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Preface

PX3A7 replaces the module PX366 for the academic year 2023-2024, which it also extends from
7.5 to 15 CATS. The syllabus remains the same but topics will be covered in greater detail
and developed further. As the additional material naturally involves more advanced topics, the
increase in the size of these lectures notes, and of the total content in the course, is somewhat
less than a factor of two. The exam is anticipated for the Summer period and will consist of
three questions and have a two hour duration. The previous exam papers for PX366 remain an
excellent resource for preparation.

This is a third year course in statistical physics that may be seen as building on the content of
PX265 Thermal Physics II. The module is more of a ‘topics’ course than it is a ‘definitive’ account
of the foundations of statistical physics and there is only a brief review of those foundational
notions that we will make most use of. The choice of topics is fairly classical, albeit influenced
by my interests (or, rather, limited knowledge), although it is geared towards the ‘soft’ side of
things rather than the ‘hard’ side and in particular there is no coverage of quantum topics.

These notes cover the entire content of the course, however, the delivery in lectures may
differ slightly, including in the order of topics. The problem sets form an integral part of the
course, both reviewing material from the notes and lectures and expanding upon it.

As always, I will be grateful to receive comments, corrections, or general feedback, and
especially suggestions for improvement.
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Books and other reading

There are lots of good books. You are encouraged to read as many as you can. There is no
single book I know of that covers all aspects of this course, but some with particular relevance
to the topics we cover are listed below.

1. J.M. Yeomans, Statistical Mechanics of Phase Transitions, Clarendon Press, Oxford, 1992.

An excellent and accessible account of the physics of phase transitions from a traditional perspective. This

covers all of the topics on the Ising model and Landau theory in more detail than we go into.

2. Richard A.L. Jones, Soft Condensed Matter, Oxford University Press, Oxford, 2002.

General coverage of statistical physics applied to soft matter at a similar level to this course. Particularly

useful for the material on phase separation and polymers.

3. M. Doi, Soft Matter Physics, Oxford University Press, Oxford, 2013.
doi:10.1093/acprof:oso/9780199652952.001.0001

General coverage of statistical physics in soft matter in theoretical style at a level similar to the course but also

going beyond it. Particularly useful for rubber elasticity and Brownian motion, but also with useful coverage

of phase separation and liquid crystals.

4. J. Cardy, Scaling and Renormalization in Statistical Physics, Cambridge University Press,
Cambridge, 1996. doi:10.1017/CBO9781316036440

Incredible and authoritative insights into the modern theory of phase transitions. Although mostly focused

on material going beyond our course, the first three chapters cover the basic ideas of phase transitions and

mean field theory.

5. Mehran Kardar, Statistical Physics of Particles and Statistical Physics of Fields, Cambridge
University Press, Cambridge, 2007.

Two companion books coming from a graduate course at MIT. They give an excellent up to date account that

contains careful explanations and many helpful insights. Covers more than this course, including at a higher

level, but where there is overlap you should find Kardar’s books an excellent reference.

6. M. Doi and S.F. Edwards, The Theory of Polymer Dynamics, Oxford University Press, Ox-
ford, 1986.

A classic monograph on polymer physics. The material that we cover is treated in chapter 2. Chapter 3

includes a treatment of Brownian motion at a level going beyond what we do.

7. James P. Sethna, Statistical Mechanics: Entropy, Order Parameters, and Complexity, Oxford
University Press, Oxford, 2006.

General coverage of all the core aspects of statistical mechanics at a level more suited to a masters course.

Well written and highly insightful.

8. P.M. Chaikin and T.C. Lubensky, Principles of Condensed Matter Physics, Cambridge Uni-
versity Press, Cambridge, 1995.

A benchmark graduate level text in the United States. Highly authoritative treatment of general thermody-

namics, Landau theory of phase transitions, liquid crystals and much more. Bedtime reading for Onslow.
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9. L.D. Landau and E.M. Lifshitz, Statistical Physics: Volume 5 of the Course of Theoretical
Physics, 3rd edition, Butterworth-Heinemann, Oxford, 1980.

A wonderful account with the highest standard of theoretical physics.
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Chapter 1

Statistical Mechanics, Ideal Gases
and Liquids

Statistical mechanics is many things to many people but at its core it is about describing the
properties and behaviour of systems containing a large number of particles or fundamental
constituents. We begin, as everyone always seems to, with a qualitative description of water
and its three principal phases: solid (ice), liquid (water, or liquid water), and gas (steam, or
water vapour). Everyone knows that water freezes at about 0◦ Celsius and boils at about 100◦

Celsius; these are examples of phase transitions. The transition temperature depends on
the pressure and these are the values at standard atmospheric pressure at sea level. A phase
diagram maps out the state of the system as a function of the control variables, here the
temperature and pressure: A schematic phase diagram for water is shown in Fig. 2.1. The lines
mark the phase transitions corresponding to freezing (or melting), boiling (or condensing) and
sublimation. These three transitions meet at the triple point where all three phases coexist.

There may be some features that you are not as familiar with. For instance, the diagram
indicates that it is possible to vary the temperature and pressure so as to pass between the gas
and liquid phases without any transition at all. Indeed, this is correct. The end point of the
liquid–gas transition line is called a critical end point and the state of water at that critical
point is its own phase, called the critical phase, as distinct from the solid, liquid and gas
phases as they are from each other. One of the characteristic properties of this critical state is
that it scatters light strongly, a phenomenon known as critical opalescence.

Water provides one example of a system displaying different phases and phase transitions.
There are many others. A substantial part of statistical physics centres on trying to understand
phases and phase transitions in general. Away from phase transitions, the understanding of
phases involves trying to account for their macroscopic properties, for instance the speed of
sound, the viscosity of water, or the elasticity of rubber.

Figure 1.1: Schematic phase diagram for a simple fluid such as water showing the phase be-
haviour as a function of temperature and pressure.
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1.1 Entropy, Partition Function, Free Energy

We provide a very brief review of how classical statistical mechanics captures thermodynamic
properties. Loosely, the idea is that the macroscopic properties of a system can be obtained from
knowledge of the possible microscopic states. Often, this is organised into different ensembles,
called microcanonical, canonical and grand canonical. In the microcanonical ensemble the
principal exercise is simply to count the number Ω of possible microstates; this is connected to
thermodynamic quantities through Boltzmann’s famous formula for the entropy

S = kB ln Ω. (1.1)

An equivalent, but more general, expression gives the entropy in terms of the probabilities pα
of each microstate, labelled by α,

S = −kB

∑
states α

pα ln pα. (1.2)

To see the connection we need only note that pα = 1/Ω in the microcanonical ensemble, for then

S = −kB

∑
states α

pα ln
1

Ω
= kB

∑
states α

pα ln Ω = kB ln Ω, (1.3)

using that the sum of the probabilities equals 1. The general expression for the entropy was
found by Gibbs and put on the much broader context of information theory by Claude Shannon
and is commonly referred to as the Shannon entropy.

In the canonical ensemble the different possible microstates can have different energies Eα
and are connected to a heat bath at temperature T . The probabilities of the microstates are no
longer all equal, as they are in the microcanonical ensemble, and are given by the Boltzmann
weights e−βEα , where β ≡ (kBT )−1 is the inverse temperature. More precisely the probabilities
are

pα =
e−βEα

Z
, (1.4)

where the normalising factor Z is the partition function

Z =
∑

states α

e−βEα . (1.5)

Let us see what this means for the entropy. From the Shannon formula (1.2) we have

S = −kB

∑
states α

pα ln pα = −kB

∑
states α

pα
[
−βEα − lnZ

]
,

=
1

T

∑
states α

pαEα + kB lnZ.
(1.6)

Recognising the sum as giving the average energy (or expectation value for the energy), which
we write as 〈E〉, or simply as E, we rearrange this formula into the form

−kBT lnZ = E − TS ≡ F. (1.7)

Here, F is the Helmholtz free energy, although we will often simply call it the free energy.
Often it is said that calculating the partition function is the key objective of statistical

mechanics, since it facilitates the determination of all macroscopic properties. For instance, the
(thermodynamic) energy E is

E =
∑

states α

Eαpα =
∑

states α

Eα
e−βEα

Z
=
−1

Z

∂Z

∂β
= −∂ lnZ

∂β
, (1.8)
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and the heat capacity is

CV =
∂E

∂T
=

∂

∂T

(
−∂ lnZ

∂β

)
=

1

kBT 2

∂2 lnZ

∂β2
. (1.9)

We will find that there is not a ‘one size fits all’ approach to statistical physics and that the
three main quantities – the entropy S, partition function Z and free energy F – each take centre
stage at different times.

1.1.1 Grand Canonical Ensemble

The canonical ensemble describes a system that is connected to a heat bath, with which it can
exchange heat – hence the energies of the microstates are not all equal – in order to maintain a
fixed temperature T . Two such systems are in equilibrium if they have the same temperature;
if the temperatures are different heat will flow between them until they equilibrate.

The grand canonical ensemble describes a system that is connected to a heat bath and
also a particle reservoir, with which it can exchange particles to maintain a fixed chemical
potential µ. Two such systems are in equilibrium if they have the same temperature and
chemical potential; if the chemical potentials are different then particles will flow between them
until they equilibrate.

The microstates of the grand canonical ensemble are labelled by their energy Eα and number
of particles nα. These are both variable through connection with the reservoir. The Boltzmann
weights are given by e−β(Eα−µnα) and the (grand canonical) partition function is

Z =
∑

states α

e−β(Eα−µnα). (1.10)

We calculate the entropy using the Shannon forumula (1.2)

S = −kB

∑
states α

pα ln pα = −kB

∑
states α

pα
[
−β(Eα − µnα)− lnZ

]
,

=
1

T

(
E − µN

)
+ kB lnZ.

(1.11)

Rearranging this gives the free energy as

−kBT lnZ = E − TS − µN. (1.12)

Strictly, this is not the Helmholtz free energy and is often given the unimaginative name ‘grand
canonical free energy’, or ‘grand thermodynamic potential’, although often we will not be so
careful in distinguishing between the different thermodynamic free energies.

1.1.2 Information Theory and Shannon’s Theorem

The origins of entropy in thermodynamics are contained in the behaviour of heat engines and
other tangible physical properties like the speed of sound in air1. The great insights of Boltzmann
and Gibbs are that the entropy is given by the probability distribution for the microstates, i.e.
the values of the pα. What should these be? One answer is that they are the steady state values
obtained by solving Newton’s equation (or Hamilton’s equation or the Schrödinger equation) for
the motion of every particle. More correctly, you obtain them from long time averages over the
dynamics, after any initial transients have disappeared. This can be done in computer simulation
for numbers of particles that are modestly large but still small compared to Avagadro’s number.
It is a basic premise of statistical mechanics (ergodic hypothesis) that such time averages over
the dynamics give the same results as ensemble averages.

1Famously, Newton’s prediction for the speed of sound in air was about 50 m s−1 too slow because he treated
sound vibrations as isothermal rather than isentropic.
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However, there is another answer that does not involve solving any dynamics and on the
face of it may seem to be a different conception of the steady state probability distribution. It
comes from the information content of probability distributions. In 1948 Claude Shannon laid
the foundations for information theory in his landmark paper

C.E. Shannon, A Mathematical Theory of Communication, The Bell System Technical Journal
27, 379–423 (1948). doi:10.1002/j.1538-7305.1948.tb01338.x

In it, Shannon proved that there is exists a unique function, satisfying a few basic assumptions,
that characterises the information content in any probability distribution. This is the Shannon
entropy

S = −k
∑
α

pα ln pα, (1.13)

where k is a positive constant that sets the units. For bit string messages it tells you how many
bits of information are needed in order to transmit the message precisely. It provides a means for
statistical inference, assigning likelihoods to different possible outcomes on the basis of known
information and with as little bias as possible. For a given set of probabilities the Shannon
entropy measures how much more you need to know to identify the exact state, so in order to
avoid making unsupported assertions you should maximise the entropy. This approach is called
maximum entropy inference.

The same philosophy can be applied to choosing the probabilities pα of microstates in statis-
tical physics. Maximising the Shannon entropy subject to the known information (e.g. average
energy, average particle number, etc.) provides the least biased estimate for the probabilites.
Identifying the Shannon entropy with the thermodynamic entropy (and setting k = kB) this
method reproduces the usual ensembles and Gibbs distribution. This approach to statistical
mechanics was first presented by Edwin Jaynes. The fundamental connection it makes between
the foundations of information theory and physics has been influential in both directions.

Let us see how the maximum entropy approach describes the canonical ensemble. In the
canonical ensemble the information we know about the microstates is that their average energy
is fixed (by contact with a heat bath) ∑

α

pαEα = E, (1.14)

where pα is the probability of finding the system in microstate α, which has energy Eα. To
determine the probabilities we maximise the Shannon entropy subject to this constraint and
that the total probabilities sum to unity

⇒ −kB

(
ln pα + 1

)
− λ1Eα − λ2 = 0, (1.15)

where λ1, λ2 are the two Lagrange multipliers. Solving for the probabilities we obtain

pα = e−1−λ2/kB−λ1Eα/kB =
1

Z
e−βEα , (1.16)

where we define Z = exp{1 + λ2/kB} and β = λ1/kB as more conventional symbols. Thus
the application of maximum entropy inference to determine the probabilities reproduces the
ensembles of statistical mechanics.

The interested reader may like to take a look at Jaynes’ original paper

E.T. Jaynes, Information Theory and Statistical Mechanics, Phys. Rev. 106, 620 (1957).
doi:10.1103/PhysRev.106.620
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1.2 Ideal Gas

Perhaps the simplest description of a single component gas (or liquid) is a collection of non-
interacting point particles in a container of volume V . It is not without its merits – it recovers
Boyle’s law for the equation of state of ideal gases – but it does not begin to capture the phase
behaviour of water, for example. The most obvious thing that is missing is any form of inter-
action between the particles. These turn out to be difficult to account for, at least analytically.
Basically, this is because there are many possibilities for the nature of the interactions and this
in turn gives rise to the tremendous diversity in macroscopic behaviour and phases that even
simple systems can exhibit.

Consider a gas of N identical particles in a box of volume V . The (positional) configurations
of the gas are given by listing the positions {xi}, i = 1, . . . , N , of all N particles and the partition
function is

Z =
1

N !

∫
V
· · ·
∫
V
d3x1 · · · d3xN =

V N

N !
, (1.17)

where the factor of N ! accounts for the fact that the particles are indistinguishable. The free
energy is

F = −kBT lnZ ≈ −kBT
[
N lnV −

(
N lnN −N

)]
≈ NkBT ln

N

V
, (1.18)

using Stirling’s approximation lnN ! ≈ N lnN −N . The pressure in the ideal gas is given by

p = −∂F
∂V

=
NkBT

V
, (1.19)

and is known as the ideal gas law; it is the equation of state for a gas (or liquid) of non-
interacting particles.

1.3 Hard Core Interactions: Excluded Volume

Now suppose we think of each particle as a sphere of radius a and the confining volume as a
cubic box of side L. The configurations consist of the possible positions for the centres of each
spherical particle. For a single particle, this is no longer the total volume of the box, V = L3, but
rather the smaller size (L−2a)3 since the centre of the particle must always be at least a distance
a away from any wall. This is an example of an excluded volume, a volume of space that the
particle cannot occupy because of its hard-core interactions with the confining surfaces. If
the same excluded volume, hard-core interactions are imposed between any two particles then
we have a simple model of an interacting system, the hard-core gas. The partition function,
as before, is just the integral over all possible configurations, i.e. positions for the centres of
the N particles. The difficulty is in correctly accounting for the constraints, i.e. ensuring that
no particles overlap; this can be done in one dimension but not in general. Nonetheless, some

Figure 1.2: The hard-core gas model. (a) A gas (or liquid) phase at low density. (b) At high
density the particles adopt a crystalline arrangement to avoid any overlaps; the highest density
is achieved for a hexagonal lattice. (c) A square lattice arrangement.
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basic conceptions are fairly intuitive, as illustrated in Fig. 1.2. When the density is low, the
configurations are hardly constrained at all and the behaviour should be the same as that of the
ideal gas. However, when the density is high, the particles have to be placed carefully into the
box in order that they all fit with no overlaps. It is relatively easy to speculate that the best way
of achieving this is to place them regularly in a crystal structure (although it is not so easy to
prove). You might even be able to convince yourself that in two dimensions hexagonal packing is
better than square. Thus we expect that even this simple model will capture a phase transition
between gas (or liquid) and solid phases. This is indeed observed in numerical simulations.

1.3.1 Perturbative Expansions in the Density

Let’s see how to incorporate roughly the effects of two-body excluded volume interactions. It is
easy to see that the volume that a particle excludes from the position of any one other is

Vex =
4π

3
(2a)3, (1.20)

because their centres cannot come closer than 2a apart. A rough estimate for the total reduction
in accessible volume for a single particle is therefore

V → V −N Vex

2
, (1.21)

where the factor of 1
2 accounts for the fact that the excluded volume is a two-body effect and so

shared between two particles, i.e. it keeps track of double counting. This gives an approximation
for the free energy of the interacting gas

F = NkBT

[
ln

N

V −NVex/2
− 1

]
≈ NkBT

[
ln
N

V
+
N

V

Vex

2
+ · · ·

]
. (1.22)

The second form hints at a useful interpretation of our rough approximation, namely it gives
the first term in a perturbative expansion of the free energy in powers of the density, N/V . This
is the basis of ‘cluster expansion’ methods that formalise what we have done. For the pressure
(equation of state) we find

p = −∂F
∂V

= kBT

[
N

V
+
Vex

2

(
N

V

)2

+ · · ·
]
, (1.23)

which again represents a series expansion in powers of the density and is known as the virial
expansion. The excluded volume divided by 2 is the coefficient of the quadratic term, which
is called the second virial coefficient.

1.3.2 Depletion Interaction

As a simple, but important, application of excluded volume interactions, suppose a larger spher-
ical particle of radius R is placed in a non-interacting gas. Larger particles, with sizes of order
a micron are typically called colloids. The volume that the colloid excludes from the possible
positions of the centre of a single gas particle is (see Fig. 1.3(a))

Vex =
4π

3
(R+ a)3. (1.24)

The remaining volume available to the gas is V −Vex. The concept of excluded volume gives rise
to an attractive force between two colloidal particles, as shown in Fig. 1.3(b), that acts whenever
their separation h is less than 2a and the ‘excluded volumes’ of the two colloids overlap. The
volume excluded to the centres of the gas particles by the two colloids is then a little less than

6



Figure 1.3: (a) Excluded volume around a colloidal particle: a large colloid (grey) excludes
gas particles (red) from a region surrounding it, indicated by the dashed line. (b) Depletion
interaction between two colloids induced by an overlap of their excluded volumes (green).

the sum of their individual excluded volumes and, in particular, a function of their separation
h, i.e. Vex = Vex(h). The free energy for the gas is then approximately

F ≈ NkBT ln
N

V − Vex(h)
≈ NkBT ln

N

V
+
N

V
kBT Vex(h). (1.25)

The second term has the structural form of the pressure in the ideal gas times the excluded
volume, in other words it represents the work done in excluding the gas from the volume taken
up by the colloids. This is minimised by minimising the excluded volume, or by maximising
the overlap of the individual excluded volumes from each colloid. From either point of view we
see that there is a free energy gain in pushing the colloids together, or an effective short-range
attractive force between them. This is known as the depletion interaction, or the Asakura-
Oosawa theory after its discoverers. In actual colloidal systems it is commonly controlled by
adding a gas of polymer particles, whose size is small compared to the colloid and can be
controlled to tune the range (and strength) of the depletion interaction.

1.4 Virial Expansion

We now turn to a slightly more formal presentation of the statistical mechanics of interacting
particles, that also includes more general interactions. Let us approximate the interactions be-
tween particles by pairwise potentials Uij = U(ri−rj) depending only on the particle separation.
Then the partition function is

Z =
1

N !

∫
e−β

∑
i<j Uij

N∏
a=1

d3ra =
1

N !

∫ ∏
i<j

e−βUij
N∏
a=1

d3ra. (1.26)

Now if the interactions are short-ranged (e.g. contact interactions) and the density is low then
for most positions of particles i and j the interaction will be small and exp{−βUij} ≈ 1. This
would then reproduce the ideal gas law. To go beyond it we use the fact that exp{−βUij} is
almost always close to 1 and write

e−βUij = 1 +
(

e−βUij − 1
)
≡ 1 + fij . (1.27)

The functions fij defined in this way are called the Mayer f functions. They are numerically
small and we use this to develop a perturbative expansion of the partition function

Z =
1

N !

∫ ∏
i<j

(
1 + fij

) N∏
a=1

d3ra =
1

N !

∫ (
1 +

∑
i<j

fij +
∑

i<j,k<l

fijfkl + · · ·
) N∏
a=1

d3ra. (1.28)

The leading term gives V N/N ! as for the ideal gas. The first correction involves the terms with
a single fij and since the interaction potential is the same for every pair (choice of i and j) the
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contribution will be that for any one pair (say i = 1 and j = 2) multiplied by the number of
pairs. Thus we can evaluate the partition function as

Z =
1

N !

[
V N + V N−2 .

(
N
2

)∫
f12 d

3r1d
3r2 + · · ·

]
. (1.29)

For the integral we change variables to the centre-of-mass R = (r1+r2)/2 and relative r = r1−r2

coordinates, which gives ∫
f12 d

3r1d
3r2 = V

∫
f12(r) d3r. (1.30)

We can then write the free energy as

F = −kBT lnZ = −kBT

[
N lnV −

(
N lnN −N

)
+
N(N − 1)

2V

∫
f12(r) d3r + · · ·

]
, (1.31)

and hence the pressure is given by

p = −∂F
∂V

= kBT

[
N

V
− N(N − 1)

2V 2

∫
f12(r) d3r + · · ·

]
. (1.32)

Now N is of order Avagadro’s number so N − 1 ≈ N and writing n = N/V for the number
density we see that we have obtained an expansion for the pressure in powers of the density of
the general form

p = kBT

[
n+

∑
k≥2

Bk n
k

]
. (1.33)

This is known as the virial expansion and the coefficients Bk are called the virial coefficients.
We have calculated the second virial coefficient and shown that it is given by

B2 = −1

2

∫
fij(r) d3r. (1.34)

The systematic calculation of the higher virial coefficients is usually facilitated by working
with the grand canonical ensemble, which streamlines and simplifies the organisation and count-
ing of all n-body (n = 3, 4, . . . ) interactions. We do not cover this here and leave the interested
reader to consult the books, e.g. Kardar’s.

1.4.1 Van der Waals Equation of State

You should be able to verify that for hard-core interactions B2 = 1
2Vex, confirming the informal

arguments we gave in §1.3.1. Let us see how the value changes if we also include an attractive
part of the interaction for separations outside of the hard core. Such interactions arise generally
from electrostatics: fluctuations in the electronic charge density around any particle induce a
small dipole moment and the induced dipole moment of one particle interacts with that of any
other giving rise to dipole-dipole interactions, which decay with separation as 1/r6. A widely
used interaction of this form is the Lennard-Jones potential

ULJ(r) = 4ε

(
σ12

r12
− σ6

r6

)
, (1.35)

where ε is an energy scale and σ is a length-scale. The repulsive term in r−12 mimics a short-
range (hard-core) repulsion and is phenomenological. One can check that the potential vanishes
at r = σ and takes the value −ε at its minimum at r = 21/6σ. If we focus only on the attractive
part of the interaction we can approximate the contribution it makes to the virial coefficient by∫

r>σ
fij(r) d3r ≈

∫
r>σ

(
e4βεσ6/r6 − 1

)
4πr2 dr ≈ 4π

∫
r>σ

4βεσ6

r6
r2 dr, (1.36)
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Figure 1.4: (a) The Lennard-Jones potential. (b) Isotherms of the van der Waals equation of
state. The attractive interactions lead to condensation of the liquid phase, which coexists with
its less dense vapour.

where in the last step we used a Taylor expansion. Performing the integral we find the second
virial coefficient is modified to

B2 ≈
1

2
Vex −

8πεσ3

3kBT
. (1.37)

The attractive part of the interaction reduces the value of the second virial coefficient by an
amount that depends on the strength of the attraction (ε) and on the temperature. To keep
things simple, let’s take σ = 2a to be the hard-core separation so that we have

B2 ≈
1

2
Vex −

2εVex

kBT
, (1.38)

and the equation of state can be written

p = kBT
(
n+B2n

2 + · · ·
)

= nkBT

(
1 +

Vex

2
n

)
− 2εVexn

2 + · · · . (1.39)

Rearranging, and using the approximation 1 + nVex/2 ≈ (1 − nVex/2)−1, we can put this into
the form (

p+ 2εVex
N2

V 2

)(
V − NVex

2

)
= N kBT. (1.40)

The result of doing all this is that we have reproduced the van der Waals equation of state.
Like Boyle’s ideal gas law, the van der Waals equation was originally obtained from empirical
observations; statistical mechanics has provided an explanation for how such an equation of
state arises.

To get a rough idea of what the van der Waals equation of state tells us about interacting
particle systems it is useful to plot a few of the isotherms – the relationship between pressure and
volume for different values of the temperature. In Fig. 1.4(b) we show three of them that convey
the basic phenomenology. At high temperatures the situation is similar to the ideal gas, which
is to say the isotherm has the same general shape as it does in the ideal case (pV = NkBT ) and
there is a single value of the volume (density) for each value of the pressure. However, at low
enough temperatures the situation is different, the isotherm develops a ‘minimum’ and, for a
certain range of pressures, there are three values of the volume for a given pressure. The smallest
value corresponds to a dense phase, or liquid, while the largest value represents a less dense gas,
the liquid’s vapour; the intermediate value is unstable. Thus the van der Waals equation of
state predicts that at low enough temperatures, and the right pressure, the system can co-exist
in two phases – a condensed liquid together with its vapour. This is exactly what is observed
for many liquid-gas systems.
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Figure 1.5: (a) Schematic of the isotropic and nematic phases of hard rods. In the nematic
phase the molecules all align along a common direction. A phase transition occurs by changing
density, or temperature. (b) The excluded volume of two hard rods depends on their relative
orientation. This figure indicates how to estimate it when the rods are very slender, L� D.

1.5 Hard Rods

There are a huge number of extensions and embellishments to the simple hard-sphere fluid. We
mention briefly just one, the replacement of hard spheres with hard rods, representing molecules
that are long and thin, with a length L much greater than their diameter D. The microscopic
states of the system now involve specifying the positions and orientations of all of the rods; see
the cartoons of Fig. 1.5. The interesting new feature is how the orientations are constrained,
or coordinated, by the hard core interactions. The excluded volume for a pair of rods depends
on their relative orientations and is larger when the rods are perpendicular (∼ L2D) compared
to when they are parallel (∼ LD2). This difference drives an alignment transition from a state
where the rods are oriented randomly, the isotropic phase, to one where they all adopt the
same orientation, which is known as a nematic liquid crystal and illustrated schematically
in Fig. 1.5(a). This is the material that underpins all of our flat panel displays. An important
feature is that it is only the orientations of the molecules that become ordered and not their
positions as in the formation of a crystal; the nematic state is still fluid. This is a state of matter
intermediate between simple isotropic liquids and crystalline solids. There are literally dozens
of them, known collectively as the mesomorphic phases.

From Fig.1.5(b) we can see that the excluded volume for two rods with an angle θ between
them is approximately

Vex ' L2 sin θ . 2D, (1.41)

when the rods are very slender. If we let f(θ, φ) be the distribution function for rod orientations
then the number of rods with a given orientation is Nf and (1.22) becomes

F = NkBT

[ ∫
f(θ, φ) ln

f(θ, φ)N

V
sin θ dθ dφ

+
N

V

∫
f(θ1, φ1)f(θ2, φ2)

1

2
Vex(θ) sin θ1 dθ1 dφ2 sin θ2 dθ2 dφ2 + · · ·

]
,

(1.42)

integrating over orientations. The problem now is to determine the distribution f so as to
minimise F . This approach to the isotropic–nematic transition was first presented by Lars
Onsager in 1949, using a variational method to estimate f . Onsager found that he was able to
compute all the integrals for the trial form

f(θ, φ) =
α

4π sinhα
cosh

(
α cos θ

)
, (1.43)

where α is a free parameter. α = 0 corresponds to the isotropic distribution f = 1
4π , while large

values of α give a distribution peaked around θ = 0, π. The free energy can then be minimised
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with respect to α to determine the state of the system. The result predicts a (first order) phase
transition to fairly large values of α ≈ 20 at modest densities provided the rods are sufficiently
slender (L� D). In § 4.2.2 we will reproduce this result from a different approach.

Direct variation of (1.42) with respect to f(θ, φ), subject to the constraint that the proba-
bility distribution is normalised, leads to the condition

ln f(θ1, φ1) + 1 +
N

V

∫
f(θ2, φ2)Vex(θ) sin θ2 dθ2 dφ2 − λ = 0, (1.44)

where λ is a Lagrange multiplier enforcing the constraint. This can be written in the form

f(θ1, φ1) =
1

Z
exp

{
−N
V

∫
f(θ2, φ2)Vex(θ) sin θ2 dθ2 dφ2

}
, (1.45)

where Z is a normalisation factor, and self-consistent solutions developed numerically. With mi-
nor modification the self-consistent form also provides the basis for a mean field theory treatment
of the isotropic-nematic transition that is covered in one of the problems.

1.5.1 Measure of Alignment: Nematic Order

The degree of alignment of the rods is fully encoded in the probability distribution f(θ, φ),
however, it is useful to have simpler measures, such as the average orientation, or first moment
of the distribution. We will find it convenient to denote the orientation of a rod by a unit
vector ν. It is clear that when the distribution is isotropic, f(θ, φ) = 1

4π , the average orientation
vanishes

〈νx〉 = 〈νy〉 = 〈νz〉 = 0. (1.46)

In statistical physics it is traditional to use an angle bracket notation for statistical averages,
i.e. 〈νx〉 =

∫
νxf(θ, φ) sin θ dθdφ. It turns out that the same is true for the probability distribu-

tion (1.43); the average orientation vanishes. This is a fundamental property of nematic order.
The probability distribution is invariant under the nematic symmetry ν → −ν. Thus to
distinguish the nematic and isotropic phases we have to go to the second moments 〈νiνj〉. For
an isotropic distribution we can compute these from symmetry; they vanish if i 6= j and if they
are equal

〈νxνx〉 = 〈νyνy〉 = 〈νzνz〉 =
1

3
〈νxνx + νyνy + νzνz〉 =

1

3
. (1.47)

We can summarise this by saying that for an isotropic distribution

Qij =

〈
νiνj −

1

3
δij

〉
, (1.48)

vanishes for all i and j. On the other hand, for a probability distribution strongly peaked around
θ = 0, π, such as (1.43) for large α, this average does not vanish. For instance

Qzz =
2

α2

(
1− α coshα

sinhα
+
α2

3

)
. (1.49)

Thus the measure Qij – the second moment of the probability distribution – serves to distinguish
the nematic phase from the isotropic one. It is conventional to write it as

Qij =

〈
νiνj −

1

3
δij

〉
= s

(
ninj −

1

3
δij

)
. (1.50)

Here, s is a scalar measure of the degree of order that vanishes in the isotropic phase and is
non-zero in the nematic; it is called the scalar order parameter. The average direction of
alignment in the nematic is captured by the unit vector n, which is called the nematic director.
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Chapter 2

Phase Separation

In this chapter we begin our description of phases and phase transitions by discussion of an
idealised model example: the phase separation of a binary fluid mixture, also called the AB
fluid. Two fluids that are brought together may mix thoroughly, or remain separated, as is
the case for oil and water. Transitions between mixed and unmixed states can be induced by
varying the interactions between the two fluids or the temperature.

2.1 Entropy of Mixing and Interaction Energy

The tendency for two fluids to mix is entropic. A simple model that captures this is to break
space up into a large number of boxes each of which can be assigned to either fluid A or B. If
each box (or site) is occupied independently then the probabilities are

pA =
VA
V
≡ φA, pB =

VB
V
≡ φB, (2.1)

where VA, VB are the total volumes of each fluid, and obviously V = VA + VB. φA and φB
are the called the volume fractions. As each box is treated independently there are only two
possibilities – either it contains fluid A or fluid B – and the entropy per site is

Ssite = −kB

[
φA lnφA + φB lnφB

]
. (2.2)

Often this is written in the form

Ssite = −kB

[
φ lnφ+ (1− φ) ln(1− φ)

]
, (2.3)

making use of the fact that φA + φB = 1 and slightly streamlining the notation.
What causes the fluids to separate are repulsive interactions between them. It is clear that

the important term is going to be proportional to φAφB, but let us arrive at this a little more
carefully. We assume that the interactions are short ranged and only with the immediately
neighbouring molecules; this is a good approximation in many cases. The expectation value of
the interaction energy between any single box and its neighbours is

φA
∑

neighbours

(
εAAφA + εABφB

)
+ φB

∑
neighbours

(
εABφA + εBBφB

)
, (2.4)

where the first term accounts for the interactions when the box contains fluid A, which it does
with probability φA, and the second when it contains fluid B, and εAA, εBB, εAB are the three
interaction energies. If there are z nearest neighbours then the expectation value for the total
interaction energy per site is

Esite =
z

2

[
εAAφ

2
A + εBBφ

2
B + 2εABφAφB

]
, (2.5)
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where the factor of 1
2 accounts for the fact that each interaction is counted twice in summing

over all sites – once when it is the ‘central’ site and once when it is a ‘neighbour’. We reexpress
the interaction energy in the form

Esite =
z

2

[
εAAφA

(
1− φB) + εBBφB(1− φA) + 2εABφAφB

]
,

=
z

2

[
2εAB − εAA − εBB

]
φAφB +

z

2

(
φAεAA + φBεBB

)
.

(2.6)

The last term is the expectation value for the interaction energy when the two fluids are com-
pletely separated, so that the energy associated to mixing is indeed a term proportional to φAφB.
For synergy with our subsequent topics we choose to write this interaction energy as ∆φAφB,
although in the literature it is far more common to see it written as χkBT φAφB.

2.2 Phase Diagram for the AB Fluid

Combining this expression for the interaction energy with the entropy calculated previously we
obtain the free energy per site of mixing for an AB fluid

Fsite ≡ f v0 = ∆φ(1− φ) + kBT
[
φ lnφ+ (1− φ) ln(1− φ)

]
. (2.7)

It is common to denote the free energy per volume (free energy density) by the lower case f as
we do from here on. v0 is the ‘volume of a site’ making sure the dimensions are correct; you
can think of it as the volume of a molecule. Now, consider how the free energy varies with the
volume fraction. When ∆ is negative, the interactions favour mixing and the energy is lowest
when φ = 1

2 . The same value maximises the entropy and so overall the free energy is at its
minimum. When ∆ is positive the interaction energy is minimised by taking φ = 0 or 1 but this
comes at the expense of reducing the entropy to zero and so will only be favoured when ∆ is
sufficiently large, or T sufficiently small. This is the essence of phase separation. But how does
it actually work? And what is the critical value of ∆, or T?

We answer the second question first. There are many ways in which we might do this,
however, it is somewhat convenient for our subsequent development to work directly with the
expression for the free energy. We write φ = (1 + s)/2 and treat s as small, using the Taylor
series

ln(1 + x) = x− 1

2
x2 +

1

3
x3 − 1

4
x4 + · · · , (2.8)

to arrive at

fv0 =
∆

4
− kBT ln 2 +

(2kBT −∆)

4
s2 +

kBT

12
s4 + · · · . (2.9)

The free energy has a single minimum at s = 0 when T > ∆/2kB but when T is less than this
– equivalently ∆ > ∆c = 2kBT – then s = 0 becomes a local maximum for the free energy and
the minimum is instead at the non-zero values

s ≈ ±
(

3(∆− 2kBT )

2kBT

)1/2

. (2.10)

Now suppose we have a mixture that would like to separate. How should it do so? Suppose
we split the mixture into two parts, with a volume Va having the composition φa (A rich) and
a volume Vb having the composition φb (B rich). We need

Vaφa + Vbφb = V Φ, and Va + Vb = V, (2.11)

so that overall the total composition (fraction of liquid A and liquid B) and total volume remain
correct. The total free energy of this separated state is Vaf(φa) + Vbf(φb) and so long as this
is less than the total free energy V f(Φ) of the mixed state it will be favourable to separate in
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Figure 2.1: Free energy for a binary mixture with (a) ∆ < 2kBT and (b) ∆ > 2kBT . (c)
Schematic phase diagram for the binary fluid; the mixture is stable outside the binodal but
inside it prefers to separate. Between the binodal and spinodal the mixture is metastable, while
within the spinodal it is linearly unstable.

this way. To determine the compositions φa, φb and volumes Va, Vb we minimise the free energy
subject to the two constraints, which gives the conditions

f ′(φa) = f ′(φb) =
f(φa)− f(φb)

φa − φb
. (2.12)

The slope of the free energy density at the two separated compositions is equal and given by
the chord between them; this is Maxwell’s common tangent construction. For symmetric
free energy functions (invariant under φ → 1 − φ), as we are considering, the common tangent
construction gives φa and φb as the two minima φ1, φ2 of the free energy density.

We summarise the situation with the phase diagram for a two fluid mixture, Fig. 2.1. Mix-
tures are characterised by the volume fractions φA = φ and φB = 1 − φ of the two liquids and
the interaction parameter ∆ − 2kBT . Not all homogeneous mixtures are unstable and demix:
the two volumes Va, Vb of A rich and B rich liquid are both positive only when φ1 < Φ < φ2

and it is only mixtures within this range that separate; those outside it remain stably mixed.
The boundary between the stable and unstable regions is called the binodal; it is the locus of
the minima φ1, φ2 of the free energy. Inside the binodal the mixture favours phase separation
because the linear combination Vaf(φa) + Vbf(φb) of energies of the A rich and B rich portions
is less than the energy V f(Φ) of the homogeneous mixture; this happens because the free energy
density is non-convex between φ1 and φ2. The loss of convexity is a signifier of the instabil-
ity. Within the binodal the free energy curve can be further separated into a region where it
is locally convex and an inner region where it is locally concave. The crossover between these
regions is called the spinodal. Inside the spinodal the homogeneous mixture is linearly unstable
and demixing happens spontaneously; this is known as spinodal decomposition. In contrast,
outside the spinodal (but still inside the binodal) the homogeneous mixture is linearly stable to
small fluctuations despite not being the lowest energy state.

2.3 Solutions and Osmotic Pressure

The model of the AB fluid applies also to solutions, a material dissolved in a liquid; for instance,
this may be as simple as salt in water. φ is then the volume fraction of the solute and 1−φ that
of the solvent. Suppose we add to a solution a small volume dV of pure solvent. This will lead
to a change in free energy dF = −posm dV where posm is the osmotic pressure. To calculate
it we first note that we have not added any more solute so that its total volume (initially φV )
remains constant

d
(
φV
)

= dφV + φdV = 0, ⇒ dφ = − φ
V
dV. (2.13)
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This then gives the change in free energy as

dF = d
(
f(φ)V

)
=

(
df

dφ
dφ

)
V + f(φ) dV, (2.14)

= −
[
φf ′(φ)− f(φ)

]
dV, (2.15)

and we can read off the expression posm = φf ′(φ)− f(φ) for the osmotic pressure. For the free
energy density (2.7) this becomes

posm =
1

v0

[
−∆φ2 − kBT ln(1− φ)

]
. (2.16)

Often the addition of solvent is taken to come from a reservoir that the solution is in contact
with via a semi-permeable membrane, i.e. one that allows the solvent molecules to pass but not
the solute. The osmotic pressure is then the force per unit area that the solution exerts on this
semi-permeable membrane. If we consider that the reservoir has a fixed volume then the process
of transferring an amount dV from the reservoir to the solution will change its free energy by
an amount −f(0) dV . Including this contribution in the total free energy change modifies the
osmotic pressure by a constant1 to give posm = φf ′(φ)− f(φ) + f(0).

Let’s expand the expression for the osmotic pressure (2.16) as a Taylor series in φ

posm =
kBT

v0
φ+

1

v0

(
kBT

2
−∆

)
φ2 + · · · . (2.17)

This has the form of a virial expansion. To connect it more explicitly note that VA = NAv0 so
that the osmotic pressure is

posm = kBT

[
NA

V
+

(
1

2
− ∆

kBT

)
v0

(
NA

V

)2

+ · · ·
]
, (2.18)

and we can identify (1
2 −

∆
kBT

)v0 as the second virial coefficient. It has the same basic form as
we found for the van der Waals equation of state in §1.4.1.

2.4 Interfacial Tension

When the two fluids demix there is an interface between the A rich phase and the B rich phase.
The statistical properties of interfaces reflect the same competition between interaction energies
and entropy. When the interaction energy dominates the interface is sharp and as small as
possible to minimise the unfavourable interactions between the two liquids. By contrast, when
the interaction energy is weak entropy dominates and the interface may expand so as to explore
many more microstates and increase its entropy. In general the interface may be described by a
free energy per unit area, known as a surface tension.

To say more, we need to recognise that the composition φ is spatially varying since it takes
different values in the A rich and B rich regions; in other words it is a function φ(x). What sort
of function is it? Locally, within any separated region it is constant, taking the values φ1, φ2

corresponding to the minima of the free energy. At the interface it has to interpolate between
these values. A simple functional form which captures this (and turns out to be the correct
function for certain simplified models) is the sigmoid

φ(x) =
φ1 + φ2

2
+
φ2 − φ1

2
tanh(x/ξ). (2.19)

Here, we are taking the interface to be the plane x = 0 so that φ only depends on the x-
coordinate and ξ is a length scale that characterises the width of the interface. Regardless of

1More correctly f(0) may depend on temperature (and pressure) but is only a property of the solvent. For the
free energy density (2.7) f(0) = 0.
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the precise form, the gradients, dφ/dx or ∇φ, are localised around the interface. This allows a
simple gradient contribution to the free energy density

fgradient =
κ

2

(
∇φ
)2
, (2.20)

to capture the physics of a surface tension. The coefficient κ controls the strength of the surface
tension, which turns out to be proportional to

√
κ.

Let us argue for this on dimensional grounds: Combining the gradient term with the free
energy in the form (2.9) gives

f =
κ

8

(
∇s
)2

+
(2kBT −∆)

4
s2 +

kBT

12
s4 + · · · , (2.21)

and if the length scale of the interface is ξ then comparing the first and second terms gives the
dimensional balance

κ

ξ2
∼ ∆− 2kBT, or ξ ∼

√
κ

∆− 2kBT
. (2.22)

The width of the interface is proportional to
√
κ. In addition, close to the critical temperature

Tc = ∆/2kB, this length scale diverges as |Tc − T |−1/2 which turns out to be a characteristic
feature of critical phase transitions. What about the surface tension? To get the energy per unit
area of the interface we integrate the gradient contribution across the width of the interface

σ =

∫
κ

2

(
dφ

dx

)2

dx ≈ κ

2

(
φ2 − φ1

ξ

)2

ξ ∼ κ

ξ
, (2.23)

making reasonable estimates. We see that the surface tension σ is proportional to
√
κ as claimed.

2.5 Cahn-Hilliard Equation

How does the composition φ(x, t) evolve in time? Because it represents the volume fractions
of the two fluids (φA = φ, φB = 1 − φ) and neither fluid is created nor destroyed, it must be
conserved so we require a continuity equation

∂tφ = −∇ · J, (2.24)

where J is the current, or flux – φ may be transported but it must be conserved because the
total quantity of each fluid is fixed. The current represents a flow of molecules from the liquid
A rich phase to the liquid B rich phase, or vice-versa, and such particle flows are controlled
by the chemical potential. When the chemical potential is constant (the same in both phases)
there is no flow, so the current should be J = −M∇µ, where M is a positive material dependent
constant. Finally, the chemical potential is given by2

µ =
∂f

∂φ
− κ∇2φ, (2.25)

with contributions both from the gradient of the bulk free energy (the desire to minimise the
free energy) and the curvature of interfaces. Putting all the pieces together we obtain the
Cahn-Hilliard equation

∂tφ = M∇2∂f

∂φ
− κM∇4φ. (2.26)

Consider again the instability of the homogeneous mixture with φ = 1
2 . We linearise the

Cahn-Hilliard equation for small fluctuations around this state, setting φ = (1 + s)/2 as we did
previously and using (2.9) for the bulk free energy

∂ts = 2M
(
2kBT −∆

)
∇2s− κM∇4s. (2.27)

2Those familiar with the calculus of variations will be able to recognise this as the functional derivative of the
free energy, µ = δF/δφ.
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Taking the Fourier transform in space we find solutions

s̃(k, t) = s̃0(k) e−Mk2[2(2kBT−∆)+κk2]t. (2.28)

These decay provided 2(2kBT − ∆) + κk2 > 0, which would imply stability for those modes.
However, whenever ∆ is large enough (or T is below the critical temperature Tc = ∆/2kB) the
modes with small enough wavevector k are unstable and grow exponentially. One can show that
the modes that grow fastest have wavevectors with

k2 =
∆− 2kBT

κ
, (2.29)

and this selects the length scale that first appears in the initial stages of phase separation. A more
general analysis identifies the spinodal and the initial growth rates for unstable homogeneous
mixtures with other values of φ1 < φ < φ2 within the binodal.

2.6 Droplet Equilibrium and Ostwald Ripening

In the late stages of phase separation there will be round droplets of the minority phase (A,
say) in the majority phase (B). They are round because of the surface tension. We consider the
condition of equilibrium of an A-rich droplet of radius R. Let φa denote the volume fraction of
the droplet and φb that of the surrounding B-rich majority phase. Then the free energy is

F =

(
V − 4πR3

3

)
f(φb) +

4πR3

3
f(φa) + 4πR2σ, (2.30)

where the first two terms represent the bulk phases and the last is the surface tension contribution
from the interface. The volume fractions φa, φb and droplet size R are not independent since we
must still satisfy (

V − 4πR3

3

)
φb +

4πR3

3
φa = V Φ, (2.31)

to conserve the total amount of A fluid. Minimisation of the free energy subject to this constraint
gives

f ′(φa) = f ′(φb) =
f(φa)− f(φb) + 2σ/R

φa − φb
. (2.32)

This entails two conditions: The first is an ‘equal tangent’ condition; the two volume fractions
have the same slope in the free energy density. The second is the value of this slope. First suppose
the droplet is very large so that we may treat the radius as effectively infinite. Then (2.32)
reproduces Maxwell’s common tangent construction. It will be enough to consider the case
of a symmetric potential with f(φa) = f(φb) where the equilibrium condition simplifies to
f ′(φa) = f ′(φb) = 0.

When the droplet radius is finite its effect, through the surface tension term in (2.32),
is to modify the values of φa, φb (from the infinite radius limit) by small amounts such that
f ′(φa) = f ′(φb) 6= 0. What is important is that the magnitude of this effect is larger for smaller
droplets. To say a little more, consider the chemical potential of the droplet, which is

µdroplet = f ′(φ)− κ∇2φ

∣∣∣∣
droplet

≈ f ′(φa) =
1

φa − φb
2σ

R
. (2.33)

Thus the chemical potential is a function of droplet size and is larger for smaller droplets. This
means that if we have two droplets of different size, the smaller one will be at higher chemical
potential than the larger setting a gradient between them. The flow of particles in response
to this gradient is from the small droplet to the large. The large droplet grows through the
evaporation of the small droplet, diffusion of its molecules through the surrounding majority
phase, and condensation onto the larger droplet. This process is called Ostwald ripening.
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Chapter 3

Ising Model

The Ising model is undoubtedly the great landmark of statistical mechanics. At its base it is
a model of ferromagnetism but its significance far exceeds these origins. Its tremendous utility
resides in the facts that (i) the partition function can be evaluated exactly (in one and two
dimensions), and (ii) the result is non-trivial and therefore instructive.

3.1 Definition of the Ising Model

The Ising model is a collection of spins si on the sites i of a (regular) lattice. Each spin can
take one of two values si = ±1 and interacts with its nearest neighbours through an exchange
interaction −Jsisj , where J is the exchange coupling; when it is positive the interaction
is ferromagnetic, favouring alignment of spins, whereas when it is negative the interaction is
antiferromagnetic. The energy of the configuration of spins is

E = −
∑
〈i,j〉

Jsisj , (3.1)

where the sum is taken over all nearest neighbouring sites i and j, denoted by the symbol 〈i, j〉.
The partition function is therefore

Z =
∑
{si}

eβJ
∑
〈i,j〉 sisj . (3.2)

The model is defined for any number of spatial dimensions and for any lattice type. It is
most commonly studied in one dimension – a linear chain of spins – or on a square lattice in
two dimensions, as illustrated in Fig. 3.1.

Figure 3.1: Schematic illustration of the Ising model on a two-dimensional square lattice. Each
site has a spin si, depicted as an arrow pointing up (si = +1) or down (si = −1), and spins on
neighbouring sites interact via an exchange coupling −Jsisj .
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3.2 Mean Field Theory

The basic idea in the Ising model is that the interactions favour alignment of spins, while
temperature (or entropy) acts to randomise them. We might expect that at high temperatures
(kBT � J) the interactions would be largely irrelevant and the spins random with no net
magnetisation. The phase is then paramagnetic. On the other hand at low temperatures
(kBT . J) the interactions will align the spins and the phase will become ferromagnetic.
Exactly this behaviour is found by an approximate analysis of the model known as mean field
theory.

The idea can be introduced as follows. Suppose the state is characterised by a well-defined
average magnetisation, i.e. 〈si〉 = m. In the paramagnetic phase m = 0, while in the ferromag-
netic phase m 6= 0 (and tends towards ±1). We write the exchange interaction as

−Jsisj = −J
(
m+ (si −m)

)(
m+ (sj −m)

)
,

= Jm2 − Jm(si + sj)− J(si −m)(sj −m). (3.3)

The idea is that the final term is small; it is proportional to the product of the fluctuations
(si −m) of the individual spins from the average value. The mean field approximation consists
in neglecting this quadratic term. Thus the mean field energy can be written

Emf =
∑
〈i,j〉

[
Jm2 − Jm(si + sj)

]
= N

Jzm2

2
− Jzm

∑
i

si, (3.4)

where z is the number of nearest neighbours for any lattice site (z = 2d for a cubic lattice in d
dimensions) and the mean field partition function evaluates to

Zmf =
∑
{si}

e−βEmf = e−NβJzm
2/2
∑
{si}

∏
i

eβJzmsi , (3.5)

= e−NβJzm
2/2

( ∑
si=±1

eβJzmsi

)N
, (3.6)

= e−
1
2
NβJzm2+N ln(2 coshβJzm). (3.7)

We can read off the mean field free energy per site

Fmf/N = f =
Jzm2

2
− kBT ln

(
2 coshβJzm

)
. (3.8)

The equilibrium phase should be given by the condition of minimising the free energy, so we
determine m by exactly this criterion, ∂f/∂m = 0. This yields the self-consistent equation

m = tanhβJzm. (3.9)

At high temperature the only solution is m = 0 and there is no net magnetisation; the state
is paramagnetic. However, below a critical temperature Tc = Jz/kB additional solutions
at non-zero values of m emerge and are the stable solutions; the state is ferromagnetic with
macroscopic (partial) alignment of all the spins.

3.2.1 Phase Behaviour

The phase behaviour of the Ising model is given as a function of the temperature and an applied
external magnetic field H. Such an applied magnetic field contributes a term −H

∑
i si to the

energy, favouring alignment of the spins with the applied field. Repeating the mean field analysis
as above leads to an expression for the free energy per site of

Fmf/N = f =
Jzm2

2
− kBT ln

(
2 coshβ(Jzm+H)

)
, (3.10)
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and as before the state of the system (value of m) is determined by minimising this free energy.
There are numerous ways of pursuing the analysis but it will be convenient for our subsequent

development to take the approach of a Taylor series of the free energy density

f = f0 +
Jz(1− βJz)

2
m2 +

β3(Jz)4

12
m4 − βJzmH + · · · . (3.11)

Here, f0 denotes terms independent of the magnetisation m and we have explicitly written only
those terms that are ‘relevant’1, leaving those that are ‘irrelevant’ to the dot-dot-dots. What
this means is that the expression (3.11) correctly captures the form and behaviour of the full
expression (3.10); the higher order terms do not alter the qualitative structure.

When βJz < 1 the free energy has a single minimum given approximately by

m ≈ βH

1− βJz
=

1

kBT − Jz
H. (3.12)

The magnetisation is proportional to the applied field and is only non-zero when the applied field
is non-zero; the phase is paramagnetic. The magnetic response to the field is characterised by
the susceptibility

χ =
∂m

∂H
≈ 1

kBT − Jz
. (3.13)

We note that this diverges as T → Tc ≡ Jz/kB with the power law form χ ∼ |T − Tc|−1. The
exponent of −1 is an example of a critical exponent.

When T < Tc = Jz/kB the behaviour is different and the free energy is minimised by a
non-zero magnetisation even in zero applied field. Indeed, we find

m ≈ ±
(

3(βJz − 1)

(βJz)3

)1/2

. (3.14)

This non-zero spontaneous magnetisation without external field indicates a ferromagnetic
phase; the temperature Tc = Jz/kB at which the state switches (in zero field) from paramagnetic
to ferromagnetic is called the critical temperature. We comment particularly that the onset
of the magnetisation has a power law form m ∼ |T − Tc|1/2; the exponent 1

2 is another example
of a critical exponent.

3.3 Exact Solution in One Dimension

The Ising model in one dimension is exactly solvable. This provides further insight into the
model and also a check on the mean field analysis.

We consider a one-dimensional chain of N sites with periodic boundary conditions (sN ≡ s0)
– so that sites i = 0 and i = N − 1 also interact via an exchange interaction −Js0sN−1 and
there are no ‘end effects’. The partition function is

Z =
∑
{si}

eβJ
∑N−1
i=0 sisi+1 =

∑
{si}

N−1∏
i=0

eβJsisi+1 . (3.15)

To understand this expression we introduce the transfer matrix T: This is a 2× 2 matrix

T =

[
eβJ e−βJ

e−βJ eβJ

]
, (3.16)

whose entries are the possible values of the Boltzmann weight eβJsisi+1 according to the different
configurations of spins on neighbouring sites

(si, si+1) ∈
{

(1, 1), (1,−1), (−1, 1), (−1,−1)
}
. (3.17)

1The proper explanation of these terms forms part of the set of ideas known as the renormalisation group;
see, particularly, Cardy’s book for an excellent account.
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The rows correspond to different values of si and the columns to different values of si+1. For
instance, the (12)-entry T12 corresponds to si = +1 and si+1 = −1. Now write out the partition
function in full and focus on the terms involving the particular spin sk

Z =
∑
s0=±1

· · ·
∑
sk=±1

· · ·
∑

sN−1=±1

eβJs0s1 × · · · × eβJsk−1sk eβJsksk+1 × · · · × eβJsN−1s0 . (3.18)

One then needs to recognise that summing over the possible values of sk, with all other spins held
fixed, amounts to matrix multiplication, giving the (sk−1sk+1)-element of T2, i.e. [T2]sk−1sk+1

.
Continuing to sum over all of the spins in this way we obtain

Z =
∑
s0=±1

[
TN
]
s0s0

= tr TN = λN1 + λN2 , (3.19)

where λ1, λ2 are the two eigenvalues of the transfer matrix. Calculating the eigenvalues we find
λ1 = 2 coshβJ and λ2 = 2 sinhβJ , so that the exact expression for the partition function is

Z =
(

2 coshβJ
)N

+
(

2 sinhβJ
)N

=
(

2 coshβJ
)N[

1 + tanhN βJ
]
. (3.20)

Finally, the free energy per site is

f = F/N = −kBT ln 2 coshβJ − kBT

N
ln
[
1 + tanhN βJ

]
. (3.21)

In the thermodynamic limit, N → ∞, only the first term survives. The free energy per spin
is an unremarkable function of βJ , with no structural transformation at any finite value of the
temperature, and there is no phase transition (for T 6= 0).

3.3.1 Correlation Function

To develop this a little further, we calculate the correlation function 〈s0sr〉 between the spins
on sites r apart2. If the spins are all aligned – either all +1 or all −1 – then this will take the
value +1 no matter the separation r; but if on large enough scales the spins are independently
aligned then the values of s0 and sr will be uncorrelated and 〈s0sr〉 ≈ 0. Thus this correlation
function tells us about the order in the system. We have

〈s0sr〉 =
∑
{si}

s0sr
1

Z
eβJ

∑
i sisi+1 =

1

Z

∑
{si}

s0sr
∏
i

eβJsisi+1 . (3.22)

Next, we use the fact that s2
i = +1 to write

s0sr = s0s1 s1s2 · · · sr−1sr, (3.23)

which allows us to express the correlation function as

〈s0sr〉 =
1

Z

∑
{si}

r−1∏
i=0

sisi+1 eβJsisi+1

N−1∏
i=r

eβJsisi+1 =
1

Z
tr CrTN−r, (3.24)

introducing the transfer matrix again, and where

C =

[
eβJ −e−βJ

−e−βJ eβJ

]
. (3.25)

2We are using the periodicity to choose one of the spins to be site 0.
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Now the key algebraic fact is that the matrix C commutes with the transfer matrix, [C,T] = 0,
and consequently they can be simultaneously diagonalised. This allows the trace to be calculated
and gives an exact expression for the correlation function

〈s0sr〉 =
(2 sinhβJ)r(2 coshβJ)N−r + (2 coshβJ)r(2 sinhβJ)N−r

(2 coshβJ)N + (2 sinhβJ)N
. (3.26)

In the thermodynamic limit N →∞ this becomes

〈s0sr〉 =
(
tanhβJ

)r
, (3.27)

and we see that it vanishes for large enough r no matter what the value of βJ . At large
(enough) separations the spins are always uncorrelated and there is no long range ferromagnetic
alignment in the one-dimensional Ising model. It is common to convey this by writing the
correlation function in the general form

〈s0sr〉 = e−r/ξ with ξ =
1

ln cothβJ
. (3.28)

The length scale ξ characterises the distance over which the correlation between spins decays;
it is called the correlation length.

3.4 Loops and Transition Temperature in Two Dimensions

The exact solution of the one-dimensional Ising model shows that it does not, in fact, have a
phase transition (at non-zero temperature). It turns out that in two dimensions the model does
have a phase transition at non-zero temperature. In this section, we try to describe this by
considering expansions for the partition function at both low and high temperatures.

The partition function for the two-dimensional Ising model on the square lattice is

Z =
∑
{si}

eβJ
∑
〈i,j〉 sisj . (3.29)

We begin at low temperature where the idea is to think about the nature of configurations that
are closest in energy to the ground state where all spins align. Clearly, the first excited state
involves just one flipped spin. In the energy all nearest neighbour pairs contribute −J except
for the four interactions between the flipped spin and each of its nearest neighbours, where the
energy is +J . The difference in energy between the first excited state and the ground state is
therefore 4× 2J and the expansion for the partition function begins

Z = 2 e2NβJ
(

1 +N
(
e−2βJ

)4
+ · · ·

)
. (3.30)

For the next term we need to identify the second excited state. These are configurations where
two neighbouring spins are both flipped, see Fig. 3.2. One can see that the count of unfavourable
interactions is now six, so the energy (compared to the ground state) is 6×2J and the partition
function is

Z = 2 e2NβJ
(

1 +N
(
e−2βJ

)4
+ 2N

(
e−2βJ

)6
+ · · ·

)
. (3.31)

One can continue in this way adding in more and more excited states limited only by your
perseverance. To organise things it is convenient to represent the emerging partition function
as a ‘graphical expansion’ with the terms represented by diagrams of little loops encircling the
flipped spins

Z = 2 e2NβJ
∑
loops

N`
(
e−2βJ

)`
, (3.32)

where N` is the number of loops of length `.
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Figure 3.2: (a) Configurations of spins with some flipped (red). There is an isolated flipped spin
(lowest energy excitation) and both of the pairs of flipped spins (next lowest excitation). (b)
Equivalent pictorial representation in terms of loops on the square lattice. (c) An example of
a larger domain of flipped spins. Such domains have an entropy associated with the number of
configurations of the boundary that is exponential in the boundary length.

The sum that appears here has the form of a partition function for loops

Zloops =
∑
loops

e−β
(

2J`−kBT lnN`
)
, (3.33)

with a free energy
Floop = 2J`− kBT lnN` = 2J`− TS`, (3.34)

where S` is the entropy of a loop of length `, see Fig. 3.2(c). To estimate the entropy we estimate
the number of ways of forming a closed loop of length `. When ` is large the requirement that
the loop has to close is not so constraining and we may estimate the number from just counting
the number of paths of length `. Imposing that you cannot double back, at each step you can
choose to go in one of three directions: ahead, left, or right. This gives an estimate of 3` for
the number of paths. The number of (large) closed loops will be similar, albeit smaller, and we
might estimate it as c` where c is a number slightly less than 3. The free energy is therefore
approximately

Floop =
(
2J − kBT ln c

)
`. (3.35)

So if T is higher than 2J/kB ln c the free energy is lowered by having the loop, whereas when
T is smaller than this the energy cost wins out and the loop is suppressed. This suggests a
transition temperature

Tc =
2J

kB ln c
, (3.36)

between paramagnetic and ferromagnetic states in the two-dimensional Ising model. The argu-
ment we have just described is due to Rudolf Peierls and is called the Peierls argument.

In fact it is possible to obtain the exact value of the transition from the ‘loop picture’ of the
partition function. This comes from also studying a suitable expansion at high temperature.
One of the problems shows that the high temperature expansion is

Z = 2N
(

coshβJ
)2N ∑

loops

N` x`, (3.37)

where x = tanhβJ . The fact that both the low and high temperature expansions for the
partition function involve the same graphical representation as a sum over loops implies a general
correspondence between the partition function at low (βlow) and high (βhigh) temperatures,
related to each other by

e−2βlowJ = tanhβhighJ. (3.38)
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This result is known as Kramers-Wannier duality. The critical temperature of the two-dimensional
Ising model is identified with the fixed point of the duality and turns out to be given exactly by

Tc =
2J

kB ln(1 +
√

2)
. (3.39)

3.5 Onsager’s Solution in Two Dimensions – off syllabus

In 1944 Lars Onsager produced the exact solution of the Ising model on the two-dimensional
square lattice. For a long time afterwards, and perhaps even still, this was seen as the most
significant result in statistical mechanics. The approach is an extension of the transfer matrix
method we used for the one-dimensional model. To describe it in any meaningful way would
require an entire lecture course in itself. Let us record only that there is a continuous phase
transition from a paramagnetic state to a ferromagnetic one at a critical value of the temperature,
as was the case for the mean field analysis. The exact transition temperature can be given as

J

kBTc
=

1

2
ln cot

π

8
, (3.40)

and is not the same as that predicted by mean field theory (J/kBTc = 1/4). Other aspects of
the mean field analysis also turn out to be incorrect, for example the behaviour of the specific
heat at the transition (which is logarithmically divergent) or the exponent in the power law
growth of the magnetisation, m ∼ |T − Tc|β – the correct value is β = 1/8. The reasons for the
shortcomings of mean field theory, and a way of salvaging it, would come approximately 25 years
later with the work of Kenneth Wilson, and others, on the foundations of the renormalisation
group. Wilson received the Nobel Prize for this work in 1982.

Onsager gave several equivalent expressions for the free energy density, for example

f = −kBT ln 2 cosh 2βJ − kBT

2π2

∫ π

0

∫ π

0
ln
[
1− 2 sech 2βJ tanh 2βJ cosω1 cosω2

]
dω1 dω2. (3.41)

In principle this allows for the determination of the thermodynamic phase behaviour, however,
there is still quite some analysis involved in actually doing this. Those who are sufficiently
motivated may consider looking at Onsager’s original paper for an idea of what is involved:

L. Onsager, Crystal Statistics. I. A Two-Dimensional Model with an Order-Disorder Transition,
Phys. Rev. 65, 117 (1944). doi:10.1103/PhysRev.65.117

Onsager’s exact solution of the two-dimensional Ising model prompted the development of an
entire field of research on exactly solvable models; the classic reference in this area is Rodney
Baxter’s book “Exactly Solvable Models in Statistical Mechanics”.

3.6 Monte Carlo Simulation

The calculation of thermodynamic averages, or the partition function, analytically is generally
very difficult. In many cases the statistical averages can be approximated by numerical methods.
For an observable quantity A the average we want to compute is the ensemble average

〈A〉 =
∑

states α

pαAα. (3.42)

The enormous number of microstates makes computing this directly unfeasible with current
computers. What is possible to compute directly with a computer is the mean of a set of
sampled values

A =
1

Ns

∑
sampled states α

Aα, (3.43)
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where Ns is the number of samples. If we choose our samples to reflect the underlying probability
distribution, and use enough samples, then this will be a good approximation to the actual
statistical average, A ≈ 〈A〉.

So how do we choose our samples so that we are drawing values of A from the correct
probability distribution? The way we will generate samples is from a (Markov) process for
moving from one state to another. If we set up the process correctly, i.e. with the right
properties, then (after an initial transient) it will move through the space of states in a way
that reflects the equilibrium probability distribution and allows us to compute good averages.
Let Πα→β denote the probability of moving from state α to state β. If we focus on a particular
state (α, say) there will be transitions into it and transitions out of it such that the change in
the probability of that state is

dpα =
∑
β 6=α

(
pβΠβ→α − pαΠα→β

)
. (3.44)

In steady state, if our process is moving around the space of states without changing the prob-
abilities, this has to vanish. We impose this condition by requiring each term in the sum to
vanish separately

pβΠβ→α − pαΠα→β = 0. (3.45)

This is known as detailed balance. It will be implemented by any algorithm with transition
probabilities Πβ→α satisfying

Πβ→α
Πα→β

=
pα
pβ

= e−β(Eα−Eβ), (3.46)

where we have used that the probabilities are given by the Gibbs distribution.
A popular algorithm for simulation of the Ising model is the Metropolis algorithm, which

consists of repeating the following three basic steps:

(i) Pick a spin (lattice site) at random.

(ii) Calculate the change in energy ∆E associated with flipping that spin.

(iii) If ∆E < 0 flip the spin, while if ∆E > 0 flip it with probability exp{−β∆E}.

It is clear that the algorithm implements detailed balance and so will correctly sample from the
equilibrium distribution. Part of its simplicity is that the only state transitions it considers are
flips of individual spins, which can make it slow for large system sizes.

25



Chapter 4

Phase Transitions

General education identifies three distinct phases of matter: solids, liquids and gases. This
trichotomy has certain useful features, particularly in drawing commonalities. For example oil
and water are both liquids; they are the same phase despite being chemically distinct. That
they are the same phase means they exhibit common properties and can be described by unified
physical theories. Liquids flow; their flow is resisted by viscosity and described by the Navier-
Stokes equations. Gases are also described by the Navier-Stokes equations (unless they are very
rarefied). The distinction from liquids is that the density is much lower and they are much
more easily compressed; in fluid dynamics gases are typically modelled as compressible fluids
and liquids as incompressible. Solids do not flow; they stretch (are elastic) but are able to resist
shear.

The different phases – solids, liquids and gases – are distinguished by the different physical
properties they exhibit, but they are also distinguished by phase transitions between them.
This is a sharp, or dramatic, change at special values of the temperature and pressure. It
is marked by a ‘singularity’ in some thermodynamic property, by which I mean here either a
discontinuity or a divergence. We would like to understand what is happening and describe it
in a unified physical theory. However, any systematic study of phase transitions makes it clear
that there are many more phases than just three. We give a few examples.

4.1 Short Survey of Phases

Liquid Crystals

Liquid crystals are beautiful and mysterious; discovered in 1888 they remained an esoteric cu-
riosity until about 1970 when the basic designs for liquid crystal based displays were worked out
and patented. You are almost surely reading this on just such a display. They exhibit properties
intermediate between those of simple liquids and crystalline solids. There are many different liq-
uid crystal phases, the main ones being the nematic, cholesteric, smectic, and columnar phases,
although there are literally dozens more.

The nematic is the simplest of the liquid crystalline phases. The molecules are rod-like
and display orientational order, all pointing along a common direction, but there is no ordering
of the molecular positions and they flow like a liquid. Cholesterics are chiral nematics; the
alignment of molecules exhibits a helical rotation and the phase has a handedness (there are
right- and left-handed versions).

In smectic phases, in addition to the orientational order there is also partial ordering of
molecular positions, along only one spatial direction. They behave like a solid along that direc-
tion but remain fluid in the two orthogonal directions. It is often described as a one-dimensional
stack of fluid layers. Several different smectic phases can be defined depending on how the ‘lay-
ering’ direction relates to the orientational order; when they are the same the phase is smectic
A while when there is an angle between them the phase is smectic C.
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The columnar phase is a counterpart of smectics that has two-dimensional positional order
and is fluid along just one direction. They are typically formed from flat, disc-shaped molecules,
which stack into one-dimensional fluid columns that then arrange themselves in a hexagonal
lattice. Highly concentrated solutions of DNA exhibit this phase1.

Amphiphiles

An amphiphilic molecule is one with both hydrophilic (water liking) and hydrophobic (water
fearing) parts. Common examples are provided by lipids, which have a hydrophilic head group
(typically having charge or dipole moment) and one or two hydrophobic hydrocarbon tails.
Lipids are used as surfactants and are also the primary constituent of cell walls and membranes.
In solution, they form a variety of different self-organised structures to satisfy the conflicting
desires of the head groups to be in contact with the water and the tail groups to avoid contact,
with a series of phase transitions as a function of concentration. At low concentration they
form spherical micelles with the hydrophilic head groups in contact with the water and the
hydrophobic tails shielded inside the micelle. As the concentration increases cylindrical micelles
with hexagonal packing (a columnar phase) form and then planar bilayers with lamellar stacking
(a smectic phase). Increasing the concentration further there are inverted (with the water on
the inside and the oily tails outside) hexagonal columnar and spherical micelle phases.

Magnets

A paramagnet develops a field in response to an applied one, whereas a ferromagnet maintains
its own field. In ferromagnets the exchange coupling is positive and the spins all align along the
same direction. When the exchange coupling is negative anti-alignment of neighbouring spins is
favoured and the material is an antiferromagnet. There are other types of spatially varying
magnetic order (helical, canted) corresponding to further phases and also there can be frozen
disordered, or amorphously ordered, spin configurations, which are called spin glasses.

Superfluids

At low enough temperatures most materials solidify, however helium remains a quantum liquid.
Below a certain critical temperature this liquid loses its viscosity and flows without resistance.
The superfluid state was identified by Pyotr Kapitza in 1937 and the theory worked out shortly
afterwards by Lev Landau.

Superconductors

In 1911 Kammerlingh Onnes discovered that mercury had a sudden change of properties at 4.2 K,
including the loss of all electrical resistance. This new phase was called a superconductor.
Many elements are superconducting (e.g. Al, Zn, Ga, Sn, Pb, Nb, etc.) at similarly low
temperatures but some layered materials, such as the cuprate superconductors, have transition
temperatures even above 100 K. The transition is associated with the state of electrons, i.e.
changes to their eigenstates and energy levels, or band structure, and is characterised by both
the loss of resistance and the expulsion of magnetic fields.

Metals and insulators

Depending on their band structure some materials conduct and are metals while others do not
and are insulators. There are also materials that change from metallic to insulating behaviour
as some control parameters are varied, e.g. temperature, pressure or composition. This is the
metal-insulator transition. Some early examples were found in magnetite and NiO. A basic
model for the transition was developed by Neville Mott and is called the Mott transition.

1At lower concentrations DNA also exhibits cholesteric phases.
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There are many other transitions involving resistance, or conductance, properties. One of
the most influential is the quantum Hall effect discovered by Klaus von Klitzing in 1980,
which was subsequently shown to be associated to topological properties of the band structure
and has developed into the broader research topic of topological insulators and topological phase
transitions.

4.2 Landau Theory

A general framework for describing phase transitions and studying ordered phases was introduced
by Lev Landau. It is an expression for the free energy in terms of a quantity characterising the
ordered state. We have seen two examples of this already; the demixing of a binary fluid and the
paramagnet-to-ferromagnet transition described by the Ising model. In both cases the transition
could be described by giving a suitable Taylor series for the free energy density

f =
∆

4
− kBT ln 2 +

2kBT −∆

4
s2 +

kBT

12
s4 + · · · , (2.9)

f = f0 +
Jz(1− βJz)

2
m2 +

β3(Jz)4

12
m4 − βJzH m+ · · · , (3.11)

parameterised by a quantity (s or m) that is zero in one phase and becomes non-zero after the
transition. The general formalism that Landau developed follows the same structure. The idea
of Landau theory can be summarised as follows:

i. Identify an order parameter. This is any (macroscopic) physical quantity that serves to
distinguish between the two phases.

ii. Construct all ways in which the order parameter can contribute to the free energy. These
are all the scalar invariants of the order parameter.

iii. Write a Taylor series for the free energy using the available invariants, stopping once all
relevant2 terms have been included.

iv. The phase transition is described by selecting the value of the order parameter with the
condition that it minimise the free energy.

It is conventional to choose the order parameter to take the value zero in the high temperature
phase and acquire a non-zero value in the low temperature phase. There are two ways this
can happen: the order parameter can jump discontinuously to its new value – this is called
a discontinuous or first order phase transition – or it can grow continuously from zero,
which is then called a continuous phase transition. This represents the basic dichotomy of
phase transitions; we will see examples of both. The terminology ‘first order’ originates from
an older classification of phase transitions based on the lowest order of derivative of f where a
discontinuity is observed. The modern understanding is that the main distinction is on whether
or not there is a finite correlation length at the transition; for first order transitions there is,
while for continuous transitions the correlation length diverges.

4.2.1 Ferromagnetism

We have already seen that the Ising model describes the transition between a paramagnet and
a ferromagnet. However, the Ising model is a simplification in the following sense: the spins are
simple scalars taking only the values ±1, whereas magnetisation (and spin) is really a vector

2As with the previous footnote on this term, we do not explain it formally. The essence is that higher order
terms in the Taylor series do not alter the description of the transition.
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quantity. A mild generalisation of the Ising model takes care of this: We let the spins be vectors
Si and take the energy to be

E = −
∑
〈i,j〉

J Si · Sj . (4.1)

The spins can be classical vectors with a fixed length, |S| = S, or even quantum operators
satisfying the usual commutation relations for spin. In a fully general situation, the number of
components n of the vector S need not be the same as the spatial dimension d. This general
case is called the O(n) model since the energy (4.1) is invariant under the action of the rotation
group O(n) on the spins Si. The most important cases are n = 2 and n = 3; the former is more
commonly called the XY model and the latter is called the Heisenberg model. The Ising
model is the case n = 1.

Now we develop the Landau theory for the transition. The basic idea is the same as for the
mean field treatment of the Ising model. The order parameter is the magnetisation, the expec-
tation value of the spins. This is a (n-component) vector m. It vanishes in the paramagnetic
phase and is non-zero in the ferromagnet. The scalar invariants that we can construct from
it alone is simply the magnitude squared |m|2 = m ·m and powers thereof. With an applied
magnetic field H there is also the scalar product m ·H (and powers thereof). This identifies
those quantities involving the order parameter that can contribute to the free energy. It is given
by writing a Taylor series using these invariants

f = f0 +
a(T − Tc)

2
(m ·m) +

u

4
(m ·m)2 − χ0H ·m + · · · . (4.2)

The coefficients are phenomenological; a, u and χ0 are positive constants, T is the temperature
and Tc is the critical temperature. f0 represents a constant contribution to the free energy
(independent of m); such contributions will be neglected from now on as they do not affect the
phase transition. Writing m ·m = m2 and H ·m = Hm reduces (4.2) to the same form as the
mean field analysis of the Ising model. The analysis of the phase transition is then the same as
it was there; we cover it in §4.3.

4.2.2 Nematic Liquid Crystal

As a second illustration of Landau’s theory we consider the example of liquid crystals. This is,
to begin with, slightly more involved than the example of ferromagnetism, but it offers greater
depth of insight into the full remit of Landau’s theory.

What is the order parameter for the liquid crystal phase? A defining feature of the liquid
crystalline state is its optical properties; after all this is why they find uses in displays. Macro-
scopic optical properties of materials are described by their dielectric tensor, ε or εij in index
notation. Liquid crystals exhibit different dielectric responses – different refractive indices –
parallel (ε‖) and perpendicular (ε⊥) to a preferred optic axis; this is known as birefringence.
Within the material the dielectric tensor is therefore of the form

ε =

ε0ε‖ 0 0

0 ε0ε⊥ 0
0 0 ε0ε⊥

 =
ε0(ε‖ + 2ε⊥)

3

1 0 0
0 1 0
0 0 1

+
ε0(ε‖ − ε⊥)

3

2 0 0
0 −1 0
0 0 −1

 , (4.3)

where in the second equality the first term represents a simple isotropic material and the second
is non-zero in the (nematic) liquid crystal state. This is the order parameter for the isotropic–
nematic transition: we write it as

Q =
s

3

2 0 0
0 −1 0
0 0 −1

 , (4.4)

where s ∝ ε‖− ε⊥ represents the magnitude of the order and is called the scalar order param-
eter. The order parameter is a traceless, symmetric rank 2 tensor that is conventionally called
the Q tensor.
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Next, we need to identify all the scalar quantities we can form using Q that can appear
in the free energy. These are the traces of powers of Q, namely tr Q = 0, tr Q2 and tr Q3.
Other possibilities, for instance tr Q4 or det Q, can all be expressed in terms of the traces
already given. One way to see this is to note that a symmetric matrix can be diagonalised
and its eigenvalues are (effectively) the independent scalar quantities characterising it. Any
scalar invariant is expressible as some combination of the eigenvalues and so there are the same
number of independent scalar invariants as there are eigenvalues. The identification of the set
of independent scalar invariants from which to construct the free energy is a major component
of Landau theory that is more fully illustrated by the liquid crystal example than in the case of
ferromagnetism.

Having identified the independent scalar quantities, the Landau free energy density for the
isotropic–nematic transition

f =
a(T − Tc)

2
tr Q2 − B

3
tr Q3 +

C

4

(
tr Q2

)2
, (4.5)

is a Taylor series built from the scalar invariants with arbitrary (material dependent) coefficients
a, B and C that are all positive. As usual, T is the temperature and Tc is a constant temperature
where the coefficient of the quadratic term changes sign. This description of the liquid crystal
isotropic–nematic phase transition was first given by Pierre-Gilles de Gennes.

4.3 Discontinuous Transitions

The isotropic–nematic transition described by (4.5) provides a canonical example of a discon-
tinuous, or first order, transition. We develop the analysis of the transition here.

Calculating the free energy density (4.5) for the form (4.4) we find

f =
a(T − Tc)

3
s2 − 2B

27
s3 +

C

9
s4. (4.6)

This differs from both (2.9) and (3.11) in having a term cubic in the (scalar) order parameter.
The presence of a cubic order term in the free energy is a signature of a discontinuous phase
transition. The cleanest way to see what happens is to sketch the form of the free energy and
how it changes as the temperature is lowered, which is shown in Fig. 4.1. At high temperatures
the free energy has a single minimum at s = 0, corresponding to the isotropic phase. As the
temperature is lowered, the first thing that happens is the appearance of a secondary minimum
at positive s; this is the minimum corresponding to the nematic phase. When it first appears,
at T − Tc = B2/24aC, the value of the free energy at this secondary minimum is higher than
the value of the free energy in the isotropic phase; the ordered state is a superheated nematic.
It is only at a lower temperature, given by T − Tc = B2/27aC, that the nematic minimum
becomes the global free energy minimum and the energetically preferred state; this identifies
the isotropic–nematic transition temperature. At the transition the order parameter s jumps
discontinuously from zero to a finite non-zero value, which is characteristic of first order, or
discontinuous, phase transitions. Finally, at the lower temperature T = Tc the isotropic state
(s = 0) ceases to be a minimum; this is the limit of supercooling of the isotropic phase.

Let us explain how to calculate these things. First the transition temperature. From Fig. 4.1
we see that the transition occurs when the minimum in the free energy at non-zero s has the
same value as the minimum at s = 0. Since f(0) = 0 this is a non-zero s for which f(s) = 0
and, moreover, is a degenerate double root. The roots of f are given by

f =
C

9
s2

(
s2 − 2B

3C
s+

3a(T − Tc)
C

)
= 0, (4.7)

and the condition for a non-zero double root is that the discriminant of the second factor vanishes

4B2

9C2
− 12a(T − Tc)

C
= 0, ⇒ T − Tc =

B2

27aC
. (4.8)
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Figure 4.1: Isotropic–nematic transition in three dimensions as an exemplar of a discontinuous
or first order phase transition: As the temperature is lowered the nematic phase first becomes
metastable in superheated form; at the transition the value of the free energy in the two minima
is the same; at lower temperatures the isotropic phase remains metastable until a limit of
supercooling is reached.

The value of the scalar order parameter corresponding to the non-zero minimum at the transi-
tion is s = B/3C. Thus at the isotropic-nematic transition the scalar order parameter jumps
discontinuously from s = 0 (isotropic phase) to s = B/3C (nematic phase).

To determine how it develops below the transition temperature we consider the extrema of
the free energy density

0 =
df

ds
=

2a(T − Tc)
3

s− 2B

9
s2 +

4C

9
s3 =

4C

9
s

(
s2 − B

2C
s+

3a(T − Tc)
2C

)
. (4.9)

We see that the isotropic state (s = 0) is always an extremum; its nature comes from the value
of the second derivative at s = 0, d2f/ds2|s=0 = 2a(T − Tc)/3, and so it is a minimum for
T > Tc but becomes a maximum for T < Tc, which identifies Tc as the limit of supercooling of
the isotropic phase. The other extrema, when they exist, are given by

s =
B

4C
±
[
B2

16C2
− 3a(T − Tc)

2C

]1/2

. (4.10)

The plus sign is associated with the nematic minimum and the negative sign with an unstable
local maximum in the free energy density. Thus the degree of nematic alignment increases as
the temperature is reduced further, as we would expect.

4.4 Continuous Transitions

As a prototype for continuous transitions we take the ferromagnetic transition that we have
studied previously. We reproduce (4.2)

f = f0 +
a(T − Tc)

2
(m ·m) +

u

4
(m ·m)2 − χ0H ·m + · · · . (4.11)

Writing m ·m = m2 and H ·m = Hm this reduces to

f = f0 +
a(T − Tc)

2
m2 +

u

4
m4 − χ0Hm, (4.12)

and the condition that m minimise the free energy reads

0 =
df

dm
= a(T − Tc)m+ um3 − χ0H. (4.13)
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When H = 0 we have solutions

m = 0, or m =

(
a|T − Tc|

u

)1/2

, (4.14)

with the latter only for T < Tc. This describes a continuous transition at a critical tempera-
ture T = Tc with onset of the magnetisation showing the power law scaling m ∼ |T −Tc|β with
critical exponent β = 1

2 . This exponent is a pure number, independent of any microscopic
details, whose value is a prediction of Landau theory.

Now we consider the response to the magnetic field. For T > Tc we are in the paramagnetic
state where without the field m = 0; the leading balance is therefore

m =
χ0

a|T − Tc|
H. (4.15)

On the other hand, for T < Tc we are in the ferromagnetic state and m is close to (a|T−Tc|/u)1/2.
We write

m =

(
a|T − Tc|

u

)1/2

+ δm, (4.16)

and extract the leading order balance to find

δm =
χ0

2a|T − Tc|
H. (4.17)

The magnetisation again increases linearly with the applied field, and in almost exactly the same
way. We can summarise both responses by giving the susceptibility

χ =
∂m

∂H
=

{
χ0

a|T−Tc| T > Tc,
χ0

2a|T−Tc| T < Tc.
(4.18)

We see here that the susceptibility shows a power law divergence χ ∼ |T − Tc|−γ with the same
critical exponent γ = 1 on both sides of the transition temperature. The prefactor differs on
either side but only by a factor of 2. Both the exponent and the ratio of prefactors are pure
numbers that do not depend on any microscopic details and whose values are predictions of
Landau theory. Exactly at the critical temperature the response to the applied field is different;
the Landau theory predicts

m =

∣∣∣∣χ0H

u

∣∣∣∣1/3, (4.19)

so that we have the power law dependence m ∼ |H|1/δ with critical exponent δ = 3.
Finally, we consider the heat capacity (for H = 0), which is obtained from the second

derivative of the free energy (chapter 3 problem set)

C = −T ∂
2f

∂T 2
. (4.20)

Above Tc we can set m = 0 and the heat capacity is C = −T (∂2f0/∂T
2); the only important

point is that this contribution is regular through the critical temperature T = Tc. Below Tc we
set m = (a|T − Tc|/u)1/2, which gives

f = f0 −
a2|T − Tc|2

4u
, (4.21)

and hence an additional contribution to the heat capacity of a2T/2u = a2Tc/2u, plus contri-
butions regular in T − Tc. Thus, the Landau theory prediction is that the heat capacity does
not diverge like the susceptibility, but rather displays a jump discontinuity at Tc (by an amount
that depends on the material parameters). Nonetheless, it is common to present the behaviour
of the heat capacity as a power law C ∼ |T − Tc|−α with a critical exponent α. The Landau
theory predicts the value α = 0.
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Figure 4.2: Isotropic–nematic transition in two dimensions as an exemplar of a continuous phase
transition: (a) Structural transformation of the free energy on passing through the transition
temperature T = Tc. (b) The scalar order parameter evolves continuously from zero at the
transition with a power law onset, s ∼ |T − Tc|β, characteristic of continuous transitions.

4.4.1 Isotropic–Nematic Transition in Two Dimensions

The isotropic–nematic transition in two spatial dimensions gives another example of a continuous
phase transition, as we now describe. Paralleling what we did in §4.2.2 we write the dielectric
tensor in two dimensions as

ε =

[
ε0ε‖ 0

0 ε0ε⊥

]
=
ε0(ε‖ + ε⊥)

2

[
1 0
0 1

]
+
ε0(ε‖ − ε⊥)

2

[
1 0
0 −1

]
, (4.22)

and read off the form of the Q tensor order parameter, Q = s
2

[
1 0
0 −1

]
. As a 2×2 matrix there

are only independent two scalar invariants, which we take to be tr Q = 0 and tr Q2 = s2

2 . The
Landau-de Gennes free energy is therefore

f =
a(T − Tc)

2
tr Q2 +

C

4

(
tr Q2

)2
=
a(T − Tc)

4
s2 +

C

16
s4. (4.23)

In particular, you should verify that there is no longer a cubic order term since, for example,
tr Q3 = 0. We conclude from the absence of the cubic term that the transition is continuous.
Indeed, the form of the free energy density in terms of the scalar order parameter s is identical to
that of the ferromagnet in terms of the magnetisation m. As a result all of the same predictions
can be made for the transition, including the power law behaviour of thermodynamic quantities
(magnitude of order, susceptibility, heat capacity) and values for the critical exponents. The
fact that different, and a priori unrelated, physical systems should show the same quantitative
behaviour at a continuous phase transition is known as universality. We say that the two-
dimensional isotropic–nematic transition is in the same universality class as a (two-dimensional)
magnet.

4.4.2 Superfluid Helium

The superfluid state is a coherent quantum state of low temperature helium atoms in which they
flow without viscosity. The proper characterisation of the quantum state is a bit technical but
for our purposes it is enough to identify that it is something about the quantum wavefunction
that distinguishes the superfluid from the normal phase. A suitable order parameter is therefore
a complex scalar field ψ (which need not be normalised to unity). The scalar invariant that can
be used in the free energy is |ψ|2 = ψψ and it follows that a Landau theory for the transition is

f =
a(T − Tc)

2

∣∣ψ∣∣2 +
u

4

∣∣ψ∣∣4. (4.24)

Writing the complex wavefunction in polar form ψ = ψ0 eiθ this reduces to

f =
a(T − Tc)

2
ψ2

0 +
u

4
ψ4

0, (4.25)
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and so has the same form as the two-dimensional ferromagnetic and isotropic–nematic transi-
tions. This is another example of universality.

4.4.3 Multicritical Points

The continuous transitions we have seen so far have all come down to essentially the same form
for the free energy. This is essentially a property of the genericity of the Taylor series expansion
for the free energy. However, there are different classes of transitions, known as multicritical
points. One way of obtaining them is to have another parameter that allows you to tune the
nature of the transition.

We give one example that applies to the superfluid transition in mixtures of 4He and 3He.
The Landau free energy density for the transition is

f =
a
(
T − Tc(x)

)
2

ψ2
0 +

u(x)

4
ψ4

0 +
g

6
ψ6

0, (4.26)

where we have emphasised that the critical temperature Tc and, more importantly, the coefficient
of the fourth order term u depend on the volume fraction x of 3He atoms. In particular, at a
critical volume fraction x = xc this coefficient vanishes and then subsequently becomes negative.
So long as u is positive the transition is as described in §4.4.2. When u = 0 the transition is still
continuous but with different values for the critical exponents. This transition is an example of
a tricritical point3. The magnitude of the order ψ0 is given by minimising the free energy

0 =
∂f

∂ψ0
= a(T − Tc)ψ0 + g ψ5

0, ⇒ ψ0 =

(
a|T − Tc|

g

)1/4

. (4.27)

Thus at the tricritical point we find the critical exponent β = 1
4 . Similarly, we can calculate the

heat capacity below the transition temperature by substituting the temperature dependence of
ψ0 back into the free energy to obtain

f = −a
3/2|T − Tc|3/2

3g1/2
+ regular. (4.28)

Since C = −T∂2f/∂T 2 , the heat capacity exhibits a power law divergence C ∼ |T −Tc|−α with
critical exponent α = 1

2 .
When u is negative the transition becomes discontinuous. Perhaps the easiest way to see this

is from a graph of the form of f . The value of the transition temperature and the magnitude of
the discontinuity in the order parameter can be obtained using the same method as in §4.3.

This phase transition in mixtures of 4He and 3He is also well-described by a spin 1 variant of
the Ising model called the Blume-Emery-Griffiths model, whose analysis is covered in simplified
form in the Chapter 3 Problems. It is shown in that problem that the mean field free energy
has the form (4.26) and that the quartic coefficient u vanishes at a special value of the couplings
in the Hamiltonian, corresponding to xc = 2

3 . This transition is an example of one where mean
field theory gives an accurate description of the experimental observations.

4.5 Critical Exponents and Scaling

A feature that mean field theory correctly captures is that close to the transition thermodynamic
quantities display power law dependence on the distance from the critical point. For example,
the magnetisation m ∼ |T − Tc|1/2 and the susceptibility χ ∼ |T − Tc|−1 both follow simple
power laws and the same is observed for other properties such as the heat capacity, correlation
length, etc. The values of the exponents in the power laws obtained by mean field theory are not

3The terminology derives from a more detailed analysis which shows that there are three lines of Ising-like
critical transitions that intersect at the tricritical point.
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always correct but the power law behaviour is. The study of these critical exponents became
a major part of understanding continuous phase transitions. We summarise below the standard
definitions for the main exponents (within the Ising model):

heat capacity, α C ∼ |t|−α, (4.29)

order parameter, β m ∼ |t|β, (4.30)

susceptibility, γ χ ∼ |t|−γ , (4.31)

order parameter with field, δ m ∼ |h|1/δ, (4.32)

correlation length, ν ξ ∼ |t|−ν , (4.33)

correlation function, η 〈s(0)s(r)〉 ∼ |r|2−d−η. (4.34)

Here, t = (T − Tc)/Tc is the reduced temperature and similarly h is a dimensionless version of
the applied field.

Consider the magnetisation m = m(t, h). An experiment might measure the magnetisation
as a function of applied field for a range of different temperatures, giving a collection of mag-
netisation curves for each value of the temperature studied. We would like to understand the
structure of such data. We have seen m ∼ |h|1/δ at t = 0 and also m ∼ |t|β at h = 0. Both of
these are captured by the form

m = |h|1/δ Φ1

(
|t|β

|h|1/δ

)
or m = |t|β Φ2

(
|h|1/δ

|t|β

)
, (4.35)

for functions Φ1,Φ2 that take constant vales at 0 and then become linear, Φ(x) ≈ a+ bx. What
this means is that if you plot the magnetisation against magnetic field using m/|t|β and h/|t|βδ
as coordinate axes the data at different values of the temperature will all fall on a single curve

m

|t|β
= Φ

(
h

|t|βδ

)
. (4.36)

This is known as scaling collapse and Φ as a scaling function. You plot the magnetisation
curves with the magnetisation scaled by a power of the reduced temperature (m/|t|β) and the
applied field scaled by another power of the reduced temperature (h/|t|∆) and find values of the
exponents β,∆ such that the data all collapses on a single curve. The scaling function Φ shows
power law behaviour Φ(x) ∼ x1/δ that can also be obtained from the fit to the experimental
data; in doing so we obtain the relation ∆ = βδ, known as an exponent identity – not all of the
power laws are independent. We would like to understand how this scaling form (and the same
for other properties, or other transitions) arises from properties of the free energy. The set of
ideas that does this is known as scaling theory.

The idea is to consider how the theory looks at different scales, or different levels of coarse-
graining. This is a general and fundamental idea. We are used to aggregating properties over
regions that contain several fundamental degrees of freedom but are still small compared to
the system size or size of interest. Atoms are collections of protons, neutrons and electrons;
protons and neutrons are collections of quarks and gluons; molecules are collections of atoms;
cells are fundamental units in biology but composed of many molecules; in fluid dynamics a fluid
element contains many molecules but is small compared to all other scales; thermodynamics is
the ultimate coarse-graining of statistical mechanics. It is remarkable that that you can use this
idea as the basis for a general quantitative understanding of continuous phase transitions.

The partition function is a sum over all states in the system. We can think of organising the
states by their energy, or as normal modes by their mode number or wavevector. If we do the
sum over the high energy modes first the remaining partition function will be for some modified
theory with only lower energy modes. We are after what this modified theory is. Because
high energies are associated to short length scales we can equally view this a coarse-graining
process where we have removed the fine detail (atomic level resolution) and are now focused
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on larger things (molecular scale, 10 nm, micron-scale, etc.). The next key idea is that at the
critical point the correlation length diverges. The system then behaves as if it is scale free and
displays statistically the same properties on all length scales. For the partition function, this
means that the modified theory, represented by the remaining part after we have done the sum
over the highest energy modes, is the same as the one we started with. Close to the critical point
the change will be ‘small’. The scaling hypothesis is that it amounts to multiplicative scaling of
the reduced temperature t and applied field h by factors related to the level of coarse-graining.

We let a represent the microscopic scale in the theory; for lattice models it is the lattice
constant. The scaling hypothesis is that the process of coarse-graining is given by the trans-
formation

a 7→ ba, (4.37)

t 7→ bytt, (4.38)

h 7→ byhh, (4.39)

where b is the scale factor. The scaling of the reduced temperature and external field is described
by two exponents, yt and yh, called the scaling dimensions. These two exponents determine
all of the critical behaviour at the transition.

The scaling behaviour implies for the singular part of free energy density the transformation

fs(t, h) 7→ b−dfs
(
bytt, byhh

)
. (4.40)

The prefactor b−d accounts for the scaling of volume. As the transformation does not change the
partition function we can equate these two expressions. The idea now is to choose the rescaling
so that after it the thermal variable t takes some standard value t0 (which you may take to be
1). This amounts to choosing b = |t0/t|1/yt . For the singular part of the free energy we then
have

fs(t, h) 7→ |t/t0|d/ytfs
(
t0, |t/t0|−yh/yth

)
= |t/t0|d/ytϕ

(
|t/t0|−yh/yth

)
, (4.41)

where ϕ is a scaling function.
Let us see what it implies for the critical exponents. First, when h = 0 we have fs ∼ |t/t0|d/yt

and then find for the heat capacity (C = −T ∂2F/∂T 2)

C ∼ ∂ttfs ∼ |t/t0|d/yt−2, ⇒ α = 2− d

yt
. (4.42)

For the magnetisation we start from the thermodynamic relation m = ∂f/∂h, which gives the
scaling form

m ∼ ∂hfs ∼ |t/t0|d/yt .|t/t0|−yh/ytϕ′
(
|t/t0|−yh/yth

)
. (4.43)

Comparing with (4.36) we find that β = (d − yh)/yt and βδ = yh/yt, or δ = yh/(d − yh).
Calculating also the susceptibility we find

χ ∼ ∂m

∂h
∼ |t/t0|(d−2yh)/yt ϕ′′

(
|t/t0|−yh/yth

)
, ⇒ γ =

2yh − d
yt

. (4.44)

Since all of the critical exponents are determined by the scaling dimensions yt and yh only two
of them can be independent and there must exist relations between any three critical exponents.
Some examples are

α+ 2β + γ = 2, (4.45)

γ = β(δ − 1). (4.46)

Their derivation is a matter of piecing together the results we have developed and is requested
in the problems. Historically the relations between critical exponents was discovered first and
only later explained through the scaling theory for the free energy. This was a major part of its
early success.
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The critical behaviour of continuous phase transitions is understood by identifying the rele-
vant scaling variables (t and h) and studying how their scaling behaviour affects the form of the
free energy near the transition (4.40). All that remains is to determine the values of the scaling
dimensions (yt and yh) for any given transition.

4.5.1 Critical Exponents in the Gaussian Theory

In this section we will find values for the scaling dimensions yt, yh of the Ising model and hence
for all of the critical exponents. Ultimately, this will follow from little more than dimensional
analysis. However, in order to get there we need to recast the lattice model with spins on discrete
lattice sites as a continuous field theory. This process is easy enough to motivate roughly,
and hence produce results to compare with experiment. A rigorous mathematical treatment is
analogous to that of quantum field theory and is only available in some special cases; the proper
formalism is still to be fully developed by the analysts. There are many presentations of this
material with different styles and conventions; I am following Cardy’s book in which factors of
the lattice spacing are kept explicit and coupling constants are dimensionless.

We consider a lattice model with lattice spacing a and argue for its corresponding continuum
limit. This will involve replacing the lattice spins si with a continuous field s(r), while the sum
over lattice sites will become an integral∑

i

→
∫
ddr

ad
. (4.47)

To motivate the continuum form of the nearest neighbour interaction sisj we write sj = si +
(sj−si) and then interpret the nearest neighbour difference as a discrete derivative4. This leads
to

sisj → s(r)2 + s(r)
(
a∂(i→j)s(r) +

a2

2
∂2

(i→j)s(r) + · · ·
)
, (4.48)

where the notation ∂(i→j) indicates the derivative in the direction between sites i and j. In
the sum over nearest neighbours 〈i, j〉 the first derivative terms will cancel out but the second
derivative ones will not; the leading part will be the Laplacian ∇2s and up to an integration by
parts this results in a term in the energy of the form |∇s|2. Thus the continuum description of
the Ising model takes the form

β

(
−J

∑
〈i,j〉

sisj

)
→
∫
K

2
a2
∣∣∇s∣∣2 +

A

2
s2 d

dr

ad
, (4.49)

where K ∼ βJ and A ∼ −βJz but it is convenient to introduce new – albeit temporary! –
symbols for them. Finally, it is traditional to rescale the field s → K−1/2ad/2−1s so as to
standardise the prefactor of the gradient term to 1/2. With this done the continuum version of
the Ising model is described by a free energy

βF =

∫
1

2

∣∣∇s∣∣2 +
ta−2

2
s2 ddr, (4.50)

where t = A/K is the dimensionless thermal scaling variable. This is known as the Gaussian
theory.

We can now use the Gaussian theory to determine the scaling dimension yt. Under a rescaling
of the lattice spacing a → ba, the continuum theory is preserved by the rescaling t → b2t, so
yt = 2. We can also determine the magnetic scaling dimension yh. The coupling to a magnetic
field adds a term −ha−1−d/2s to the integrand in (4.50). The factors of the lattice spacing
a are those needed so that h is dimensionless. Considering the same rescaling a → ba gives
yh = 1 + d/2. This determines values for all of the critical exponents.

4You could equally just consider Taylor series.
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Unfortunately, since what we have done is really little more than dimensional analysis it
is too simple and the exponents obtained in this way from the Gaussian theory are still not
correct, except in dimension 4. The essence of the issue is that when t is negative the energy in
the Gaussian theory (and hence statistical weight) for configurations with constant non-zero s
is unbounded from below. To fix this, we should add to the integrand a positive term in s4 such
that the energy is minimised by a non-zero value of s ∼ | − t/u|1/2 (like in mean field theory).
That is, we consider the free energy

βF =

∫
1

2

∣∣∇s∣∣2 +
ta−2

2
s2 +

uad−4

4
s4 − ha−1−d/2s ddr, (4.51)

where u is a new dimensionless coupling. It is easy to see that its scaling dimension (in the
Gaussian theory) is yu = 4−d so that under rescalings it gets smaller, and hence less important,
in dimensions d > 4 but becomes larger, and hence more important, when d < 4. The special
dimension d = 4 where its behaviour changes is called the upper critical dimension of the
Ising model. The remaining task is to properly account for the effects that a non-zero u has
on the scaling dimensions yt and yh for d < 4. Doing so requires a bit more formalism than
we currently have at hand. It was provided by Kenneth Wilson in his development of the
renormalisation group, for which he received the Nobel Prize in 1982. The exponents in the
Ising model were first calculated in one of the most famous papers in statistical physics, whose
title conveys the methodology:

K.G. Wilson and M.E. Fisher, Critical Exponents in 3.99 Dimensions, Phys. Rev. Lett. 28,
240 (1972). doi:10.1103/PhysRevLett.28.240

There are many excellent accounts of the renormalisation group; for instance I learned about
it from John Cardy’s book “Scaling and Renormalization in Statistical Physics”; in addition
Michael Fisher’s early review article continues to be recommended widely:

M.E. Fisher, The renormalization group in the theory of critical behavior, Rev. Mod. Phys.
46, 597 (1974). doi:10.1103/RevModPhys.46.597

4.6 Gradient Energy

In our discussion of phase separation we saw that the volume fraction φ is in general a function,
φ = φ(x), taking different values in different places according to whether the point x is in
an A rich domain or a B rich domain. This spatial variation was associated with a gradient
contribution 1

2κ|∇φ|
2 to the free energy. We have just seen that a term of the same form arises

naturally in the continuum limit of the Ising model. The same considerations can be made in
general; spatial variations on macroscopic scales are a generic feature of all phases. One can
return to the example of liquid crystals and their use in displays to illustrate this: If the order
parameter did not vary with position the screen you are looking at would be filled homogeneously
with a single colour and different pixels would not show different parts of the full screen image.

How is this spatial variation accounted for in general? For definitiveness, let us take the
case of the XY model, where the magnetisation is a two component vector m = [mx,my] =
m[cos θ, sin θ]. We will focus on the second of these forms where we represent the vector by it
magnitudem and direction θ, the angle it makes with the Cartesian x-direction. Spatial variation
in the order parameter m(x) allows for a contribution to the free energy from gradients ∇m =
[∇mx,∇my]. The free energy can only depend on scalars constructed from these gradients, the
simplest of which is ∣∣∇m

∣∣2 =
∣∣∇mx

∣∣2 +
∣∣∇my

∣∣2 = |∇m|2 +m2|∇θ|2. (4.52)
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Including this gradient contribution yields the free energy density

f =
a(T − Tc)

2
(m ·m) +

u

4
(m ·m)2 +

K

2
|∇m|2, (4.53)

=
a(T − Tc)

2
m2 +

u

4
m4 +

K

2
|∇m|2 +

Km2

2
|∇θ|2, (4.54)

where K is an energy scale associated with the gradients, usually called an elastic constant.
Precisely the same free energy, just with m replaced by s and up to some numerical factors, ap-
plies for the two-dimensional nematic liquid crystal. Although this should be clear conceptually
– the direction of the optic axis is the analogue of the direction of the magnetisation –, we defer
the calculational details to the problems.

The free energy (4.54) depends only on gradients of θ and is independent of its value. Con-
sequently, the orientation is not determined by the condition of free energy minimisation, as the
magnitude of the order is, but instead is chosen spontaneously; this is known as spontaneous
symmetry breaking. Inexorably tied to this is the fact that uniform changes in θ do not cost
any energy, while non-uniform changes can be made to have an arbitrarily low energy cost by
making the change slowly enough. These low energy excitations are a hallmark of spontaneous
symmetry breaking phase transitions and are amongst the most important properties of the
ordered phase. In the case of ferromagnetism they are called spin waves; more generally they
are known as Goldstone modes.

4.7 Dynamics: Fast and Slow Variables

What are the dynamics of small perturbations of the order and its relaxation to equilibrium?
In the case of phase separation, the most important consideration was that the total amount
of each fluid species was conserved. However, the orientation of a nematic liquid crystal is
not subject to any such conservation law; the total number of molecules pointing along some
direction is not conserved. Thus the dynamics in this case is simpler and the order just relaxes
to equilibrium. The general form of such relaxation is that the gradient of the free energy
provides a thermodynamic force that restores the order parameter to its equilibrium value. In
two dimensions the isotropic–nematic transition is continuous and has the same structure as the
XY model, so we use (4.54) with m replaced by s to follow prevailing notational convention.
The relaxation of the magnitude s and orientation θ is given by5

∂s

∂t
= −Γ

(
a(T − Tc)s+ Cs3 +Ks|∇θ|2 −K∇2s

)
, (4.55)

∂θ

∂t
= ΓsK∇ ·

(
s2∇θ

)
, (4.56)

where Γ and Γs are relaxational constants for the magnitude and orientation, respectively.
The dynamics of s and θ are fundamentally different. Consider first a homogeneous departure

of the magnitude s from its equilibrium value seq. We write s = seq + δs and linearise in δs.
One then finds that this perturbation decays exponentially as

δs(t) = δs(0) e−Γ(a(T−Tc)+3Cs2eq)t ≡ δs(0) e−t/τs . (4.57)

In other words, the magnitude s relaxes to its equilibrium value exponentially with a time
constant τs; we say that it is a fast degree of freedom.

In contrast, the orientation θ is a slow variable. To see this, let s = seq take its equilibrium
value and note that θ does not decay at all for homogeneous perturbations from its initial value.
To find the behaviour when it is slowly varying take a spatial Fourier transform to get

∂θ̃(q, t)

∂t
= −ΓsKs

2
eqq

2 θ̃(q, t), ⇒ θ̃(q, t) = θ̃0(q) e−ΓKs2eqq
2t. (4.58)

5The form of this equation will be recognisable to those familiar with the calculus of variations: ∂s/∂t =
−Γ δF/δs and ∂θ/∂t = −Γs δF/δθ.
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Although each Fourier mode decays exponentially, the time constants diverge as the magnitude
of the wavevector q goes to zero. Choosing an initial perturbation θ0(x) = θ0 exp{−|x|2/2σ2}
that is a Gaussian of width σ and height θ0, we find, after inverse Fourier transform, that the
perturbation decays as (d is the spatial dimension)

θ(x, t) = θ0

(
σ2

σ2 + 2ΓKs2
eqt

)d/2
e
− |x|2

2(σ2+2ΓKs2eqt) . (4.59)

The maximum at x = 0 decays algebraically as ∼ t−d/2 at late times, illustrating that the
orientation evolves much more slowly than the magnitude of the order, s.

This separation of timescales between the dynamics of s and θ further emphasises the funda-
mental significance of the low energy excitations (spin waves or Goldstone modes) associated to
a spontaneously broken continuous symmetry. They completely dominate the description of the
phase and phase behaviour on long length and timescales. On timescales long compared to τs
we can simply take the magnitude of the order to be its equilibrium value s = seq (everywhere)
and the system is described solely in terms of the slow orientation degree of freedom

f = feq +
Ks2

eq

2
|∇θ|2, ∂θ

∂t
= ΓsKs

2
eq∇2θ. (4.60)

4.8 Topological Defects

The extreme softness and long timescales of slow degrees of freedom bring fundamentally new
physics that impacts even the nature of the phase transition. There is a lot that can be said
but I mention only one aspect. Equation (4.60) identifies any states with ∇2θ = 0 as stationary
configurations. In addition to the uniform solutions θ = const. there are also non-uniform
stationary states. The most important of these are the class of vortices

θ(x) = w arctan
y

x
= wφ, (4.61)

where φ is the azimuthal angle of polar coordinates in two dimensions and w is an integer,
called the winding number, or charge, of the vortex. These vortices in the two-dimensional
XY model are examples of topological defects, which are general features of ordered phases
that dominate and control many of their properties. In fact, there is a difference between the
defects in a magnet and in a nematic liquid crystal. In the latter case there is nematic symmetry
n ∼ −n, which translates to θ ∼ θ+π. As a result w is allowed to be a half-integer in the liquid
crystal case and the fundamental defects have windings w = ±1

2 . These are readily identifiable
in experimental images and are one of the easiest ways of telling that alignment is nematic rather
than vectorial. The same defects also arise in a superfluid (with integer winding): Writing the
order parameter in polar form ψ = ψ0 exp{iθ} separates the fast amplitude (ψ) from the slow
phase (θ) degree of freedom. The phase, and through it the superfluid velocity v ∼ ∇θ, possesses
the same vortices, which is where the name originates from.

Let us calculate the energy of a defect. There are several methods for this but for us a simple
direct calculation will do. The gradients in orientation are ∇θ = w

r eφ, where r is the radial
distance in the plane. The energy of the defect is then

Fdefect =

∫
Ks2

eq

2

w2

r2
r dr dφ =

∫ R

rc

πKs2
eq

w2

r
dr = πKs2

eqw
2 ln

R

rc
. (4.62)

The energy is logarithmically divergent both at large distances (r = R) and small distances
(r = rc) so the integral needs to be restricted in both limits. At short distances we know
that ultimately we will encounter the finite size of the molecules when a description in terms
of a continuous variable averaging over many molecules is no longer appropriate. However,
even before getting that small we can say that we will reach a distance where the energy cost
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associated with the gradients of orientation exceeds the energy gain from forming the ordered
phase (i.e. s 6= 0); this distance defines a core radius rc within which the order melts to
the isotropic phase (s = 0). In typical situations (away from the transition temperature) this
distance is of molecular scale. The large length-scale cut-off (r = R) corresponds either to the
size of the sample (experimental container) or to the distance between defects.

For a pair of defects it can be shown that

F ' πKs2
eq

((
w1 + w2

)2
ln
R

rc
− 2w1w2 ln

d

rc

)
, (4.63)

where d is their separation. The term divergent with system size is eliminated by a ‘neutral’
configuration, where the defects have equal and opposite winding numbers. Their energy is then
logarithmic in their separation so that they (each) experience an attractive force of magnitude

∂F

∂d
=

2πKs2
eqw

2

d
, (4.64)

inversely proportional to their separation. This is Coulomb’s law for charged particles in two
dimensions.

Individual defects have no dynamics. Pairs of defects have long range interactions and slow
dynamics. In fact they behave exactly like electric charges in two dimensions; this is because
they satisfy Laplace’s equation ∇2θ = 0 which also governs the electrostatic potential. Defects
with the same winding number repel, while those with opposite winding attract6. Because of
this analogy, states of the XY model with multiple defects are referred to as a Coulomb gas.
They completely dominate the phase transition, as was discovered by Mike Kosterlitz and David
Thouless, and independently Vadim Berezinskii, in the early 1970s. This example has become a
cornerstone for many subsequent developments and in 2016 Kosterlitz and Thouless shared the
Nobel Prize for their work. You can watch (or read) Kosterlitz’s Nobel Lecture here:

J. Michael Kosterlitz, Nobel Prize Lecture: Topological Defects and Phase Transitions, (2016).
https://www.nobelprize.org/prizes/physics/2016/kosterlitz/lecture/.

If you are interested in getting a slightly more complete overview of the set of ideas for
describing phases and phase transitions introduced here, then I can recommend an engaging
article by James Sethna:

James P. Sethna, Order Parameters, Broken Symmetry, and Topology, https://arxiv.org/
pdf/cond-mat/9204009.pdf.

6And the force varies with the inverse first power of separation; Coulomb’s law in two dimensions.
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Chapter 5

Polymers

Polymers are an important class of material used in plastics, fibres, resins, coatings and glues, and
occur naturally in egg white, dough, chewing gum, DNA, proteins and many other biopolymers.
A polymer is a long chain molecule consisting of fundamental units, or monomers, joined together
by chemical bonds. There is great variety in the chemical molecules and complexes that can be
used as monomers, allowing for control and functionalisation of their properties. This is a part
of the art of polymer chemistry, but for the most basic physical characteristics of polymers the
actual chemical composition is unimportant and we can treat the monomers simply as idealised
beads. Similarly, there is great variety in polymer architectures – there are linear polymers,
branched polymers, star polymers, dendrimers, ring polymers and many more – but we will
limit ourselves to the simplest: the linear polymer.

5.1 Statistical Models of Linear Polymer Chains

There are many simple models that describe the macroscopic properties of polymer chains; here
we briefly introduce three models of linear polymers. In the freely jointed chain, the polymer
is modelled as a chain of N+1 monomers with neighbouring monomers connected by N bonds of
fixed length but arbitrary orientation. If the positions of the monomers are ri, for i = 0, . . . , N ,
then the bonds are the vectors bi = ri−ri−1, which all have the same magnitude |bi| = b. Since
the orientation is arbitrary we have 〈bi〉 = 0 and in the freely jointed chain the bonds are taken
to be independent so that we also have

〈bi · bj〉 = b2 δij . (5.1)

A quantity of interest is the typical size of a polymer chain; not only is this relevant to
several physical properties but it is directly accessible in scattering experiments. One measure
of the polymer size is the length of the end-to-end vector

Ree = rN − r0 =

N∑
i=1

bi. (5.2)

Evidently 〈Ree〉 = 0 since 〈bi〉 = 0, but this tells us only that there is no preferred direction for
the end-to-end vector and not its preferred length. For the latter, we calculate〈

|Ree|2
〉

=

〈 N∑
i,j=1

bi · bj
〉

=
N∑

i,j=1

〈bi · bj〉 = Nb2. (5.3)
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Hence the root mean square of the end-to-end vector is Ree =
√
N b and increases with the

degree of polymerisation as N1/2.
The same scaling R ∼ N1/2 is found for other measures of the size of the polymer; a common

measure is the radius of gyration, Rg, which is the root mean square of the separation of each
monomer from the centre of mass

R2
g =

1

N + 1

N∑
i=0

〈∣∣ri − rcm

∣∣2〉. (5.4)

In one of the problems we will calculate that, for large N , R2
g ≈ Nb2/6. Thus the radius

of gyration and end-to-end vector do not measure exactly the same length scale but they do
have the same scaling with N for simple linear polymers. In general situations, Rg can give a
more appropriate measure of the polymer size since its definition carries over also to branched
polymers or star polymers, for instance.

An essentially identical description but with discrete bond orientations is provided by lattice
models of polymer chains. A lattice polymer is simply a polymer chain constrained to a lattice,
say a square lattice in two dimensions or a cubic lattice in three dimensions; the monomers sit
at lattice sites and the bonds are restricted to only connect nearest neighbour sites. It should be
clear that the discreteness inherent to lattice models will affect some properties quantitatively
but that the basic scaling Ree ∼ N1/2 will not be altered, at least for large N , so long as the
bonds continue to be chosen independently.

As a final example of a model for capturing the macroscopic properties of polymer chains
we mention the Gaussian chain. The freely jointed chain draws individual bonds from a
distribution of fixed length b with uniformly arbitrary direction. The Gaussian chain instead
draws each polymer bond – a step r – from the Gaussian distribution

Pbond(r) =

(
3

2πb2

)3/2

e−
3|r|2

2b2 . (5.5)

This has the same first and second moments

〈r〉 = 0, 〈r · r〉 = b2, (5.6)

as the freely jointed chain and so the Gaussian chain gives rise to the same expression for the
end-to-end separation (Ree = N1/2 b) of a polymer chain made from N independent bonds.
The Gaussian model gives us further a simple expression for the full probability distribution of
the end-to-end vector (here I continue to simply use r for this vector), namely the Gaussian
distribution

Pee(r) =

(
3

2πNb2

)3/2

e−
3|r|2

2Nb2 , (5.7)

where here r is the end-to-end vector of the entire chain. To see this, note that the end-to-end
probability for N bonds, Pee, N (r), can be expressed as the convolution of that for N − 1 bonds
with the probability distribution for a single bond

Pee, N (r) =

∫
Pee, N−1(r− x)Pbond(x) d3x = Pee, N−1 ∗ Pbond(r). (5.8)

Taking Fourier transforms we then obtain

P̃ee, N (q) = P̃ee, N−1(q)P̃bond(q) =
(
P̃bond(q)

)N
, (5.9)

where the second equality comes from iteration. The probability distribution (5.7) then follows
from inverse Fourier transform. By the central limit theorem the probability distribution for
any other model, for instance the freely jointed chain, is asymptotically the same as this for
large enough N and hence the Gaussian model gives, for long polymers, a universal description
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of chain statistics. Note that although the freely jointed and Gaussian chains have the same
first and second moments they do not give the same results for all properties. For example, in
the freely jointed chain the end-to-end vector has a maximum length of Nb, corresponding to a
fully extended chain, whereas in the Gaussian model there is no maximum extension but only
the Gaussian distribution (5.7).

5.1.1 Persistence Length

Some polymers are very flexible, while others are stiff. This difference originates in an energetic
cost for bending polymer bonds and gives rise to another characteristic length scale for a polymer;
the persistence length. As a simple model, consider the freely jointed chain model and write
ui = bi/b for the unit vector specifying the orientation of each bond. Then we can take a
bending energy for the polymer chain of1

E = −κ
N−1∑
i=1

ui · ui+1 = −κ
N−1∑
i=1

cos θi, (5.10)

that penalises any angle θ between neighbouring bonds by a bending stiffness κ. If we treat
the angles θi as the degrees of freedom then we can compute the partition function (for the bond
angle degrees of freedom) as

Z =
∑
{θi}

eβκ
∑N−1
i=1 cos θi =

∑
{θi}

N−1∏
i=1

eβκ cos θi =

(∑
{θ}

eβκ cos θ

)N−1

. (5.11)

Now, of course, the bond angle θ is a continuous variable so the sum is really an integral; its
exact form depends on the number of spatial dimensions, but in three dimensions it is

Z =

(∫ π

θ=0
eβκ cos θ sin θ dθ

)N−1

=

(
2 sinhβκ

βκ

)N−1

. (5.12)

Finally, we can calculate the expectation value for the bond angle as

〈
cos θ

〉
=

∫ π
0 cos θ eβκ cos θ sin θ dθ∫ π

0 eβκ cos θ sin θ dθ
=
∂ lnZ

∂(βκ)
= cothβκ− 1

βκ
. (5.13)

When the bending stiffness is small, βκ � 1, we have 〈cos θ〉 ≈ βκ/3 and the orientations
of neighbouring segments are essentially uncorrelated. Whereas, when the stiffness is large,
βκ� 1, we get 〈cos θ〉 ≈ 1− (βκ)−1 and neighbouring segments are approximately parallel.

How does this extend along the chain? We consider the expectation value 〈ui ·ui+n〉 of bonds
n apart. Now, from our preceding calculation we can say that on average

ui+1 = 〈cos θ〉ui + 〈sin θ〉u⊥i , (5.14)

where u⊥i is a vector orthogonal to ui. This then suggests

〈ui · ui+n〉 = 〈cos θ〉 〈ui · ui+n−1〉+ 〈sin θ〉 〈ui · u⊥i+n−1〉, (5.15)

and if the polymer is relatively stiff 〈sin θ〉 will be small and we can drop the second term. Upon
recursion, this gives the result

〈ui · ui+n〉 ≈ 〈cos θ〉n = en ln〈cos θ〉 ≈ e
− n
βκ . (5.16)

The alignment of bonds decays exponentially along the polymer. The length scale over which it
does so is `p ≈ βκb and is called the persistence length. Flexible polymers are long compared

1We remark that this is the same energy as the one-dimensional (classical spin) Heisenberg chain.
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to their persistence length, while stiff polymers have a length comparable to, or smaller than,
their persistence length.

The idea of a persistence length and that polymers are flexible on scales large compared to this
suggests a coarse-graining of the description of semi-flexible polymers back to the freely jointed
chain. The idea is to introduce a new ‘effective’ (or renormalised) bond length br and consider
this to be the new fundamental unit, or effective monomer. Since there are br/b monomers per
effective monomer, there are Nr = Nb/br effective monomers in the coarse-grained description.
The idea is to choose br such that the end-to-end vector statistics recovers the expression for
the freely jointed chain 〈∣∣Ree

∣∣2〉 = Nrb
2
r = Nb2

(
br
b

)
. (5.17)

The length scale determined by this is known as the Kuhn length. The relationship between
the Kuhn length and the persistence length depends on the particular model used to describe
the stiffness; when the scales are all well separated one finds br ≈ 2`p. This mapping indicates a
universality in the properties of polymers; provided they are long compared to their persistence
length they can all be described by an effective freely jointed chain.

5.2 Elasticity

Suppose we pull on a polymer so as to separate the ends by an amount r. This stretches
the polymer out and restricts its available configurations, reducing the entropy. As such it
increases the free energy and we can say that we have done work against a force seeking to
return the polymer to its preferred configuration where on average the end-to-end vector is
zero. Equivalently, in order to hold the end-to-end vector at the non-zero displacement r (on
average) we have to supply a force. The force–extension relationship characterises the elasticity
of a polymer chain. It is worth emphasising that the origin of this elasticity is purely entropic
and does not come from interactions between the monomers, which here we are neglecting. We
should also say that polymers are very stretchy; as we have seen, the end-to-end separation scales
as N1/2 whereas for a fully stretched polymer this end-to-end separation would be proportional
to N . When N is large this increase in length is very considerable.

We will present two descriptions of polymer elasticity, using both the freely jointed chain
and Gaussian chain models. First, the freely jointed chain: If we apply a force f to maintain an
end-to-end vector r then the polymer configuration will have an energy

E = −f · r = −
N∑
i=1

f · bi = −fb
N∑
i=1

cos θi, (5.18)

where f = |f | and θi is the angle between the ith polymer bond and the direction of the force.
The partition function is

Z =
∑
{bi}

e−βE =
∑
{bi}

N∏
i=1

eβfb cos θi =

(∑
|b|=b

eβfb cos θ

)N
. (5.19)

What we mean in the final expression is the sum over all bond vectors b with magnitude b. The
set of all such vectors is clearly the sphere of radius b and we may parameterise them by polar
angles (θ, φ) for points of the sphere. Thus, really, we have an integral

Z =

(∫ 2π

φ=0

∫ π

θ=0
eβfb cos θ sin θ dθdφ

)N
=

(
4πkBT

fb
sinhβfb

)N
. (5.20)

From the partition function we can calculate the average extension in the usual way

〈r〉 =
1

Z

∑
{bi}

(
b

N∑
i=1

cos θi

)
eβfb

∑
i cos θi = kBT

d lnZ

df
= Nb

[
coth

fb

kBT
− kBT

fb

]
. (5.21)

45



This is a force-extension relation, telling us the extension that results from applying a given
force, or the force that is required to produced a particular extension. It is useful to consider
the limiting behaviour for large and small forces. When fb/kBT is small we find

〈r〉 =
Nfb2

3kBT
, ⇒ f =

3kBT

Nb2
〈r〉, (5.22)

a linear force–extension relation as you would have for a standard Hookean spring with spring
constant 3kBT/Nb

2. Polymers resist stretching with standard linear elasticity for small forces;
the fact that the spring constant is proportional to the temperature reflects the entropic origin
of this elasticity. On the other hand, when fb/kBT is large we have the limiting behaviour

〈r〉 ≈ Nb
[
1− kBT

fb

]
, ⇒ f =

NkBT

Nb− 〈r〉
. (5.23)

The polymer extension asymptotes to its maximum value Nb of a fully stretched chain and the
force that is needed to achieve this diverges.

The analysis is in many respects simpler and more direct for the Gaussian chain. The
probabilities (5.7) of a polymer chain with end-to-end separation r have the form e−βE of a

Boltzmann weight with ‘energy’ E = kBT
3|r|2
2Nb2

. Of course, this is not a fundamental interaction
but rather an entropic one (so it is really a free energy), arising from the fact that there are
many more configurations with a small end-to-end separation that there are for a highly extended
chain. It corresponds to the same Hookean elasticity as we found for the freely jointed chain
at small extensions, with the same spring constant 3kBT/Nb

2. But in the Gaussian chain the
elasticity is purely Hookean, so that for large extensions the elasticity deviates from that of the
freely jointed chain in that it remains purely harmonic and there is no maximal extension.

5.2.1 Rubber Elasticity

A rubber is a network of polymer chains with cross-links connecting them. The segment of
polymer chain between any two cross-links can be viewed as a subchain; we will consider that
it has length N (variable); its end-to-end vector is, of course, the separation r between the two
cross-links that it connects. When the rubber is stretched the cross-links will move, their separa-
tions will change and the polymer subchains connecting them will resist this by their elasticity.

If we treat each subchain as a Gaussian chain then it will contribute a free energy kBT
3|r|2
2Nb2

from
the separation of its ends. The total free energy will be the sum of the contributions from each
subchain; we write this as a free energy density

f = nc
∑
N

∫
P (r, N)

3kBT |r|2

2Nb2
d3r, (5.24)

where nc is the number density of subchains and P (r, N) is the probability that a subchain has
end-to-end vector r and length N . This probability will depend on the details of the polymer
network and how it is cross-linked but in the simplest approximation we can take

P (r, N) = P (N)Pee(r) = P (N)

(
3

2πNb2

)3/2

e−
3|r|2

2Nb2 , (5.25)

as the product of the probability distribution for the end-to-end vector of the Gaussian chain
with N bonds and the probability P (N) that the subchain has N bonds.

Now suppose that the rubber is stretched so that the separation between cross-links becomes
r′. The resulting change in free energy is the elastic free energy of the rubber

felastic = nc
∑
N

∫
P (r, N)

3kBT

2Nb2
(
|r′|2 − |r|2

)
d3r. (5.26)
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In simple (affine) elasticity the separations r′ in the stretched state are related to those in the
undeformed state by a linear transformation r′ = Λr, where Λ is a 3×3 matrix, the deformation
tensor. Switching to an index notation we can write the elastic free energy density as

felastic = nc
∑
N

∫
P (r, N)

3kBT

2Nb2
(
ΛijΛik rjrk − riri

)
d3r, (5.27)

=
nckBT

2

(
ΛijΛij − 3

)
. (5.28)

Finally, if the deformation tensor takes the form

Λ =

λx 0 0
0 λy 0
0 0 λz

 , (5.29)

corresponding to stretching the rubber by a factor λx along the x-axis, and similarly for y and
z, then we can write the elastic energy density as

felastic =
nckBT

2

[(
λ2
x − 1

)
+
(
λ2
y − 1

)
+
(
λ2
z − 1

)]
. (5.30)

For a material that is incompressible the deformation must preserve its volume so that
λxλyλz = 1. In this case, if we stretch along one direction (say x) by a factor λ the material will
contract in the other directions (y and z) such that they scale by a factor 1/

√
λ. The elastic

energy for such stretching of an incompressible rubber is

felastic =
nckBT

2

(
λ2 +

2

λ
− 3

)
, (5.31)

and the work done in stretching it is

dfelastic = nckBT

(
λ− 1

λ2

)
dλ, (5.32)

corresponding to a non-Hookean force nckBT (λ − λ−2). Finally, linearising for λ close to 1
identifies the Young’s modulus of the rubber as 3nckBT .

5.3 Flory Theory: Size of a Polymer with Interactions

What is the typical size R of a polymer chain of length N? We have seen, for the freely
jointed chain and Gaussian chain models, that R ∼ N1/2, whether we take for R the end-to-end
separation or radius of gyration. This can be contrasted with the scalings for a tightly packed
ball – a collapsed polymer, or globule –, whose size grows as R ∼ N1/3, or a perfectly stiff rod –
where all the bond vectors point in the same direction bi = b for all i – for which R ∼ N . These
behaviours would arise if there were very strong interactions between the monomers, respectively
attractive and repulsive, and the scaling R ∼ N1/2 of the freely jointed chain reflects the complete
omission of any interactions from the description.

The following simple argument of Flory gives a prediction for the polymer size when (weak,
repulsive) interactions are accounted for. Let ∆ be the interaction energy between two monomers.
Each monomer will, on average, interact with a number of others given by the concentration
N/R3 of monomers in the polymer chain. Hence we estimate the total interaction energy to be

Einteract =
1

2
∆N

N

R3
, (5.33)

the factor of 1/2 allowing for double counting (as usual), and combining with the entropic energy
of stretching the chain to a size R this gives an overall free energy

F =
3kBTR

2

2Nb2
+

∆N2

2R3
. (5.34)
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We minimise the free energy with respect to the size R and find

0 =
3kBTR

Nb2
− 3∆N2

2R4
, ⇒ R ∼ N3/5. (5.35)

The result, R ∼ N3/5, is known as Flory scaling. The typical size of the interacting chain is
larger than that of the non-interacting one, which certainly makes sense.

In general, the dependence of the polymer size on chain length is described by a scaling form
R ∼ Nν where ν is the scaling exponent. A non-interacting chain has the ‘Gaussian’ exponent
ν = 1/2, while a fully collapsed polymer with very strong attractive interactions has ν = 1/3.
It turns out that the Flory exponent, ν = 3/5, for a chain with repulsive interactions is very
close to, but not exactly, the correct value for a polymer chain with hard core excluded volume
interactions between the monomers. The basic model for such excluded volume interactions
is the self-avoiding random walk and the scaling exponent for them is ν = 0.588, as was
discovered by an ingenious argument of Pierre-Gilles de Gennes2.

5.3.1 Polymer Brush

The extension of poylmers due to interactions finds numerous uses. One such involves physically,
or chemically, grafting polymers to surfaces, creating a type of polymer coating. A single polymer
will be stretched away from the surface, since it finds many more available configurations away
from the surface where it can move more freely. When there are many polymers forming a
dense coating the interactions between polymer chains greatly enhance this stretching as each
chain seeks to avoid too much overlap with its neighbours. This effect can be estimated from an
adaptation of Flory theory and predicts that the end-to-end extension of such a polymer coating
scales linearly with N . Thus the polymers are almost fully stretched and form a stiff polymer
brush. These coatings can be used to control repulsive interactions between colloidal particles
and thereby stabilise them in solution. It is fascinating that the entropy of polymers can be
used both to aggregrate colloids through the depletion interaction and also to stabilise colloidal
dispersions through the repulsive interactions from a grafted polymer brush.

5.3.2 Flory Scaling and Elasticity

The Flory scaling for polymer size RF ∼ N3/5 has implications for its elastic response at both
weak and strong stretching. These can be obtained using scaling arguments, mimicked on those
used in describing phase transitions, which emphasises their generality and independence from
specific microscopic details.

We consider the scaling form for the extension x of a polymer subject to a force f pulling
its ends apart. The extension is a length and should depend on the natural length scale of
the polymer RF and on the length scale kBT/f obtained by comparing the (work done by the)
force to the thermal energy scale (as the only relevant energy scale). Thus the extension can be
written in the scaling form

x = RF Φ

(
fRF

kBT

)
, (5.36)

where Φ is a ‘scaling function’. For weak forces we expect a linear relation between force and
extension, i.e. Φ(y) ∼ y for small y. This gives

x ∼
fR2

F

kBT
∼ fb2

kBT
N6/5 or f ∼ kBT

N6/5b2
x,

with the result that the spring constant decreases more rapidly with degree of polymerisation
(N−6/5) than in an ideal chain (N−1); self-avoiding chains are ‘softer’ than ideal chains.

2De Gennes’ argument involves taking the n → 0 limit of the O(n) model of ferromagnetism! This result
formed part of de Gennes’ Nobel citation when he was awarded the Nobel Prize in 1991.
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The ideal scaling, x ∼ N , reflects that the force is transmitted along the polymer chain
through a constant tension in the chemical bonds between neighbouring monomers. The differ-
ent scaling of the self-avoiding chain arises from excluded volume interactions between monomers
that are widely separated along the chain contour length, i.e. from distant parts of the chain com-
ing close together. For large forces when the chain is strongly stretched these distant monomer
interactions are largely suppressed and the self-avoiding chain exhibits the scaling x ∼ N ex-
pected for a constant tension transmitted along its contour length. Since RF ∼ N3/5 this requires
the scaling Φ(y) ∼ y2/3 and translates into a force–extension relation

x ∼ Nb
(
fb

kBT

)2/3

or f ∼ x3/2,

that differs from Hookean elasticity.

5.4 Polymer Solutions

We consider briefly the description of polymer solutions. Recall from Chapter 2 that the free
energy density for a mixture can be written

f =
kBT

v0

(
χφ
(
1− φ

)
+ φ lnφ+ (1− φ) ln(1− φ)

)
, (5.37)

where φ is the volume fraction of A fluid molecules. The first term χφ(1 − φ) represents
the interactions between A and B molecules, while the last two terms represent the entropy
associated with their mixing. The same form can be adopted for a polymer solution with a
minor modification to account for the long chain-like structure of a polymer. We let φ denote
the volume fraction of monomers; then 1 − φ is the volume fraction of solvent molecules. The
interactions are between solvent molecules and monomers so this term is unchanged. Similarly,
the entropy for the solvent (1 − φ) ln(1 − φ) remains unchanged. However, the entropy for the
polymer should be reduced by a factor N because in each polymer N monomers are chemically
bonded together. This leads to the Flory-Huggins theory for polymer solutions

f =
kBT

v0

(
χφ
(
1− φ

)
+
φ

N
lnφ+ (1− φ) ln(1− φ)

)
. (5.38)

Minimisation of this free energy density gives the condition

χ
(
1− 2φ

)
+

1

N
lnφ+

1

N
− ln(1− φ)− 1 = 0, (5.39)

which identifies the binodal in the phase diagram. It is a bit easier to obtain the structure of
the phase diagram from the spinodal, given by the loss of convexity in the free energy density

∂2f

∂φ2
= −2χ+

1

Nφ
+

1

1− φ
= 0, or

1

Nφ
+

1

1− φ
= 2χ. (5.40)

The critical point is the smallest value of χ for which this has a solution and is given by

φc =
1

1 +
√
N
, χc =

1

2

(
1 +

1√
N

)2

. (5.41)

When N = 1 this recovers the critical point φc = 1
2 , χc = 2 of the AB fluid model of Chapter 2.

When N is large the critical value of the interaction parameter reduces to close to 1
2 and the

critical concentration is φc ≈ 1√
N

, which can be very small.
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It is also insightful to consider the osmotic pressure of the polymer solution. This is

posm =
kBT

v0

(
−χφ2 +

φ

N
− ln(1− φ)− φ

)
, (5.42)

=
kBT

v0

(
φ

N
+

(
1

2
− χ

)
φ2 +

1

3
φ3 + · · ·

)
, (5.43)

where the second form represents a virial expansion at low polymer concentration. We see that
the second virial coefficient is

B2 =
kBT

v0

(
1

2
− χ

)
, (5.44)

and the condition for it to vanish, χ = 1
2 , marks a cancellation of the excluded volume inter-

actions of the self-avoiding chain with the repulsive interactions between polymer and solvent.
This is the θ-condition at which the behaviour of the polymer is the same as that of an ideal
chain. When χ < 1

2 the polymer chains are swollen and we observe the Flory scaling R ∼ N3/5.
This is referred to as a “good solvent”. In a “poor solvent”, χ > 1

2 , we observe phase separation
into a dense component where chains overlap and a dilute component where the polymers col-
lapse to a globule. At the crossover χ = 1

2 we have a “θ-solvent” and observe the ideal scaling

R ∼ N1/2.

5.5 Polymer in a Box

The problem of a particle in a box is a cornerstone of quantum mechanics; and in statistical
mechanics, as we reviewed, it reproduces Boyle’s law for ideal gases. Here, we consider the
polymer cousin of this basic problem, a Gaussian polymer chain in a cubic box of side L. The
concept is simple enough: when a polymer is close to one of the walls its configurations are
restricted since it must stay inside the box and this reduction in entropy leads to an entropic
preference to stay away from the walls. The challenge is to quantify the reduction in allowed
configurations, and the resulting thermodynamic properties of the polymer in a box, which we
do by recasting the problem as a differential equation.

For the Gaussian chain model the probability P (r, r0) that a polymer with one end at r0

has its other end at r is the Gaussian distribution

P (r, r0) =

(
3

2πNb2

)3/2

e−
3|r−r0|

2

2Nb2 ≡ G(r, r0). (5.45)

The notation G(r, r0) is commonly used here because this is also the Green function of the
diffusion equation (with diffusion constant D = b2/6)

∂G

∂N
=
b2

6
∇2G. (5.46)

It may seem weird to differentiate with respect to N , since this is supposed to be the fixed,
integer number of bonds in the polymer. So in a sense this is just a purely mathematical
observation. However, it affords the following interpretation: In the usual diffusion equation
N is the time t and one thinks of the solution describing how an initial source spreads out by
random motion. The Gaussian polymer chain can be thought of as being built up step-by-step,
starting at an initial point r0 and taking N random steps, each of size b on average. This is the
same as diffusing randomly for time t = N with root-mean-square displacement b. Consistent
with this (5.45) is the solution of (5.46) satisfying G(r, r0) = δ(r−r0) at N = 0. The tremendous
utility of the differential equation is that we can use it to find the probability distribution for a
polymer chain in different spaces, thereby gaining insight into polymer confinement.

We take this up for a polymer confined to a cubic box of side L. The statistical weight
G(r, r0) for a chain of length N , starting at r0 and ending at r is given by the solution of
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the diffusion equation (5.46) that vanishes on the boundaries and reduces to the delta function
δ(r− r0) when N = 0. This solution is (see problems)

G(r, r0) = g(x, x0)g(y, y0)g(z, z0), (5.47)

with

g(x, x0) =
2

L

∞∑
n=1

sin
nπx

L
sin

nπx0

L
e−n

2π2Nb2/6L2
. (5.48)

The partition function for the polymer in the box is the sum of these statistical weights for all
configurations of the polymer, i.e. for all choices of r and r0 within the box,

Z =

∫∫
box

G(r, r0) d3r d3r0 = Z3
x, (5.49)

where

Zx =

∫ L

0

∫ L

0
g(x, x0) dx dx0 =

8L

π2

∑
n, odd

1

n2
e−n

2π2Nb2/6L2
. (5.50)

Let us first suppose that the box is large compared to the polymer, i.e. L� Rg =
√
Nb2/6.

Then the exponential is approximately unity (for every n) and it is known, e.g. from a course
on Fourier series, that ∑

n, odd

1

n2
=
π2

8
, (5.51)

so that Zx ≈ L and Z ≈ L3 = V , the volume of the box. The free energy of the polymer
is therefore F = −kBT lnZ ≈ −kBT lnV and if we calculate the pressure, p = −∂F/∂V , we
recover the ideal gas law

p =
kBT

V
. (5.52)

This result is both reassuring and interesting. A gas of polymers behaves just like an ideal gas of
simple, formless point particles; the fact that the polymer has internal structure and many, many
internal degrees of freedom and conformations does not matter for the macroscopic behaviour,
at least whenever the box is large compared to the polymer size.

Now we consider the opposite limit of tight confinement. When L . Rg =
√
Nb2/6 we can

approximate the infinite sum in (5.50) by just retaining the first term, since the others are all
exponentially smaller. This gives

Z ≈ e3 ln(8L/π2)−π2Nb2/2L2
, (5.53)

and a free energy

F ≈ −kBT ln
83V

π6
+ kBT

π2Nb2

2V 2/3
, (5.54)

so that the pressure is now given by

p = −∂F
∂V
≈ kBT

V
+
kBT π

2Nb2

3V 5/3
≈ kBT π

2Nb2

3V 5/3
. (5.55)

This expression differs from that of a simple ideal gas with a stronger dependence on the volume,
or degree of confinement. Polymers that are packed very tightly into small spaces are stored at
high pressure; or equivalently, if you were to open a small hole in the side of the box to let the
polymer out there would be a strong entropic drive for it to escape.
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Chapter 6

Brownian Motion

Particles that are in equilibrium are not at rest; rather they have a mean square velocity given
by the temperature 〈|v|2〉 = 3kBT/m, where m is the particle’s mass; this is an example of
the equipartition theorem. Now the mass of a particle is its density times its volume, or
m ∼ ρa3, where a is (say) the radius. Particles in equilibrium have typical squared veloci-
ties 〈v2〉 ∼ kBT/ρa

3 that increase sharply as the size gets smaller and smaller. The typical
squared velocities of a micron sized particle are nine orders of magnitude larger than those of a
millimetre sized particle made from the same material. It is inevitable1 that for some particle
size these velocities will become directly observable using microscopy. Precisely these molecular
motions were observed by Robert Brown in 1827; they are now known as Brownian motion.
The basic statistical description of Brownian motion as a consequence of the interactions of
colloidal particles with individual water molecules was first given by Albert Einstein in one of
his annus mirabilis papers of 1905.

6.1 Thermal Motion: Equipartition

Let us review briefly the equipartition theorem. The kinetic energy of a particle of mass m
is E = |p|2/2m, where p is the momentum. Hence, the partition function associated with the
momentum degrees of freedom is2

Z =

∫
e−β

|p|2
2m d3p =

(
2πm

β

)3/2

, (6.1)

and from the partition function we recover the energy as

E = −∂ lnZ

∂β
=

3

2

1

β
=

3

2
kBT, (6.2)

establishing the equipartition theorem. Exactly the same analysis holds for any degree of freedom
that contributes quadratically to the energy.

6.2 Motion of a Brownian Particle

Consider a single Brownian particle, moving erratically due to random collisions with water
molecules. We would like to describe both its velocity v(t) and position x(t) and in particular
their statistical averages. Each component of the velocity and position are independent, so it is
enough to describe any one of the components and since this streamlines the notation a bit that

1Another option is that statistical mechanics ceases to apply.
2You will note that I am not careful here about dividing by appropriate factors of Planck’s constant to get the

dimensions right; I trust you have seen this story in another course.
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is how we will present it. Now, the basic description of the motion of any particle is Newton’s
second law; for a Brownian particle this is called the Langevin equation

m
d2x

dt2
= −γ dx

dt
+ ξ, (6.3)

where m is the mass of the particle, γ is a frictional damping coefficient and ξ(t) is a random
forcing, or noise, coming from the thermal motions of water molecules. Note that the frictional
damping also comes from interactions of the Brownian particle with the water molecules and as a
result the friction γ and noise ξ are related, since they share a common origin. Establishing this
relation will be our first major result. We take the random force to have mean zero 〈ξ(t)〉 = 0
and to be delta correlated in time

〈ξ(t)ξ(t′)〉 = 2Γδ(t− t′). (6.4)

This is known as white noise. The strength of the noise Γ is not a ‘free’ parameter and we will
see that its value can be determined by consistency with the equipartition theorem.

Let us develop the formal solution of (6.3). First, we let v = dx/dt denote the velocity of
the particle and find for it the solution

v(t) = v(0) e−t/τ +
1

m
e−t/τ

∫ t

0
et
′/τξ(t′) dt′, (6.5)

where τ = m/γ is a relaxational timescale. We can say that it is the characteristic timescale
over which the particle loses memory of its initial velocity. It is useful to estimate its magnitude.
For a small particle moving in a fluid the friction coefficient is γ = 6πµa, where µ is the fluid
viscosity and a the particle radius; this is a classic result in fluid dynamics known as Stokes’
drag. Taking a spherical particle of density ρ we have τ = (2ρ/9µ)a2. The density of water is
ρ ∼ 1 g cm−3 and its viscosity is µ ∼ 1 mPa s at room temperatures (1 Pa ∼ 10 g cm−1 s−2).
So, for a micron sized particle (a ∼ 10−4 cm) we have τ ∼ 2× 10−7 s. When we observe at our
normal timescales, say video rate of 30 fps (or even 60 fps), we are observing times that are very
much longer than this characteristic time for thermalisation of velocity, i.e. t� τ .

Note that the average velocity quickly decays to zero. This is to be expected since the motion
is random and as likely to be in one direction as any other; there is only a short timescale t . τ
memory of the initial velocity. Now we consider the mean square velocity

〈
v(t)2

〉
= v(0)2 e−2t/τ +

2

m
v(0) e−2t/τ

∫ t

0
et
′/τ
〈
ξ(t′)

〉
dt′

+
1

m2
e−2t/τ

∫ t

0

∫ t

0
e(t′+t′′)/τ

〈
ξ(t′)ξ(t′′)

〉
dt′dt′′.

(6.6)

Using the noise statistics 〈ξ(t′)〉 = 0 and 〈ξ(t′)ξ(t′′)〉 = 2Γ δ(t′ − t′′) this simplifies to

〈
v(t)2

〉
= v(0)2 e−2t/τ +

Γτ

m2

[
1− e−2t/τ

]
. (6.7)

Finally, taking the long time limit t � τ to let the velocity equilibrate, and recalling that
τ = m/γ, we find that in equilibrium

〈v2〉 =
Γ

mγ
, ⇒

〈
1

2
mv2

〉
=

1

2

Γ

γ
, (6.8)

and comparing with the equipartition theorem we conclude that Γ = γ kBT . This is an important
result; it establishes that the correlations in the noise are determined by the frictional coefficient
that resists, or dissipates, the motion. It is the first example of what are known as fluctuation-
dissipation relations.
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6.2.1 Mean Square Displacement and Einstein Relation

Having described the velocity of the Brownian particle we now turn to its position. To start, we
largely repeat what we said above about timescales, but with a slightly different presentation:
The ratio of the inertial and drag forces is

md2x/dt2

γ dx/dt
∼ mv/T

γv
=
τ

T
, (6.9)

where T is a typical timescale for the motion and v a typical velocity. Thus, if we are interested
in describing motions that take place over milliseconds or seconds, or longer, then the inertial
term is essentially negligible compared to the drag and we can simplify the Langevin equation
to the purely relaxational form

γ
dx

dt
= ξ. (6.10)

The formal solution is

x(t)− x(0) =
1

γ

∫ t

0
ξ(t′) dt′. (6.11)

It follows that the average position of the particle 〈x(t)〉 is just its initial position x(0). More
interesting is how far it ‘spreads’, which is captured by the mean square displacement

〈
|x(t)− x(0)|2

〉
=

1

γ2

∫ t

0

∫ t

0

〈
ξ(t′)ξ(t′′)

〉
dt′ dt′′ =

2kBT

γ
t. (6.12)

The mean square displacement of a particle is known to be related to the diffusion constant D
by 〈|x(t)− x(0)|2〉 = 2Dt, so this result establishes the celebrated Einstein relation

D =
kBT

γ
, (6.13)

between the diffusion constant and the frictional damping.

6.2.2 Motion in a Harmonic Potential

Returning now to the Langevin description of the motion of a Brownian particle, suppose the
particle is moving in a potential V (x) so that it experiences a force −dV/dx. The Langevin
equation in this case reads

γ
dx

dt
= −dV

dx
+ ξ. (6.14)

For concreteness, we will focus on the case of a harmonic potential V = 1
2Kx

2 with spring
constant K. Not only does this reflect the generic situation near a potential minimum but it
gives a good description of the important experimental technique of trapping particles in laser
tweezers. The formal solution of the Langevin equation is

x(t) = x(0) e−Kt/γ +
1

γ
e−Kt/γ

∫ t

0
eKt

′/γξ(t′) dt′, (6.15)

and we find, by the same calculational steps as for the velocity before,〈
|x(t)|2

〉
= |x(0)|2 e−2Kt/γ +

kBT

K

[
1− e−2Kt/γ

]
. (6.16)

Taking the long time limit (t � γ/K) to lose memory of the initial condition and equilibrate
we recover the expected result from equipartition〈

1

2
Kx2

〉
=

1

2
kBT. (6.17)
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6.3 Diffusion, Smoluchowski and Fokker-Planck Equations

The motion of Brownian particles is closely related to the diffusive spread of solute particles
from an initial concentrated source. We try to bring out this connection briefly. The diffusion
equation for the concentration c(x, t) of solute is

∂c

∂t
= D∇2c. (6.18)

The basic solution due to a source initially localised at the origin, c(x, 0) = δ(x), is

c(x, t) =
1

(4πDt)3/2
e−
|x|2
4Dt . (6.19)

The distribution of the solute is such that its average position is 〈x〉 = 0, while the amount
that it is spread out over time is 〈|x|2〉 = 6Dt; this is a contribution 2Dt for each of the x, y
and z directions so that the ‘mean-square displacement’ of the solute particles from where they
started is exactly the same as that of a Brownian particle.

The diffusion equation has the form of a continuity equation

∂c

∂t
+∇ · J = 0, (6.20)

where the current J is given by Fick’s law J = −D∇c. More generally, if the solute is also moving
in response to a potential V (x) then this will contribute a velocity γ−1∇V to the current

J = −D∇c− c1

γ
∇V. (6.21)

When the current vanishes the solute concentration is given by

c(x) = c0 e−V (x)/γD. (6.22)

Now, since in equilibrium we would have a Boltzmann distribution c ∼ exp{−V (x)/kBT} this
gives another approach to the Einstein relation D = kBT/γ. Using the Einstein equation we
can rewrite the diffusion equation in this more general context as

∂c

∂t
=

1

γ
∇ ·
[
kBT∇c+ c∇V

]
, (6.23)

which is known as the Smoluchowski equation.
Now the concentration may be viewed as a probability density for the positions of the solute

particles, multiplied by the total number of solute particles, so we may view the Smoluchowski
equation as an evolution equation for the probability density Ψ(x, t)

∂Ψ

∂t
=

1

γ
∇ ·
[
kBT ∇Ψ +∇V Ψ

]
. (6.24)

As this is just a statement of conservation of probability, where the flux of probability consists
of thermal effects acting to spread it out evenly and flows in response to potential gradients,
the same equation should hold for any probability distribution and not only that for particle
positions. With this more general probabilistic interpretation it is called the Fokker-Planck
equation.
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6.3.1 Steady State Probability Distribution

The evolution of the probability distribution under the Fokker-Planck equation produces a flow
in which the free energy steadily decreases, except when the system is at equilibrium. To see
this consider the function

F [ψ] =

∫
Ω
V ψ + kBTψ lnψ ddx, (6.25)

and compute directly its time derivative

∂tF =

∫
Ω

[
V + kBT lnψ + kBT

]
∂tψ d

dx. (6.26)

We use the Fokker-Planck equation, ∂tψ +∇ · J = 0, and integrate by parts to find

∂tF = −
∫

Ω

[
V + kBT lnψ + kBT

]
∇ · J ddx, (6.27)

= −
∫
∂Ω

[
V + kBT lnψ + kBT

]
J · dS +

∫
Ω

J · ∇
[
V + kBT lnψ + kBT

]
ddx, (6.28)

= −
∫
∂Ω

[
V + kBT lnψ + kBT

]
J · dS−

∫
Ω

1

ψ
|J|2 ddx, (6.29)

where in the last line we have used that −∇V ψ − kBT∇ψ = J. Now, if the current J either
vanishes on the boundary, or is purely tangential, then the first term vanishes and we are left
with

∂tF = −
∫

Ω

1

ψ
|J|2 ddx ≤ 0, (6.30)

where the equality holds if and only if J = 0. In other words, the free energy is non-increasing and
stationary only when the current vanishes identically. Setting J = 0 we obtain the equilibrium
probability distribution

−∇V ψ − kBT∇ψ = 0, ⇒ ψ =
1

Z
e−V/kBT , (6.31)

where Z =
∫

Ω e−V/kBT ddx. The equilibrium state is the Boltzmann distribution.

6.4 Correlation Functions

A correlation function is an expectation value of the product of two observable quantities.
Some examples include 〈v(t)v(0)〉, 〈x(t1)x(t2)〉 and 〈v(t)x(t)〉. For instance, for a Brownian
particle in a harmonic potential, such as a laser trap, we find〈

x(t1)x(t2)
〉

= x(0)2 e−K(t1+t2)/γ +
kBT

K

[
e−K|t1−t2|/γ − e−K(t1+t2)/γ

]
,

' kBT

K
e−K|t1−t2|/γ .

(6.32)

Thus measurements of the position of the particle within the trap at different times, t1, t2, decay
exponentially with the difference in times; the positions at widely separated times are uncorre-
lated and the exponential decay of the correlation function is characteristic of this. Correlation
functions like 〈x(t1)x(t2)〉 of the same quantity at different times are called autocorrelation
functions. As in this example, they typically depend only on the difference in times, i.e.
〈x(t1)x(t2)〉 = 〈x(t1 − t2)x(0)〉.

As a second example, consider the velocity autocorrelation function 〈v(t)v(0)〉 for a free
particle. We have from (6.5) 〈

v(t)v(0)
〉

= v(0)2 e−t/τ , (6.33)
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and again the autocorrelation function decays exponentially with time reflecting the random,
uncorrelated nature of the motion. Next, note that∫ ∞

0

〈
v(t)v(0)

〉
dt = v(0)2 τ =

mv(0)2

γ
, (6.34)

so that averaging also over initial conditions gives∫ ∞
0

〈
v(t)v(0)

〉
dt =

〈mv2〉
γ

=
kBT

γ
= D. (6.35)

This is an important result: the integral of the velocity autocorrelation function is the diffusion
constant. It is an example of a Green-Kubo relation and holds more generally for all transport
properties. Often the diffusion constant is defined by the Green-Kubo formula (6.35).

6.4.1 Linear Response and Fluctuation-Dissipation

There is a general relationship between correlation functions and the linear response when a
system is forced or driven by an external field. This exists both for equilibrium correlation
functions and for time correlation functions. We present two simplified descriptions of this to
convey the basic idea and generality, starting with equilibrium correlations. Consider a particle
in a harmonic trap, centred at x = 0. The equilibrium probability distribution for the position
x of the particle is

Ψeq =

(
K

2πkBT

)1/2

e
− Kx2

2kBT . (6.36)

The expectation value for the position of the particle is 〈x〉 = 0 and the equilibrium correlation
function for the position is 〈x2〉 = kBT/K. Now suppose we pull on the particle with a force f
then the particle responds to this force by acquiring a non-zero expectation value for its position

〈x〉 =
1

K
f ≡ x0. (6.37)

This is an example of a response function: the coefficient relating the response to the force is a
susceptibility. Now, when equilibrium with the force is re-established the probability distribution
will be

Ψeq, f =

(
K

2πkBT

)1/2

e
−K(x−x0)2

2kBT , (6.38)

and we can clearly use this probability distribution to calculate the expectation value of the
position 〈x〉f =

∫
xΨeq, f dx but if we consider that f is small then we may expand Ψeq, f about

the equilibrium distribution in the absence of the force and find

〈x〉f =

∫
xΨeq, f dx =

∫
xΨeq e

−K(x2
0−2xx0)

2kBT dx, (6.39)

=

∫
xΨeq

(
1 +

Kxx0

kBT
+ · · ·

)
dx, (6.40)

= 0 +
Kx0

kBT
〈x2〉+ · · · . (6.41)

Recalling that Kx0 = f is the force this demonstrates an equivalence between the (linear)
response function and the equilibrium correlation function. This equivalence is known as the
fluctuation-dissipation theorem. It is the same as we found in §6.2; there we were also
considering the application of a force but the response was different, namely a velocity of motion
through the fluid. Nonetheless, we found the same result: the velocity response in the presence
of the force (〈v〉f = 1

γ f) was related to the velocity correlations in the absence of the force

(〈v2〉 = kBT/m).
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For the free Brownian particle we can also express the relation between response and corre-
lation in terms of the time-dependence of its position, making connection, once again, with the
mean square displacement and diffusion constant. The probability distribution3 for the position
of the free Brownian particle is

Ψ(x, t) =
1√

4πDt
e−

(x−x0)
4Dt . (6.42)

Here the particle is at x0 at time t = 0. If we drag the particle with a force f so that it moves
with some velocity v then the probability distribution will become

Ψf (x, t) =
1√

4πDt
e−

(x−x0−vt)
4Dt =

1√
4πDt

e−
(x−x0)

4Dt

(
1 +

v(x− x0)

2D
+ · · ·

)
, (6.43)

and if we calculate the expectation value of the position at time t we have

〈x(t)〉f =

〈
x+

v

2D
x(x− x0) + · · ·

〉
= x0 +

v

2D

〈
(x− x0)2

〉
+ · · · . (6.44)

Using that the mean square displacement (in the absence of the force) is 〈(x− x0)2〉 = 2Dt we
obtain the expected response for the particle position when it is dragged, 〈x(t)〉f = 〈x〉 + vt.
Again, we see that linear responses are determined by equilibrium fluctuations.

6.5 Fluctuations in Statistical Physics

In this closing section we describe in outline how the Langevin equation for the motion of
Brownian particles extends to describe the fluctuating dynamics of any thermodynamic quantity.
For this purpose we illustrate using the Landau theory of ferromagnetism. In §4.4.1 we gave the
Landau free energy for a two-dimensional nematic, which we reproduce here in the form

f =
a(T − Tc)

2
s2 +

u

4
s4. (6.45)

In the ordered phase the equilibrium value for the scalar order parameter is seq = (a|T−Tc|/u)1/2.
If we consider fluctuations in the free energy about this equilibrium value then they are described
by a Taylor expansion of f about s = seq

f = f(seq) +
1

2
2a|T − Tc|2 δs2 + · · · , (6.46)

where δs = s − seq. This is a quadratic energy like a harmonic spring with spring constant
2a|T − Tc|. Applying the equipartition theorem we expect

〈
δs2
〉

=
kBT

2a|T − Tc|
. (6.47)

Let us see how to capture this result in a Langevin equation. In §4.7 we introduced the relaxation
equation for the nematic order, which we reproduce here with an additional random noise term

∂s

∂t
= −Γ

∂f

∂s
+ ξ = −Γ

[
a(T − Tc)s+ us3

]
+ ξ. (6.48)

Linearising about the equilibrium state gives an equation for the fluctuations δs

∂δs

∂t
= −Γ 2a|T − Tc| δs+ ξ. (6.49)

3Note that this is not an equilibrium probability distribution.

58



The formal solution is

δs(t) = δs(0) e−t/τs + e−t/τs
∫ t

0
et
′/τs ξ(t′) dt′, (6.50)

where τs = (Γ 2a|T − Tc|)−1 is a relaxational timescale for the order fluctuations, as in §4.7. By
following the same calculation as we did in §6.2 we find that the Langevin equation reproduces
the equipartition result for 〈δs2〉 if the statistics for the noise are〈

ξ(t)
〉

= 0,
〈
ξ(t)ξ(t′)

〉
= 2ΓkBT δ(t− t′). (6.51)

We can see here also an example of the fluctuation-dissipation theorem. The equilibrium
correlation function (6.47) should be related to the response to an external field (as in the
magnetic case), that is to the susceptibility. The linear response to applying a field H is to
change the magnitude of the order according to

s = seq +
1

2a|T − Tc|
H, (6.52)

which identifies the susceptibility as χ = 1/2a|T − Tc| and reveals the same general relationship
〈(s− seq)2〉 = kBT χ between responses and fluctuations.

This one example is generic and representative of a general framework for including thermal
fluctuations in all aspects of statistical physics. In what we have outlined here we have neglected
spatial variation, thinking of the order as time-dependent s(t) but not also position dependent
s(x, t). Simiarly, we have not described the orientation θ(x, t), which we do briefly as a conclu-
sion. Recall that the orientation dominates the behaviour on large scales and over long times,
because the magnitude of the order reduces to its equilibrium value quickly. This is described
by the free energy and deterministic dynamical relaxation

F =

∫
K

2

∣∣∇θ∣∣2 ddx, ∂θ

∂t
= ΓθK∇2θ. (6.53)

To deal with the gradients it is convenient to work with a Fourier decomposition, which we give
as a discrete Fourier series4

θ(x, t) =
∑
q

θ̃q(t) eiq·x, (6.54)

in terms of which the energy is

F =
∑
q

K

2
q2
∣∣θ̃q∣∣2, (6.55)

and is a sum of quadratic ‘normal modes’ with ‘frequencies’ Kq2. The analysis in terms of these
normal modes of the orientation is then the same as before. The equipartition theorem gives〈∣∣θ̃q∣∣2〉 =

kBT

Kq2
, (6.56)

which we can also obtain from a Langevin equation

∂θ̃q
∂t

= −ΓθKq
2θ̃q + ξ̃q(t), (6.57)

where the ξq are white noises with correlation〈
ξ̃q′(t

′)ξ̃q(t)
〉

= 2δq,q′Γθ kBT δ(t− t′). (6.58)

4The continuous treatment using Fourier transforms is not really conceptually different but we leave it to the
books, or another course.
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We close with a short look at the total fluctuation in all the normal modes〈
|θ|2
〉

=
∑
q

〈
|θ̃q|2

〉
=
∑
q

kBT

Kq2
. (6.59)

To do the sum we can approximate it by an integral

〈
|θ|2
〉

=

∫
kBT

Kq2

ddq

(2π)d
=
kBT

K

ωd−1

(2π)d

∫
1

q2
qd−1dq, (6.60)

where we have switched to polar coordinates and ωd−1 is the total angle (volume) of a (d− 1)-
dimensional unit sphere5. The upper limit on the integral should be roughly 2π/a corresponding
to wavevectors probing the smallest scales of the lattice size (or molecular size). The lower limit
corresponds to wavevectors probing the largest length scales and so should be about 2π/L,
where L is the linear system size. The integral is convergent as L → ∞ only in dimensions
above d = 2. In two dimensions it diverges logarithmically as ln(L/a) and the total fluctuations
in the orientation are unbounded in the thermodynamic limit. This is the Mermin-Wagner
theorem. It shows that there is no phase transition to a long-range aligned state in two
dimensions, i.e. no nematic or ferromagnetic transition. What replaces it is the topological
defect transition of Berezinskii-Kosterlitz-Thouless that we mentioned in §4.8.

5ωd−1 = 2πd/2/Γ(d/2).
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