Semiconductor Nanostructures

Dr. Gavin Bell
Surface & Interface Science Group

Semiconductor nanostructures without fabrication

- Self-assembled semiconductor quantum dots and wires
 - typically *heteroepitaxy*: InAs-GaAs and Ge-Si
 - need to understand growth processes
 - big challenge for multi-scale modelling
 - challenge for observational techniques
- Semiconductor surfaces nanostructured by ion beam erosion
 - Growth templates for other materials, e.g. magnetic pnictides?
 - Magnetic nanostructures, control of magnetic anisotropy?
 - Templates for molecular adsorption?

Microscopy (InAs-GaAs QDs)

'STMBE' – Prof. Shiro Tsukamoto, University of Tokyo

Scan *during* growth

– try to watch
kinetics in action

SEM - Warwick

Z-contrast mode: In-rich QD tops / centres and irregular In-rich islands

General problem – compositional analysis for nanostructures

Modelling QD growth kinetics

Dimitri Vvedensky, JOURNAL OF PHYSICS CONDENSED MATTER **16** R1537 (2004)

- Need to understand growth kinetics to optimise properties.
- InAs-GaAs QDs very rapid assembly at critical thickness.
- Depends on surface reconstruction (atomic scale) but end up with 10^4 10^5 atoms per QD.

Related structures (InAs-GaAs)

- Quantum wires / dashes
- QD 'vertical stacks'
- Quantum rings

Overgrowth of InAs island with GaAs – formation of more complex structures e.g. 'quantum ring'

Ion beam nanostructuring

Surf. Interface Anal. 29, 782-790 (2000)

NIM B 178 (2001) 101

'Anti-growth' – sputtering material away from initially flat wafer surface

Various structures possible – e.g. InP filaments with In tips, ripple structures or well-ordered 3D island arrays