ratio:	
Axisymmetric Mode of Vibration:	(0,0) •
Modal Frequency (kHz):	
Calculate Reset	

Rigidity

 $=\frac{Eh^3}{12(1-\nu^2)}\quad \omega = \left(\frac{\lambda}{a}\right)^2$

https://warwick.ac.uk/fac/sci/physics/research/ultra/research/hiffut/

ULTRASOUND GROUP

Angular Modal Frequency

HiFFUT Design: Finite Element Analysis

ULTRASOUND GROUP

We use PZFlex® finite element analysis software for simulating performance.

CIU Centre for Industrial Ultrasonics

High Temperature Piezoelectric HiFFUTs

ULTRASOUND GROUP

- Custom pressure rig used to bond components
- High temperature epoxy resin: EPO-TEK® 353ND
- Titanium (Grade 2 ASTM) cap
- PZ46 bismuth titanate (BiT) ceramic (Meggitt)

Centre for Industrial Ultrasonics

side-wall

CIU

High Temperature Piezoelectric HiFFUTs ULTRASOUND GROUP Phase 1 Phase 2 Measurement Function Generator Oscilloscope HIFFUT TRIGGER LABORATORY FURNACE (0,0) Mode, FEA **Titanium HiFFUT** - Acoustic Microphone, Brüel & HIFFUT Kiær BK 4138-A-015 Measurement with (0,0) Mode of a titanium - Laser Doppler Vibrometer, **Experimental** acoustic microphone Polytec OFV-5000 **HiFFUT at 72 kHz Process** 0.02 0.02 0.5 Norm. Amp. 0 -0.5 AMBIENT 150°C 65 mm 300 mm 0.015 0.015 0.01 0.01 0.005 0 0 0.002 Amplitude (Pa) 0 0000-0002 -1 15 15 10 0 10 Y (mm) X (mm) 5 -0.01 -0.01 **Resonance frequency at ambience: 73 kHz** -0.015 -0.015 **Resonance frequency at 150°C: 68 kHz** -0.02 0 -0.02 2 4 6 2 6 4 Time (ms) Time (ms) Burst Signal of 400 cycles at 20 V_{P-P}

CIU Centre for Industrial Ultrasonics

Summary

- FUTs are efficient and low cost
- Prototypes show potential for operation at high temperature and frequency
- HiFFUTs for hostile environments, including high pressure, are in development
- Industrial collaboration is ongoing for assessment of prototypes

Acknowledgement

I would like to acknowledge the Engineering and Physical Sciences Research Council (EPSRC) Grant Number EP/N025393/1 for funding this research.

CIU Centre for Industrial Ultrasonics

