

COMMON ISSUES

- Low rates
 - fluxes of high-energy particles are small
 - neutrinos and dark matter have weak interactions
- → Need for large detectors
- No control over "beam"
 - · harder to control backgrounds
 - harder to calibrate, e.g., energy resolution
- → Signals can be difficult to establish and/or characterise
 - cf. solar and atmospheric neutrino oscillation

RELATED FIELDS

Neutrino physics

- atmospheric neutrinos are "astroparticle physics" but have contributed more to understanding of neutrinos than to astrophysics
- similar situation for solar neutrinos
- long-baseline neutrino experiments can do low-energy neutrino astrophysics "for free" (and vice versa)

Nucleon decay

- · many detector technologies useful for both
 - o original purpose of Kamiokande (NDE = Nucleon Decay Experiment not Neutrino Detection Experiment!)
 - planned noble-liquid detectors may be able to do both nucleon decay experiments and dark matter searches

.

TOPICS TO BE COVERED

- High energy astroparticle physics (cosmic rays, gammas, high-energy neutrinos)
 - sources
 - detection
 - results
 - prospects

Dark matter

- evidence
- candidates
- search techniques

NOT COVERING:

- solar neutrinos (SB)
- neutrino masses (SB)
- o supernova neutrinos (no time)

Fermi Mechanism

- energetic charged particles can gain energy by scattering off local magnetic turbulence (Fermi 1949)
 - Assume particle scatters off much more massive object moving with speed u. Then in the com frame (= frame of massive object) its energy and momentum before the scatter are

$$E' = \gamma_u (E + up\cos\theta)$$
$$p'_x = \gamma_u (p\cos\theta + uE/c^2)$$

• The particle scatters elastically: its energy is conserved and its *x*-momentum reversed. In original (lab) frame

$$E_2 = \gamma_u (E' + up'_x) = \gamma_u^2 E \left(1 + \frac{2uv}{c^2} \cos \theta + \frac{u^2}{c^2} \right)$$

C o

ACCELERATION MECHANISMS

o Fermi Mechanism

- energetic charged particles can gain energy by scattering off local magnetic turbulence (Fermi 1949)
 - We need to average over angle. Head-on collisions are slightly more likely than overtaking collisions, so middle term doesn't just go away. In relativistic limit we find

$$\left\langle \frac{\Delta E}{E} \right\rangle = \frac{8}{3} \left(\frac{u}{c} \right)^2$$

- Hence this process is known as **second-order Fermi acceleration**.
- The good news
 - o this produces a power law energy spectrum: $N(E) \propto E^{-x}$ where $x=1+1/\alpha\tau$, α is the rate of energy increase and τ is the residence time of the particle
- The bad news
 - since u << c, it's slow and inefficient

- First-order Fermi Mechanism (Diffusive Shock Acceleration)
 - O(u/c) term gets lost in integral over angles—we could retrieve this if we could arrange to have only head-on scatters

• high-energy particles will scatter so that their distribution is isotropic in the rest frame of the gas

Rest frame of downstream gas

o crossing shock in either direction produces head-on collision on average

Don Ellison, NCSU

Shock wave

Vps

dragged along with speed V_{DS} < V_{sk}

ACCELERATION MECHANISMS

- o DSA, continued
 - shock compresses gas, so density behind shock ρ₂ > ρ₁

Rest frame of shock

- in rest frame of shock, $\rho_1 u_0 = \rho_2 u_2$ where $u_2 = u_0 V_{DS}$
 - for strong shock $ρ_2/ρ_1 = (γ + 1)/(γ 1)$ where γ is ratio of specific heats (= $\frac{5}{4}$ for hydrogen plasma)
 - therefore expect $u_2/u_0 \approx \frac{1}{4}$
 - o gas approaches shock-crossing particle at speed $V = \frac{3}{4} u_0$
 - o if high-energy particles move randomly, probability of particle crossing shock at angle ϑ is $P(\vartheta) = 2 \sin \vartheta \cos \vartheta \, d\vartheta$, and its energy after crossing shock is $E' \approx E(1 + pV \cos \vartheta)$ (if V << c)
 - o therefore average energy gain per crossing is

$$\left\langle \frac{\Delta E}{E} \right\rangle = \frac{V}{c} \int_{0}^{\frac{\pi}{2}} 2\cos^{2}\theta \sin\theta \, d\theta = \frac{2V}{3c}$$

- DSA spectrum
 - if average energy of particle after one collision is $E_1 = fE_0$, and if P is probability that particle remains in acceleration region, then after k collisions there are $N_k = N_0 P^k$ particles with average energy $E_k = f^k E_0$.
 - Hence $\frac{\ln(N/N_0)}{\ln(E/E_0)} = \frac{\ln P}{\ln f}$, or $\frac{N}{N_0} = \left(\frac{E}{E_0}\right)^{\ln P/\ln f}$
 - This is the number of particles with $E \ge E_k$ (since some of these particles will go on to further collisions), so differential spectrum is $N(E) dE \propto E^{(\ln P/\ln f)-1} dE$
 - for DSA this comes to N(E) dE $\propto E^{-(r+2)/(r-1)}$ dE, where $r = \rho_2/\rho_1$.
 - o "universal" power law, independent of details of shock

ADDITIONAL COMPLICATIONS

- Above was a "test particle" approach, in which we assume most of the gas is unaffected
 - If acceleration is efficient, high momentum particles will modify the shock
 - Need a consistent treatment which takes proper account of this
 - o mathematically challenging
 - but valid across very large range of particle energies
 - Also need to allow for possibility of relativistic shocks

Don Ellison, NCSU

- Resonant Cyclotron Absorption (RCA)
 - acceleration of e⁺e⁻ in *relativistic* shock with magnetic field *perpendicular* to particle flow (so DSA doesn't work)
 - o relevant to pulsar wind nebulae, e.g. Crab
 - principle: consider relativistic plasma whose mass is dominated by ions $(m_i/m_{e\pm}>>1)$
 - o ions gyrate coherently in magnetic field
 - they therefore radiate ion cyclotron waves (Alfven waves) at shock front
 - o positrons and electrons absorb these resonantly and are accelerated to high Lorentz factors with fairly high efficiency (few % of upstream energy density converted to non-thermal e^\pm)
 - mechanism seems to account well for high-energy emission; not so clear that it deals with radio-IR emission
 - two different electron populations?
 - o but consistency of spectra suggest otherwise

1

RSA SIMULATIONS

- Simulation by Amato & Arons (ApJ 653 (2006) 325)
- Input parameters:
 - $N_i/N_{e\pm} = 0.1$
 - $m_i/m_{e\pm} = 100$
 - 72% of upstream energy density carried by ions
- Result:
 - 5% of upstream energy density winds up in accelerated e[±]
- Less extreme ion loading, e.g. $m_i/m_{e\pm}$ = 20, preferentially accelerates positrons

PHOTONS AND NEUTRINOS

- High-energy photons and neutrinos are **secondary particles** produced by interactions of high-energy primaries.
 - production mechanisms:
 - inverse Compton scattering (photons only)
 - o Low-energy photon backscatters off high-energy electron. In electron rest frame we have $\Delta \lambda = h(1-\cos\vartheta)/mc^2$.

In lab frame, maximum energy gain occurs in head-on collision: $v\approx 4\gamma^2v_0$

Because of relativistic aberration, spectrum is sharply peaked near maximum

10

PHOTONS AND NEUTRINOS

- inverse Compton scattering (continued)
 - Plot shows calculated spectrum for monoenergetic photons and electrons.
 - Plenty of potential sources of low-energy photons to be upscattered:
 - synchrotron radiation produced by the same population of fast electrons (synchrotron-self-Compton, SSC)
 - cosmic microwave background
 - optical photons from source
 - For real objects, need to integrate over power-law spectrum of electrons and spectrum of photon source

SPECTRUM OF RXJ 1713.7-3946

Assumed distance 1 kpc, electron luminosity 1.5×10^{30} W, B = 12 μ G

Source photons include optical, IR, CMB

Porter, Moskalenko & Strong, ApJ 648 (2006) L29-L32

PHOTONS AND NEUTRINOS

- High-energy photons and neutrinos are **secondary particles** produced by interactions of high-energy primaries.
 - production mechanisms:
 - pion decay (photons and neutrinos)
 - pions produced by high-energy proton colliding with either matter or photons (pion photoproduction)
 - ${\color{blue} \bullet}$ neutral pions decay to $\gamma\gamma,$ charged to $\mu\nu_{\mu}$
 - mechanism produces both high-energy γ-rays and neutrinos
- Both mechanisms need population of relativistic charged particles
 - electrons for IC, protons for pion decay
- O Unclear which dominates for observed TeV γ-ray sources

ACCELERATION: SUMMARY

- Observations made in high-energy astroparticle physics require that charged particles be accelerated to very high energies ($\sim 10^{20}\,\text{eV}$)
- Likely candidate is diffusive shock acceleration
 - requirement of shocks associated with magnetic fields found in many astrophysical objects, especially supernova remnants and AGN
 - synchrotron radiation from these objects direct evidence for population of fast electrons
 - much less evidence for presence of relativistic hadrons, but there must be some somewhere since we observe them in cosmic rays!
- TeV γ-rays can be produced by fast electrons using inverse Compton scattering, or by fast protons from π^0 decay
 - latter will also make TeV neutrinos, not yet observed

GAMMA-RAY ASTRONOMY

- Well-established branch of high-energy astrophysics
 - most work done at modest energies (few 10s of MeV)
 - o some, e.g. EGRET, out to few 10s of GeV
 - this is not usually regarded as astroparticle physics
 - though EGRET catalogue sometimes used as list of candidates for, e.g., neutrino point source searches
- Atmosphere is not transparent to gamma rays
 - low and medium energy γ-ray astronomy is space-based
 - o CGRO, SWIFT, GLAST, INTEGRAL, etc.
 - space platforms not suitable for TeV γ -ray astronomy
 - o too small
 - therefore very high energy γ -ray astronomy is a ground-based activity
 - o detect shower produced as γ-ray enters atmosphere

2

EGRET POINT SOURCES

Third EGRET Catalog E > 100 MeV +180 Active Galactic Nuclei Unidentified EGRET Sources Pulsars LMC Solar FLare

GAMMA-RAY SOURCES

- o From maps, clearly mixed Galactic and extragalactic
 - extragalactic sources of TeV γs are mostly blazars (a class of AGN where we are looking down the jet)
 - identified Galactic sources are SN-related (supernova remnants and pulsar wind nebulae), plus a few binary compact objects
 - dark/unidentified objects associated with Galactic plane, therefore presumably Galactic
- SNRs and AGN are suitable environments for particle acceleration
 - shocks, magnetic fields, synchrotron emission

COSMIC RAY SOURCES

- General dimensional analysis suggests $E_{\text{max}} [\text{GeV}] \approx 0.03 \, \eta \, Z \, R[\text{km}] \, B[\text{G}] \, (\text{Hillas condition})$
 - basically requires particles to remain confined in accelerating region
 - quite difficult to satisfy for highest-energy CRs
 - o plot shows
 neutron stars
 white dwarfs
 sunspots
 magnetic stars
 active galactic nuclei
 interstellar space
 supernova remnants
 radio galaxy lobes
 disc and halo of Galaxy
 galaxy clusters
 intergalactic medium
 gamma-ray bursts
 blazars
 shock-wave velocities

COSMIC RAY SOURCES

- Amount of magnetic deflection decreases with increasing energy
 - highest energy events might remember where they came from...
 - o Pierre Auger Observatory observes significant correlation between arrival directions of CRs above 55 EeV and a catalogue of AGN

nificant petween tions of 5 EeV gue -30

o 38±7% of events
within 3.1° of a catalogued
nearby AGN, cf. 21% expected for
intrinsically isotropic distribution

36

 similar results found for SWIFT catalogue—data do however require significant isotropic component (40–80%)

COSMIC RAY SOURCES: SUMMARY

- o CRs up to about 10¹⁵ eV or so assumed to come from SNRs
 - but they don't provide good directional information, so this remains to be confirmed
 - o neutrino observations, or definitive proof that some SNR $\gamma\text{-rays}$ originate from π^0 decay
- Ultra-high energy CRs may come from local AGN
 - statistically significant (but partial) correlation
 - note that intergalactic space is not completely transparent to UHECRs—see later—so distant AGN (beyond ~100 Mpc) are assumed not to contribute

31

NEUTRINO SOURCES

- Known sources of low-energy (0.1–100 MeV) neutrinos:
 - Sun
 - SN 1987A
- Known sources of high-energy neutrinos:
 - none
 - o to be fair, this is as expected for current exposure times

SOURCES: SUMMARY

- TeV gamma rays are observed from a variety of sources, primarily SNRs within the Galaxy and blazars outside
 - clear evidence of charged particles accelerated to very high energies, but whether electrons or hadrons is unclear
- Cosmic ray sources are difficult to pinpoint because CRs are strongly deflected by the Galactic magnetic field
 - \bullet SNRs suspected to be source of CRs at $<10^{15}\,\mathrm{eV}$
 - some hints that local AGN may be responsible for highest energy CRs
- Observations of high energy neutrinos would solve the mystery, but are not yet available
 - situation should improve after a few years of IceCube running