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1 Introduction

The subject of neutrino mass underlies many of the current leading questions in particle physics.
Why is there more matter than anti-matter? There are some indications that understanding the
mechanism of neutrino mass could help solve this. Why are the neutrinos so light? Figure 1 is a
plot of the neutrino mass compared to the mass of the other charged leptons. The neutrino mass
is roughly a factor of a million less than the other particles, which only differ in mass by at most a
thousand.

Figure 1: Scale of the neutrino mass compared to the masses of the other charged fermions.

We will discuss briefly how some of these questions may be solved, and discuss general properties
of attempts to directly or indirectly measure the mass of the neutrino.

2 Lagrangian Formulation of Quantum Field Theory

Standard mechanics in physics can be described in terms of the Calculus of Variation, in which the
equation of motion of a body is determined by requiring the action to be stationary. The action is
defined to be

S =

∫ t1

t0

L(t, x(t),
dx(t)

dt
)dt

The quantity in the integral is known as the Lagrangian. In general it is a function of the energy of
the particle :

L = T − V =
1

2
mv2 − V

or the kinetic energy of the particle minus the potential energy of the particle. It can be shown that
minimisation of the action is equivalent to solving the Euler-Lagrange equation :

∂L

∂x
− d

dt

(

∂L

∂ẋ

)

= 0

In Quantum Field Theory (QFT) particles are descibed by fields, with spatial and temporal
dependendencies, φµ(x, t). We can still define Lagrangians of the fields, however, and the Euler-
Lagrange equation still holds. However, since QFT is a relativistic theory, we have to treat space and
time the same way, so the time derivative seen in the simple mechanical example must be replaced
by a derivative over space and time, and the coordinate derivative is replaced by the derivative of the
fields :

2



∂µ

(

∂L

∂(∂µφ)

)

=
∂L

∂φ

where L is the Lagrangian1

The solution to the Euler-Lagrange equation must be the equation of motion of the particle. We
know the equation of motion of a spin-1/2 fermion is the Dirac equation so, working backwards, we
can guess that the Lagrangian of a free fermion looks like

L = ψ(iγµ∂µ −m)ψ

Consider the ψ field. Using this Lagrangian

∂L

∂(∂µψ)
= 0

and
∂L

∂µψ
= (iγµ∂µ −m)ψ

so, the solution of the Lagrangian gives

(iγµ∂µ −m)ψ = 0

which is the Dirac equation.

2.1 Dirac Mass

Mass is included in the Standard Model through the Dirac mass term in the Lagrangian

mψψ

If we take the Dirac spinor ψ and decompose it into it’s left- and right-chiral states we we can
rewrite this as

mψψ = m(ψL + ψR)(ψL + ψR)

= mψLψR +mψRψL

since we have shown previously that ψLψL = ψRψR = 0.
The important point to note is that a non-zero Dirac mass requires a particle to have both a left-

and right-handed chiral state : in fact the Dirac mass can be viewed as being the coupling constant
between the two chiral components. As it stands this formalism is not gauge invariant. The details
are not really pertinent to the course and are not examinable. However, loosely and for the curious
: the left-handed neutrino field νL in the Standard Model is part of a doublet of left-handed weak

fields, with the other being the left-handed electron :

(

e

ν

)

L

. These fields are distinguished from each

other only by their weak charge, which is known as weak isospin, T3. The right-handed particle fields
are singlet fields, with no weak charge at all (and hence right-handed particle fields can’t couple to

1For more information see the Gauge Field course.
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the W bosons, in much the same way as neutrinos can’t couple to photons as they are electrically
neutral).

The field eL has a weak charge of T3 = −1

2
and an electric charge Q = −1. Now, a consequence of

being gauge invariant is that all terms in the Lagrangian are neutrally charged; both electrically and
from the point of view of the weak interaction. Now consider the Dirac mass term for an electron :
meeReL. The charges on each of the charged lepton fields and the overall term are shown in Table 1.
Note that adjointing (if that’s a word) a field flips the sign of the charge.

eL eR eR eReL
Q -1 -1 +1 0
T3 -1/2 0 0 -1/2

Table 1: Charges of fields in the electron Dirac mass term

To be a gauge invariant term all the charges for the combined term should be zero. Clearly they
aren’t. To force gauge invariance we need to add a field to the mass term which (i) has Q=0 and (ii)
has T3 =

1

2
. This field would be electrically neutral but part of weak doublet, just like the left-handed

electron field. This field will turn out to be the neutral Higgs boson. With this addition, the Dirac
mass term becomes neutrally charged and the term is gauge invariant.

Most of that isn’t important from the point of view of this course. The only bit that is, is that a
Dirac mass term couples fields of different chiralities.

Since we know the neutrino is chirally left-handed, there is good reason to suppose that the
neutrino must be massless, as there does not seem to be a right-handed state for the mass term to
couple to. However, we now know that the neutrino does have a small mass, so either there must be
a right-handed neutrino which only shows up in the standard model to give the neutrino mass, but
otherwise cannot be observed as the weak interaction doesn’t couple to it, or there is some other sort
of mass term out there.

By definition Dirac particles come in four distinct types : left- and right-handed particles, and left-
and right-handed antiparticles, and are therefore represented by a 4-component Dirac spinor. As we
will see in the next section, charged fermions can only have a Dirac type mass. For neutral fermions,
however, this need not be the case. Such particles could acquire mass through the Majorana mass

mechanism.

2.2 Majorana Mass

Before discussing this mechanism, let’s just remind you of the Charge Conjugation symmetry.

2.2.1 Charge Conjugation

Consider a particle’s wavefunction, ψ, and it’s charge conjugated partner, ψc. The charge conjugation
operator, Ĉ, turns a particle state into an anti-particle state, by flipping the sign of all the relevant
quantum numbers

Ĉ|ψ >= C|ψ >
where C on the right hand side of the equation is the charge conjugation eigenvalue. One can show
that the form for the charge conjugation operator, using Dirac gamma matrices, is

C = iγ2γ0
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with the following properties :

C† = C−1

CT = −C
Cγµ

TC−1 = −γµ
Cγ5

T
C−1 = γ5

If ψ is the spinor field of a free neutrino, then the charge-conjugated field ψc can be shown to be
(in the Dirac representation of the gamma matrices, anyway)

ψc = Cψ∗

where ψ∗ is the complex conjugate spinor.

2.2.2 The Majorana mechanism

Note: The details of the current calculations given here will not be examinable.

We have seen that the Dirac mass mechanism requires the existance of a sterile right-handed
neutrino state. In the early 1930’s, a young physicist by the name of Ettore Majorana wondered if
he could dispense with this requirement and construct a mass term using only the left-handed chiral
state.

Let us first split the Dirac Lagrangian up into its chiral components

L = ψ(iγµ∂µ −m)ψ

= (ψL + ψR)(iγ
µ∂µ −m)(ψL + ψR)

= ψLiγ
µ∂µψL −mψLψL + ψLiγ

µ∂µψR −mψLψR +

ψRiγ
µ∂µψL −mψRψL + ψRiγ

µ∂µψR −mψRψR

= ψRiγ
µ∂µψR + ψLiγ

µ∂µψL −mψRψL −mψLψR

= ψR(iγ
µ∂µ −mψL)ψR + ψL(iγ

µ∂µ −mψR)ψL

where we have used the fact that ψRγ
µ∂µψL = ψLγ

µ∂µψR = 0 (prove it!), and ψRψR = ψLψL = 0.
Using the Euler Lagrange equation we can look for independent equations of motion for the left-

and right-handed fields, ψL and ψR. We obtain two coupled Dirac Equations

iγµ∂µψL = mψR

iγµ∂µψR = mψL

The mass term couples the two equations. If the field were massless then we have the Weyl
equations

iγµ∂µψL = 0

iγµ∂µψR = 0

The neutrino is now described using only two independent two-component spinors which turn out to
be helicity eigenstates and describe two states with definite and opposite helicity. These correspond
to the left-handed neutrino and the right-handed neutrino. Since the right-handed neutrino field does
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not exist, then we just describe the neutrino with a single massless left-handed field and that is that.
This is the usual formulation of the Standard Model.

Ettore Majorana wondered if he could describe a massive neutrino using just a single left-handed
field. At first glance this is impossible as you need the right-handed field to construct a Dirac mass
term. Majorana, however, found a way.

Let’s take the second equation. We want to try to make it look like the first by finding an expression
for ψR in terms of ψL. To begin with, let’s take the hermitian conjugate of the second equation

(iγµ∂µψR)
† = mψ

†
L

−i∂µψ†
Rγ

µ† = mψ
†
L

Multiplying on the right by γ0 we get

−i∂µψ†
Rγ

µ†γ0 = mψ
†
Lγ

0

One of the properties of the γ matrices is γ0γµ†γ0 = γµ. Multiplying on the left by γ0 and
remembering that (γ0)2 = 1, we have γµ†γ0 = γ0γµ. Using this

−i∂µψ†
Rγ

0γµ = mψ
†
Lγ

0

and therefore,
−i∂µψRγ

µ = mψL

We want this to have the same structure as the first equation, but that negative sign out the front and
the wrong position of the γµ matrix is spoiling this. We can deal with this by taking the transpose

−i[∂µψRγ
µ]T = mψL

T

−iγµT∂µψR
T

= mψL
T

and using the property of the charge conjugation matrix that CγµT = −γµC we get

iγµ∂µCψR
T

= mCψL
T

This equation has the same structure as the first if we require that the right handed component of ψ
is

ψR = CψL
T

This assumption requires that CψL
T
is actually right-handed. Is this true? Well, if the field is right-

handed then applying the left-handed chiral projection operator, PL = 1

2
(1 − γ5) : PLψR = 0. Using

the properties of the charge conjugation matrix, PLC = CP T
L , we have

PL(CψL
T
) = CP T

L ψL
T
= C(ψLPL)

T

Now,

ψLPL = (PLψ)
†γ0PL

= ψ†P
†
Lγ0PL

= ψ†PLγ0PL

= ψ†γ0PRPL

= 0
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since P †
L = PL, {γ5, γ0} = 0 and PRPL = 1

4
(1 + γ5)(1− γ5) = 1

4
(1− γ5

2
) = 0.

So, yes, if we define the right-handed field ψR = CψL
T
, then we can write the Dirac equation only

in terms of the left-handed field ψL. The Majorana field, then becomes

ψ = ψL + ψR = ψL + CψL
T
= ψL + ψC

L

where we’ve defined the charge-conjugate field, ψC
L = CψL

T
.

What does this imply? Well, let’s take the charge conjugate of the Majorana field :

ψC = (ψL + ψC
L )

C = ψC
L + ψL = ψ

That is, the charge conjugate of the field is the same as the field itself, or more prosaically, a Majorana
particle is it’s own anti-particle.

What sort of particle can be Majorana - well, clearly it must be neutral, as the charge conjugation
operator flips the sign of the electric charge. Any charged fermion therefore will not be identical to
its antiparticle. In fact, the only neutral fermion that could be a Majorana particle is the neutrino.

This also changes our view of the nature of the neutrino. To date we have been assuming that
the neutrino and the antineutrino are distinct particles, but let’s think about that. We define the
neutrino to be that left-handed state which is created together with a negatively charged lepton in the

decay of a W− boson. and the antineutrino to be that right-handed state which is created together

with a positively charged lepton in the decay of W+ boson. However, we never see the neutrino or
antineutrino particles themselves. If the neutrino was a Majorana particle, with a left- and right-
handed component then we would only have a single particle : the neutrino. When A W− boson
decayed it would naturally produce the left-handed component as that’s the only bit of the neutrino
field which couples to theW−, and vice-verse if aW+ decays. We don’t need two independent particles
- just one with two independent chiral components will do.

2.2.3 Majorana mass term

We saw above that the mass term in the Lagrangian couples left- and right-handed neutrino chiral
states : LD = −mνRνL. If the particle is Majorana, We can also form a mass term just with the
left-handed component. In this case, the right-handed component is νCL = CνL

T

LM
L = −1

2
mνCL νL

The factor of a half there is to account for double-counting since the hermitian conjugate is identical.

2.2.4 Lepton Number violation

The Majorana term couples the antineutrino to the neutrino component. Dirac neutrinos have lepton
number L = +1 and antineutrinos have lepton number L = −1. Since Majorana neutrinos are the
same as their antiparticle it is impossible to give such an object a conserved lepton number. Indeed,
interactions involving Majorana neutrinos generally violate lepton number conservation by ∆L = ±2.

2.3 The Seesaw mechanism

We’ve seen that if only the left-handed chiral field, νL, exists then there can be no Dirac-type mass
term. In this case the neutrino Lagrangian can contain the Majorana mass term

LL
Maj = −1

2
mLν

C
L νL + h.c.
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and the neutrino is a Majorana particle. Unfortunately, given the build-up I’ve been setting up, such
a term cannot actually exist in the standard model, and so mL = 0. The reason comes from the Higgs
mechanism. Recalling the discussion of the Dirac mass term for the electron above, we can write
down a table of charges for the left-handed Majorana mass term:

νL νCL νCL νCL νL
Q 0 0 0 0
T3 +1/2 -1/2 +1/2 1

Table 2: Charges of fields in the left-handed Majorana mass term

Clearly, whilst we’ve solved the probably of introducing a right-handed neutrino field into the
Standard Model, it is still composed of a left-handed field and therefore still carries the quantum
numbers of the left-handed field, including non-zero weak isospin. In order to make the left-handed
Majorana mass term gauge invariant you therefore need to introduce a field with Q = 0 and T3 = −1.
This field cannot be part of a Higgs doublet - rather it is part of a Higgs triplet - a set of three fields
distinguished by values of T3 = −1, 0 and 1. The Standard Model does not include Higgs triplets -
and the data does not seem to show any evidence of one. Amongst other things, such a model would
allow lepton flavour violating interactions like µ → eγ which have never been observed. A left-handed
mass term like mLν

C
L νL doesn’t seem to be possible in the current Standard Model.

Hence, whatever one does, that the neutrino has a mass must imply either (i) there is something
really odd we haven’t thought of (never discount this possibility) or (ii) a right-handed chiral neutrino
field exists that only interacts with gravity and the Higgs mechanism.

We’ll set mL equal to zero below, but let’s first assume that we can write a left-handed Majorana
mass term LM

L = 1

2
mLν

C
L νL + h.c.. If we’re resigned to have a right-handed neutrino field as well,

which we’ll call NR, we can write a Dirac mass term LD = NRνL + h.c. and a further right-handed
Majorana field LM

R = 1

2
mRN

C
RNR+h.c.. We also have the charge-conjugate fields, νCL and NC

R . These

can form another Dirac mass term, mDν
C
LN

C
R . The mass for this term must be the same as for the

other Dirac mass term, as the total Majorana fields are νL + νCL , and N
C
R + NR. Note that the h.c.

just means the hermitian conjugate.
If one includes all these terms, then the most general mass term one can write down is

2Lmass = LD
L + LD

R + LM
L + LM

R + h.c.

= mDNRνL +mDν
C
LN

C
R +mLν

C
L νL +mRN

C
RNR + h.c.

which can be written as a matrix equation

Lmass ∼
(

νCL NR

)

(

mL mD

mD mR

)(

νL
NC

R

)

+ h.c.

where the first row vector
(

νCL NR

)

contains the right-handed fields, the mass matrix is

M =

(

mL mD

mD mR

)

and the final column vector

(

νL
NC

R

)

contains the left-handed fields.
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Now, let’s consider this a moment. We have expressed the mass Lagrangian in terms of the chiral
fields : νL and NR. These fields clearly do not have a definite mass because of the existence of the
off-diagonal term, mD, in the mass matrix. That means that these fields are not the mass eigenstates,
and do not correspond to the physical particle - which must have a definite mass. The values of mD

and mL are just numbers which indicate how strong the fields in each term couple to each other - they
don’t represent physical masses. This should be no concern - it just means that the flavour eigenstate
which couples to the W and Z bosons is a superposition of the massive neutrino states. One could
say, for example and pulling some numbers out of the air, that the massive neutrino, νm, has a 95%
chance of interacting as a νL and a 5% chance of interacting as a NR. Then one could write the state
as |νm >=

√
0.95|νL > +

√
0.05|NR >. Hence the mass state, νm is a mix of the flavour eigenstates.

The same thing happens in the quark sector when one talks about the CKM matrix. In the quark
case, we noted that the down and strange fields with definite mass are the d, s and b states. The
states which couple to the weak interaction are the d′, s′ and b′ states, and these are related by a
unitary matrix





d′

s′

b′



 =





Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb









d

s

b





The primed states couple to the W and Z, whereas the unprimed states have definite mass. The same
thing happens in this case

Let’s call these mass eigenstates ν1 and ν2. In order to find the mass of these states, we need to
rewrite the Lagrangian in terms of ν1 and ν2, which will give us a diagonal mass matrix

M ′ =

(

m1 0
0 m2

)

The procedure for doing this is a standard one known as diagonalisation.

2.3.1 Diagonalisation of a square matrix

A matrix A is diagonalisable if there exists a diagonal matrix D and an invertible matrix Z such that

Z−1AZ = D

Let D = diag(λ1, λ2, . . . , λn). From the definition, we have

AZ = ZD = DZ

where the last step comes from the diagonal nature of D. If the columns of Z are vectors v1, . . . ,vn

then
AZ = (Av1, . . . , Avn)

and
DZ = (λ1v1, . . . , λnvn)

Hence, we have the condition that

Av1 = λ1v1, . . . , Avn = λnvn

This means that the elements of the diagonal matrix, D, are the eigenvalues of A, and the columns
of the matrix Z are the eigenvectors of the matrix A.
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If we apply this procedure to the mass matrix, M , we find the masses m1,2 can be expressed in
terms of mL,mR and mD as the eigenvalues of the mass matrix to be

m1,2 =
1

2

[

(mL +mR)±
√

(mL −mR)2 + 4m2
D

]

We can choose different values for mL, mR and mD and this will give us different physical masses,
but the interesting behaviour, for us, occurs if one chooses mL = 0 and mR >> mD. As we have
seen, the standard model explicitly forbids the left-handed Majorana term (mL = 0) but says nothing
about the right-handed Majorana term, so this choice of parameters is sensible. If we makes this
choice, we get the mass of the ν1 field to be

m1 =
m2

D

mR

and the mass of the ν2 field to be

m2 = mR

(

1 +
m2

D

m2
R

)

≈ mR

Note, notice what happens if we set the mass of the unseen right-handed fields, mR, to something
very big. Then, the physical neutrino with mass m2 also acquires a very large mass, since m2 ≈ mR.
The physical mass of the other neutrino m1, on the other hand, becomes very small as it is suppressed
by the factor of 1

mR
.

If we try to find expressions for our mass eigenstates, we find that if mR is very large, ν1 ∼
(νL + νcL) − mD

m2

R

(NR + N c
R) and ν2 ∼ (NR + N c

R) +
mD

m2

R

(νL + νcL). That is, ν1 with small mass m1, is

mostly our familiar left-handed light Majorana neutrino and ν2 with very heavy mass m2 is mostly
the heavy sterile right-handed partner.

This is the famous see-saw mechanism. It provides an explanation for the question of why the
neutrino has a mass so much smaller than the other charged leptons. The charged leptons are Dirac
particles and therefore have a Dirac mass on the order of 1 MeV (or so). Suppose the Dirac mass of
the neutrino is around the same value (mD ≈ 1 MeV ) like all the other particles. Then if the mass
of the heavy partner is around 1015 eV, the mass of the light neutrino will be in the meV range, as
we now know it is.

This is the only natural explanation of the relative smallness of the neutrino mass we currently
have. It requires that the neutrino be a Majorana particle, and that there exists an extremely heavy
partner to the neutrino with a mass too large for us to be able to create it. This may seem a bit of
a stretch, but we know that such particles would have been created very early in the universe. They
no longer exist as stable particles, as they have decayed to lighter states as the universe cooled, but
due to the uncertainty principle, could exist for the short time necessary to generate mass.

The possibility of the existence of these heavy neutrinos also have given rise to another intriguing
idea called leptogenesis which is intrinsically linked to the question of the matter-antimatter asym-
metry. The idea is that these very heavy neutrinos, which are Majorana particles, decayed as the
universe cooled into lighter left-handed neutrinos or right-handed antineutrinos, along with Higgs
bosons, which themselves decayed to quarks. If the probability of one of these heavy neutrinos to
decay to a left-handed neutrino was slightly different than the probability to decay to a right-handed
anti-neutrino, then there would be a greater probability to create quarks than anti-quarks and the
universe would be matter dominated. More formally, it is thought that the quantum number B − L,
where B is the baryon number of the universe and L is the lepton number, must be conserved. If
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there was some violation of L in the decays of the heavy Majorana neutrinos, this would manifest as
a violation in B, and hence the missing anti-matter problem could actually arise from CP violation
in the neutrinos. Although there is no direct connection between CP violation in the heavy neutrinos
and CP violation in the light neutrinos, this idea still motivates the current attempt to measure CP
violation in the light neutrinos at today’s long baseline neutrino experiments.

This argument is one of the reasons why it is important to determine whether the neutrino is a
Majorana particle or not.

2.4 Implications of Neutrino Mass

Either

• the neutrino is a Dirac particle, and hence there must be a right-handed chiral neutrino state,
which does not interact with matter. This is a so-called sterile neutrino.

• the neutrino is a Majorana particle. In this case, the neutrino and the antineutrino are identical.
The mass term directly couples the left-handed neutrino with the right-handed antineutrino,
which implies that the neutrino must have mass. Furthur, such an interaction implies that
lepton number is violated by 2.

• If the neutrino is Majorana, then it is possible to explain the very low value of the neutrino
mass compared to the quark and charged lepton masses at the expense of the introduction of
another very heavy Majorana neutrino though the see-saw mechanism. CP violation in the
decays of this heavy neutrino in the early universe could have created the baryon asymmetry
we see today.

2.5 What you need to know

• The difference between Dirac and Majorana particles and why only the neutrino could be a
Majorana fermion

• the implications of the neutrino being a Dirac or Majorana particle.

• what the see-saw mechanism is and how it explains the low value of the light neutrino mass.

3 Direct Neutrino Mass Measurements

Attempts at measuring the mass of the neutrinos generally involve studying well-known decays of
particles which decay to a neutrino and some charged particles. If the momentum of these charged
particles can be measured, and the mass of the decaying parent, and the decay products is well
known, then energy-momentum conservation can, in principle, allow one to determine the mass of the
outgoing neutrino.

Since the neutrino mass is so small, experiments of this type are usually extremely difficult. Any
systematic error on the order of the neutrino mass could be interpreted as a non-zero neutrino mass,
so the experiments must be very well understood.
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3.1 Direction measurement of the electron neutrino mass

The standard method of measuring the mass of the electron neutrino is to use β-decay. The underlying
mechanism for β-decay is

n→ p+ e− + νe

The general theory of β-decay describes the shape of the energy of the electron emitted from the
decay by the equation

dN

dEe
= Cp(E +me)(E0 −Ee)

√

(E0 −Ee)2 −m2
νF (Ee)θ(E0 −Ee −mν)

where C is just a normalisation constant, me is the electron mass, Ee is the electron energy, and E0

is the maximum allowable energy for the electron from the decay kinematics, and is called the end

point. The function F (Ee) is called the Fermi function, and takes it account the interactions of the
electron with the electromagnetic field of the daughter nucleus. The final term, θ(E0−Ee−mν), just
imposes energy conservation. This spectrum can be seen in 2(a). A non-zero neutrino mass has the
effect of changing the slope of the curve slightly, and also changing the maximum allowable energy
given to the electron. This is shown in 2(b) which shows the difference in the shape of the spectrum
between a zero neutrino mass and a mass of 1 eV.

Figure 2: (a) The shape of the electron energy spectrum in β-decay. (b) The effect of a non-zero
neutrino mass on the endpoint of the spectrum.

Direct measurements search for the slight difference in shape right at the endpoint of the spectrum
which may be indicative of a non-zero neutrino mass. They are difficult experiments to do, and can
only be done under a restrictive set of conditions :

• The number of electrons near the end point of the spectrum is usually small, so the statistical
error is large. In general, an isotope which has a small end point is better as the fraction of
electrons near the endpoint is larger.

• The detector should have extremely good electron energy resolution.

• The β source shouldn’t be thick. Once emitted from the decay, the electron could lose energy as
it travelled through the source, biasing the measurement. Ideally the source should be a single
layer of atoms. However this would lead to a very low event rate. The best thing to do is find
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a gaseous source - this combines low density so minimal energy loss, with a reasonable number
of source atoms to decay.

• The end point of the spectrum is sensitive to lots of atomic and nuclear effects, excited state
transitions and other rarer effects. When looking for an already rare signal, one wants an isotope
which doesn’t have as many of these nuclear effects which would distort the endpoint and be
difficult to understand.

One of the better source materials for this purpose is gaseous tritium which decays via the channel

3H → 3He+ e− + νe

A schematic for the sort of experiment that is used for this measurement is shown in Figure 3

Figure 3: Schematic of a tritium-beta decay experiment.

The tritium is stored at the extreme left. When it β-decays, the emitted electron is guided
along the input channel to the large retarding spectrometer (known as a MAC-E filter) just after the
solenoid. The spectrometer imposes a retarding electron potential along its length, stopping all but
the most energetic electrons. Those electrons with high enough energy to surmount the potential
barrier are then guided into the detector at the right. In this case, the MAC-E filter operates as a
high band-pass filter, integrating all electrons above a set threshold. By changing the value of the
threshold, an integral spectrum of the electrons can be built up and the end point studied for signs
of neutrino mass.

The results of these experiments have been to put an upper limit on the mass of the electron
neutrino : mνe < 2.2 eV at 95% confidence. A new experiment, called KATRIN (see figure 4), is
being built now which aims to decrease this limit to 0.2 eV in 5 years of running. It aims to start
running next year (although KATRIN’s schedule is flexible). If the electron neutrino mass is above
0.35 eV, KATRIN will measure it to a precision of 5 standard deviations. KATRIN has the same
design as all tritium-β decay experiments. It is distinguished by the size of it’s MAC-E filter which
has a diameter of 10 m, an order of magnitude larger than those used in previous such experiments.

3.2 Direct measurement of the muon and tau neutrino mass

The only way to directly measure the mass of the muon and tau neutrinos are through the decays of
pions and tau. An upper limit on the muon neutrino mass has been made by investigating the decay

π+ → µ+ + νµ
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Figure 4: Schematic of the KATRIN experiment. Picture taken from https://www.katrin.kit.edu/

for decays of pions at rest. This has yielded the upper limit of mνµ < 190keV at 90% confidence, with
the dominant error being our imprecise knowledge of the pion mass.

The results for the tau neutrino mass are even worse. The few measurements to be done on this
were performed at e−e+ colliders using the decay scheme :

e+ + e− → τ+ + τ−

The τ then decayed into the 5 hadron final state

τ → ντ + 5π±(π0)

The energy of each tau is just half the centre of mass energy of the beam, so is well known. The
problem comes in being sure that the detector has recorded, and reconstructed, all of the five pions
well and with sufficient precision as to be sensitive to the missing energy and momentum carried away
by the ντ . The upper limit for the mass of the ντ is currently mντ < 18.2MeV at 95% confidence.

3.3 What you should know

• General principles of νe mass detection using β decay. What does neutrino mass do to the end
point of the electron spectrum? What properties are needed for experiments which try to do
this kind of measurement.

• How measurements of the mass of the νµ and ντ are attempted.
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4 Neutrinoless Double Beta Decay

As can be seen from the previous section, the extremely small size of the neutrino mass makes direct
measurement very difficult.

One alternate method which is under enthusiastic investigation around the work is the study of
neutrinoless double beta decay. We will start talking about this by briefly discussing the standard
model process of 2 neutrino double beta decay.

Certain rare isotopes are forbidden from decaying through standard beta decay. The mass of such
isotopes are usually less than than the daughter isotope after beta decay

m(Z,A) < m(Z + 1, A)

These isotopes are energetically allowed, however, to decay via double beta decay, a nuclear process
whereby the nuclear charge changes by 2 units while the atomic mass is left unchanged

(Z,A) → (Z + 2, A) + 2e− + 2νe

There are only a few isotopes that decay this way (see Table 3). The process is a fourth-order pro-
cess with a lifetime that is proportional to (GF cosθC)

−4. Hence, they are distinguished by extremely
long half-lives and rare natural abundances.

2νββ mode Half life (×1024 years)
48

20Ca→ 48

22T i 4.1
76

32Ge→ 76

34Se 40.9
82

34Se→ 82

36Kr 9.3
96

40Zr → 96

42Mo 4.4
100

42 Mo→ 100

44 Ru 5.7
110

46 Pd→ 110

48 Cd 18.6
116

48 Cd→ 116

50 Sn 5.3
124

50 Sn→ 124

52 Te 9.5
130

52 Te→ 130

54 Xe 5.9
136

54 Xe→ 136

56 Ba 5.5
150

60 Nd → 150

62 Sm 1.2

Table 3: Some isotopes which undergo 2 neutrino double-beta decay and the half-life of the transition

This process would have remained a rare but unremarkable process if it were not for the discovery
of neutrino mass. It was Ettore Majorana who suggested that, provided the neutrino had mass, and
was a Majorana particle, then the process of zero-neutrino (or neutrinoless) double beta decay should
also be observable

(Z,A) → (Z + 2, A) + 2e−

Clearly this process violated lepton number conservation by two units. The process continues in two
stages. First a neutron decays, emitting a chirally right-handed νe. This has to be absorbed by a
second neutron as a chirally left–handed νe (see Figure 5). To fulfil these conditions, the neutrino and
anti-neutrino must be the same (hence the neutrino must be a Majorana particle). Further, the chiral
right-handed νe emitted by the first decay must be able to evolve a left-handed chiral component as
it propagates towards the second interaction. The only way it can do this is if the neutrino has a
mass. The observation of neutrino-less double beta decay shows both that the neutrino is Majorana
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and that the process can be used to obtain an estimate of the absolute neutrino mass (unlike neutrino
oscillations which cannot, in principle, measure this). The half-life of neutrinoless double beta decay
may be expressed as

T−1

0ν = G0ν |M0ν |2|mee|2

where G0ν is a known phase-space factor which determines how many electrons have the right energies
and momenta to participate in this process,M0ν is a nuclear matrix element which describes the actual
decays in the nuclear environment, and mee is a linear combination of the neutrino mass states

|mee| = |
∑

i

U2

eimi|

with Uei being the relevant elements of the PMNS mixing matrix (see the writeup on neutrino oscil-
lations), and mi the mass of the mass eigenstates.

Hence, any measurement of the half-life of this process gives one a handle on the scale of the
neutrino mass which, when combined with the results of the oscillation experiments, can provide a
measurement of the lightest mass eigenstate.

Figure 5: Feynman diagram for neutrino-less double beta decay

4.1 Experimental Conditions for the measurement of 0νββ decay

The signal for neutrinoless double beta decay is a spike in the spectrum of the sum of the emitted
electrons at a specific energy (the Q-value of the transition). Conversely, for 2ν double beta decay,
this spectrum will be continuous from 0 up to the Q-value (see Figure 6). The sensitivity to mee

scales with the square root of the half-life. The half-life scales as

T 0ν
1/2 ∝ a

√

Mt

B∆E
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Figure 6: The energy spectrum of the sum of the energies of the emitted electrons for 2ν double beta
decay (broad continuous distribution) and 0ν double beta decay (spike at endpoint of the spectrum).

where a is the abundance of the isotope in the source, M is the source mass, t is the measurement
time, B is the number of background counts and ∆E is the energy resolution of the detector. This
makes sense - clearly a better measurement can be made if there is more isotope to decay, and/or
more source material. Alternatively one could just count for longer, put more effort into minimising
the background, or make a detector with extremely good energy resolution. There are two types of
neutrinoless double beta decay detectors

• the counting experiment : This type of experiment usually utilises the source as the detector.
It typically has excellent energy resolution, and can have large source masses, but often only
measures the sum energy of the two electrons and therefore tends to have more irreducible
background. The two electrons themselves are never observed directly.

• the tracking experiment : In this type of experiment the two electrons are detected independently
using tracking and calorimetry. This minimises background, as in 0ν double beta decay the
electrons are emitted back-to-back, but the source mass is usually constrained by the detector
design.

4.2 Counting Experiments

4.2.1 Semiconductor experiments

In this type of experiment, the source material is usually some form of semiconductor. The isotope
under investigation is part of the source. When a double beta decay event occurs, the emitted
electrons ionise the semiconductor, leading to a cascade of electron/hole pairs that drift to electrodes
on the faces of the detector, generating a voltage pulse that can be measured. The advantage of
such detectors is that the number of electron/hold pairs is proportional to the energy of the emitted
electrons, hence the energy resolution is usually extremely good (2-3% for 1 MeV electrons). However,
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the detector only measures the sum energy of the two electrons, and hence there is usually a lot of
background from other radioactive processes occurring in the source material.

The Heidelberg-Moscow experiment is probably the most famous and controversion semi-conductor
based neutrinoless double beta decay experiment. It used 11 kg of Ge enriched to about 80% in 76Ge.
It is controversial in that it is the only neutrinoless double beta decay experiment to claim a positive
result. Figure 7 shows the sum energy spectrum that they measure. A peak is expected at 2039 keV,
and indeed the collaboration claim that one is observed at a significance of 4σ. Unfortunately, there
are still a lot of background peaks from other processes occurring in the diode material. Most are
known, but the peak at 2030 keV (if it is a peak) is unknown. If true, Heidelberg-Moscow suggests an
effective neutrino mass of mee = 0.40 ± 0.17 eV. However, no confirmation has been found in other
experiments, so this is still considered controversial. If one assumes that no signal has been seen, then
an upper limit can be put on the effective mass of

mee < 0.35 eV

Figure 7: The controversial discovery claim of the Heidelberg-Moscow experiment. The claim is that
the peak at 2040 keV represents a 4σ discovery of neutrinoless double beta decay.

Of course, in science we don’t take results for granted. If the Heidelberg-Moscow results were to
hold then it must be replicated by a different experiment (and ideally using a different isotope). The
GERDA experiment (the GERmanium Detector Array) was designed to test the Heidelberg-Moscow
claims. Based at the Laboratori Nazionali del Gran Sasso in Italy, GERDA uses the same technology
as Heidelberg-Moscow, 2 kg of Ge enriched with 76Ge. The essential difference with Heidelberg-
Moscow is that GERDA paid particular attention to controlling the radioactive background and
carefully designed their statistical analysis techniques. The results from GERDA were null and are
shown in Figure 8. GERDA does not see any evidence of the Heidelberg-Moscow result.

4.2.2 Cryogenic experiments

This type of experiment works much the same as the semiconductor experiments. The emission of the
electrons from the double beta decay raises the temperature of the material by a tiny amount. If the
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Figure 8: The 0νββ results from GERDA. The top plot show the results from two independent anal-
yses (open and filled histograms). The bottom plot shows the region used to estimate the background
under the 0νββ peak. The red peak shows what would be expected were the Heidelberg-Moscow
result to be present. A peak should be visible at 2039 keV. No such peak is observed.

detector is maintained at a very low temperature (on the order of mK) then this temperature increase
can be measured and used to determine the summed electron energy. The leading experiment of this
type is Cuoricino which is made of 40 kg of TeO2 held at 8 mK. A neutrinoless double beta decay event
would raise the temperature of the crystal by about 10 µ K. This has been running since 2003 and
has not seen evidence of neutrinoless double beta decay. It has set an upper bound of mee < 0.68eV .

4.2.3 Future

There are a large number of experiments planned to start running in the next 10 years. They all aim
for a source mass of more than a hundred kilograms (hard when the actual isotope you want is quite
rare). A non-exhaustive selection are listed in Table 4

Experiment Isotope Source mass Mass sensitivity Start date
GERDA Phase 2 76Ge 40 kg < 0.02eV 2010
Majorana 76Ge 500 kg < 0.01eV 2011
Cuore 130Te 200 kg < 0.02eV 2011
Candles 48Ca 0.5 < 0.5eV 2009

Table 4: A non-exhaustive list of neutrinoless double beta decay experiments under construction and
their mass sensitivities.

4.3 Tracking experiments

Counting experiments try to maximise their sensitivity by maximising the source mass, but have dif-
ficulties with background. Tracking experiments sacrifice source mass for extremely good background
rejection. The seminal experiment of this design is the NEMO3 experiment. NEMO3 installs foils of
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the source isotope between tracking detectors and calorimeters. It can detect each electron as it is
emitted from the foil, measure its energy and angular distribution and, thanks to a magnetic field, its
charge. A display of an event detected in the NEMO3 is shown in Figure 9. The electrons are emitted
from the source foil (pink line) at the same point, and then travel through the tracking chambers (red
line) to the calorimeter (red boxes) where the electron energy is measured.

Figure 9: An event display from a background event in the Nemo3 detector.

The advantage of this detector is that is has phenomenal background rejection. The disadvantage
is that the foils only allow a small amount of the source material to be used, and the energy resolution
of the electrons is worse than for the semiconductor experiments (15% for 1 MeV electrons). NEMO3
has been running since 2003. Using a source isotope of 100Mo it has put an upper bound of the
effective neutrino mass of

mee < 0.8− 1.3eV

A successor experiment, called SuperNEMO, is being designed now. It uses the same technology, but
with more source material. It expects a sensitivity of mee < 0.07− 0.12 eV.

4.4 What you should know

• What neutrinoless double beta decay is, and what the signal of such a decay looks like.

• The implications to neutrinos of a positive observation of neutrinoless double beta decay.

• General differences between the different types of neutrinoless double beta decay experiments.

Note that I won’t ask detailed questions about specific experiments and their sensitivities.

4.5 Summary

Direct mass measurement using β decay is difficult. KATRIN will try to lower the bound to about
0.2 eV but it is clear that direct measurement experiments are reaching (or have reached) the limit of
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sensitivity. Neutrinoless double beta decay experiments are then the only hope of directly measuring
the effecting neutrino mass. Should neutrinoless double-beta decay not be observed, it is unclear if
any absolute measurement of the neutrino mass can be made.

The neutrinoless double beta decay industry is large and growing. The aim is to get the upper
bound of the effective neutrino mass measurement below about 0.01 eV (in order to determine the
mass heirarchy) or make a measurement of the effective mass. Only one experiment (Heidelberg-
Moscow) has claimed a measurement. This result has not been confirmed by GERDA and hence
should be treated with some scepticism.
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