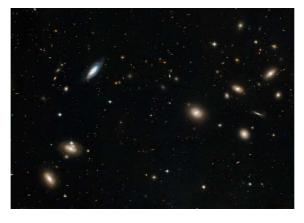


THE ASTROPHYSICAL EVIDENCE

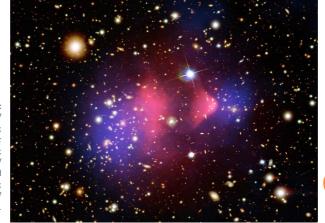
Rotation curves of spiral galaxies



- flat at large radii: if mass traced light we would expect them to be Keplerian at large radii, $v \propto r^{-1/2}$, because the light is concentrated in the central bulge
 - o and disc light falls off exponentially, not $\propto r^{-2}$ as required for flat rotation curve

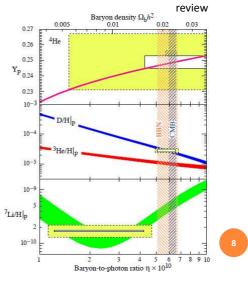
THE ASTROPHYSICAL EVIDENCE

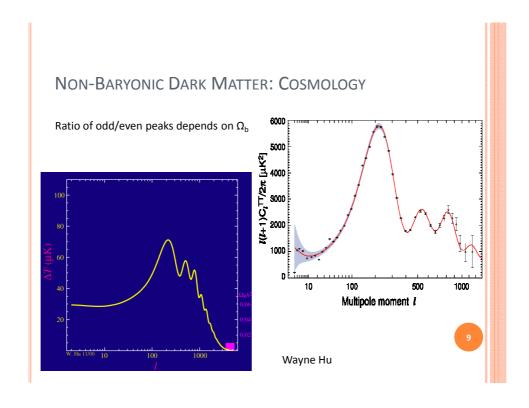
- Dynamics of rich clusters
 - Zwicky (1933!) noted that the velocities of galaxies in the Coma cluster were too high to be consistent with a bound system

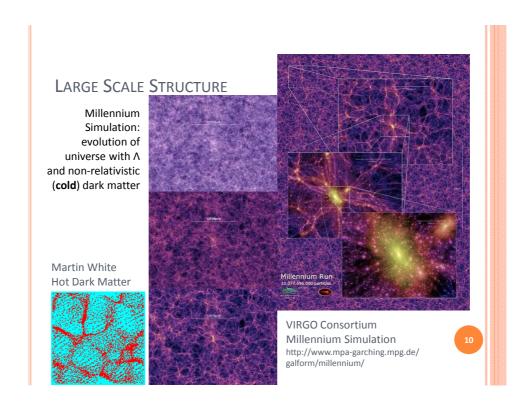


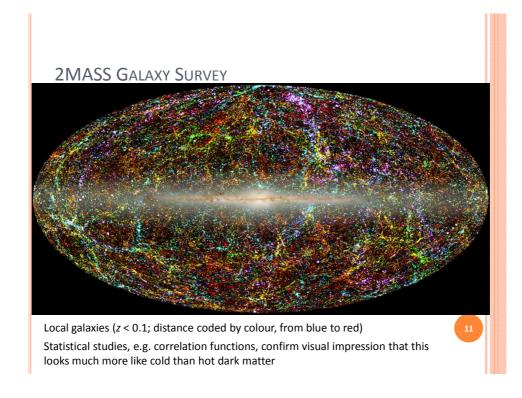
THE ASTROPHYSICAL EVIDENCE • Dynamics of rich clusters • mass of gas and gravitating mass can be extracted from X-ray emission from intracluster medium **The Astrophysical Evidence** • mass of gas and gravitating mass can be extracted from X-ray emission from intracluster medium **The Astrophysical Evidence** • Mass of gas and gravitating mass can be extracted from X-ray emission from intracluster medium **The Astrophysical Evidence** • Mass of gas and gravitating mass can be extracted from X-ray emission from intracluster medium **Astrophysical Evidence** **ROSAT X-ray image of Coma cluster overlaid on optical.** **MPI (ROSAT image); NASA/ESA/DSS2 (visible image) **Allen et al., MNRAS 334 (2002) L11

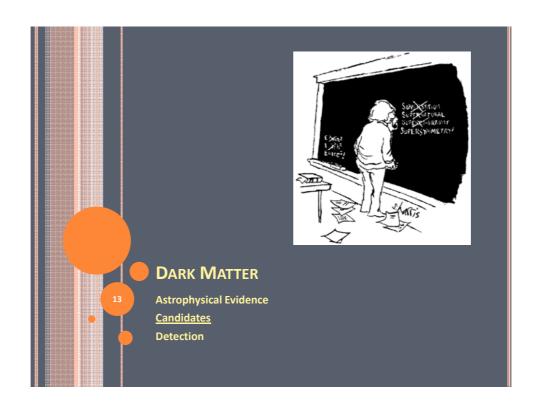
THE ASTROPHYSICAL EVIDENCE: THE BULLET CLUSTER


- o Mass from lens mapping (blue) follows stars not gas (red)
 - → dark matter is collisionless


Composite Credit:
X-ray: NASA/CXC/CfA/
M. Markevitch et al.;
Lensing Map:
NASA/STScI; ESO WFI;
Magellan/U.Arizona/
D.Clowe et al
Optical: NASA/STSci;
Magellan/U.Arizona/
D.Clowe et al.


Non-Baryonic Dark Matter


- Density of baryonic matter strongly constrained by earlyuniverse nucleosynthesis (BBN)
 - density parameter of order 0.3 as required by data from, e.g., galaxy clusters is completely inconsistent with best fit


PDG

BRIEF SUMMARY OF ASTROPHYSICAL EVIDENCE • Many observables concur that $\Omega_{m0} \approx 0.3$ Most of this must be non-baryonic Atom: 4.6% • BBN and CMB concur that baryonic matter contributes $\Omega_{b0} \approx 0.05$ • Bullet Cluster mass distribution indicates that dark matter is collisionless No Standard Model candidate • neutrinos are too light, and are "hot" (relativistic at decoupling) o hot dark matter does not reproduce observed large-scale structure → BSM physics Atom: 13.7 BILLION YEARS AGO

DARK MATTER CANDIDATES

	WIMPs	SuperWIMPs	Light G	Hidden DM	Sterile v	Axions
Motivation	GHP	GHP	GHP/NPFP	GHP/NPFP	v Mass	Strong CP
Naturally Correct Ω	Yes	Yes	No	Possible	No	No
Production Mechanism	Freeze Out	Decay	Thermal	Various	Various	Various
Mass Range	GeV-TeV	GeV-TeV	eV-keV	GeV-TeV	keV	μeV-meV
Temperature	Cold	Cold/Warm	Cold/Warm	Cold/Warm	Warm	Cold
Collisional				✓		
Early Universe		VV		√		
Direct Detection	V V			√		VV
Indirect Detection	V V	√		√	V V	
Particle Colliders	V V	\ \	V V	√		

GHP = Gauge Hierarchy Problem; NPFP = New Physics Flavour Problem \forall = possible signal; $\forall \forall$ = expected signal

Jonathan Feng, ARAA 48 (2010) 495 (highly recommended)

1/

PARTICLE PHYSICS MOTIVATIONS

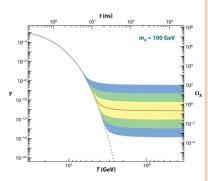
Gauge Hierarchy Problem

• in SM, loop corrections to Higgs mass give

$$\Delta m_h^2 \approx \frac{\lambda^2}{16\pi^2} \int_{\rho^2}^{\Lambda} \frac{d^4 \rho}{\rho^2} \approx \frac{\lambda^2}{16\pi^2} \Lambda^2$$

and there is no obvious reason why $\Lambda \neq M_{Pl}$

- o supersymmetry fixes this by introducing a new set of loop corrections that cancel those from the SM
- o new physics at TeV scale will also fix it (can set $\Lambda \sim 1$ TeV)


New Physics Flavour Problem

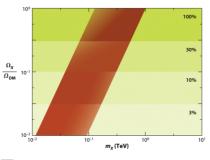
- we observe conservation or near-conservation of B, L, CP
 - o and do not observe flavour-changing neutral currents
- new physics has a nasty tendency to violate these
 - o can require fine-tuning or new discrete symmetries, e.g. R-parity

WIMPs

Weakly Interacting Massive **Particles**

- produced thermally in early universe
- · annihilate as universe cools, but "freeze out" when density drops so low that annihilation

Feng JL. 2010. Annu. Rev. Astron. Astrophys. 48:495–545


no longer occurs with meaningful rate

- freeze-out occurs when $H \approx n_f \langle \sigma_A v \rangle$, and in radiation era we have $H \propto T^2/M_{Pl}$ (because $\rho \propto T^4$ and $G \propto 1/M_{Pl}^2$)
- can estimate relic density by considering freeze-out

$$n_f \approx (m_\chi T_f)^{3/2} e^{-m_\chi/T_f} \approx \frac{T_f^2}{M_{Pl} \langle \sigma_A v \rangle}$$

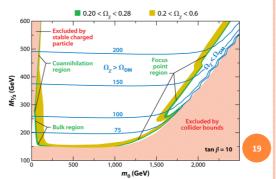
WIMP RELIC DENSITY

- O Converting to Ω gives $Ω_X = \frac{m_X n_0}{\rho_c} \approx \frac{m_X T_0^3}{\rho_c} \frac{n_f}{T_f^3} \approx \frac{x_f T_0^3}{\rho_c M_{Pl}} \langle \sigma_A v \rangle^{-1}$ where $x_f = m_X / T_f$
 - and typically $\langle \sigma_{\rm A} v \rangle \propto 1/m_{\chi^2}$ or v^2/m_{χ^2} (S or P wave respectively)
- Consequence: weakly interacting massive particles with

electroweak-scale masses "naturally" have reasonable relic densities

 and therefore make excellent dark matter candidates

17

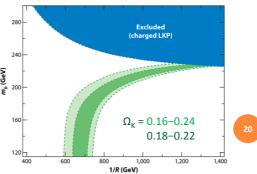

Feng JL. 2010. Annu. Rev. Astron. Astrophys. 48:495–545

SUPERSYMMETRIC WIMPS

- Supersymmetry solves the GHP by introducing cancelling corrections
 - predicts a complete set of new particles
 - NPFP often solved by introducing *R*-parity—new discrete quantum number
 - o then lightest supersymmetric particle is stable
 - o best DM candidate is lightest neutralino (mixed spartner of W⁰, B, H, h)
 - far too many free parameters in most general supersymmetric models
 - ${\color{blue} \circ}$ so usually consider constrained models with simplifying assumptions
 - o most common constrained model: mSUGRA
 - parameters m_0 , $M_{1/2}$, A_0 , $\tan \beta$, $sign(\mu)$
 - o mSUGRA neutralino is probably the best studied DM candidate

SUSY WIMPs

- Neutralinos are Majorana fermions and therefore selfannihilate
 - Pauli exclusion principle implies that $\chi_1\chi_1$ annihilation prefers to go to spin 0 final state
 - $f\overline{f}$ prefers spin 1
 - therefore annihilation cross-section is suppressed
 - $\begin{tabular}{ll} \bullet & hence Ω_χ tends to be \\ too high \end{tabular}$
 - parameter space very constrained by WMAP



KALUZA-KLEIN WIMPS

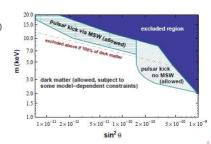
- In extra-dimension models, SM particles have partners with the *same* spin
 - "tower" of masses separated by R^{-1} , where R is size of compactified extra dimension
 - new discrete quantum number, K-parity, implies lightest KK

particle is stable

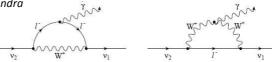
- this is the potential WIMP candidate
- o usually B1
- annihilation not spin-suppressed (it's a boson), so preferred mass higher

SUPERWIMPS

- Massive particles with superweak interactions
- 10-11 10-10 10-9 10-8 10² 10³ 10⁴ 10⁵
 10-6
 10-8
 Y 10-10
 10-14
 10-14
 10-14
 10-14
 10-14
 10-16
 10-2
 10-4
 10-2
 10-4
 10-4
 10-5
 10-4
 10-5
- produced by decay of metastable WIMP
 - o because this decay is superweak, lifetime is very long (10³–10⁷ s)
 - o WIMP may be neutralino, but could be charged particle
 - dramatic signature at LHC (stable supermassive particle)
- candidates:
 - weak-scale gravitino
 - o axino
 - o equivalent states in KK theories
- these particles cannot be directly detected, but indirectdetection searches and colliders may see them
 - they may also have detectable astrophysical signatures


LIGHT GRAVITINOS

- Expected in gauge-mediated supersymmetry breaking
 - in these models gravitino has m < 1 GeV
 - o neutralinos decay through γG, so cannot be dark matter
 - gravitinos themselves are possible DM candidates
 - o but tend to be too light, i.e. too warm, or too abundant
 - relic density in minimal scenario is $\Omega_{\tilde{G}} \approx 0.25 \ m_{\rm G}/(100 \ {\rm eV})$
 - so require $m_{\rm G}$ < 100 eV for appropriate relic density
 - but require $m_{\rm G}$ > 2 keV for appropriate large-scale structure
 - · models which avoid these problems look contrived


Kusenko, DM10

STERILE NEUTRINOS

 Seesaw mechanism for generating small v_L masses implies existence of massive right-handed sterile states

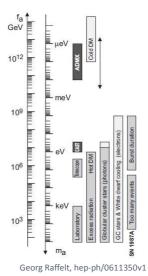
- usually assumed that $M_{\rm R} \approx M_{\rm GUT}$ in which case sterile neutrinos are not viable dark matter candidates
- but smaller Yukawa couplings can combine with smaller $M_{\rm R}$ to produce observed ${\rm v_L}$ properties together with sterile neutrino at keV mass scale—viable dark matter candidate
 - such a sterile neutrino could also explain observed high velocities of pulsars (asymmetry in supernova explosion generating "kick")
 - these neutrinos are not entirely stable: $\tau >> 1/H_0$, but they do decay and can generate X-rays via loop diagrams—therefore potentially detectable by, e.g., *Chandra*

23

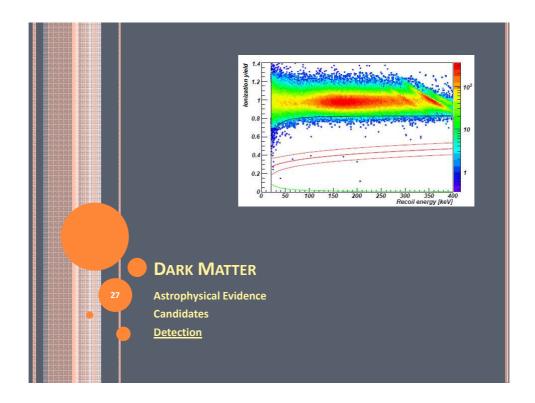
STERILE NEUTRINOS

Production mechanisms

- oscillation at *T* ≈ 100 MeV
 - Ω_v ∝ sin² 2ϑ m^{1.8} from numerical studies
 - o always present: requires small mass and very small mixing angle
 - not theoretically motivated: some fine tuning therefore required
- resonant neutrino oscillations
 - if universe has significant lepton number asymmetry, L > 0
- decays of heavy particles
 - o e.g. singlet Higgs driving sterile neutrino mass term

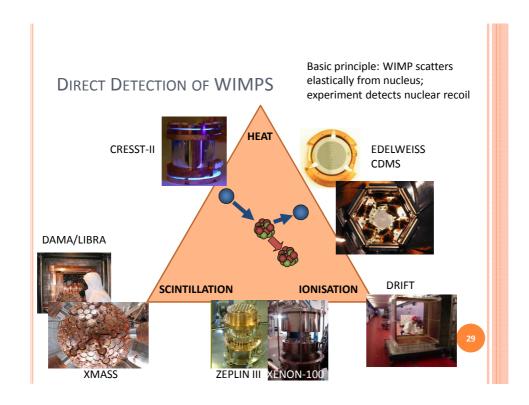

Observational constraints

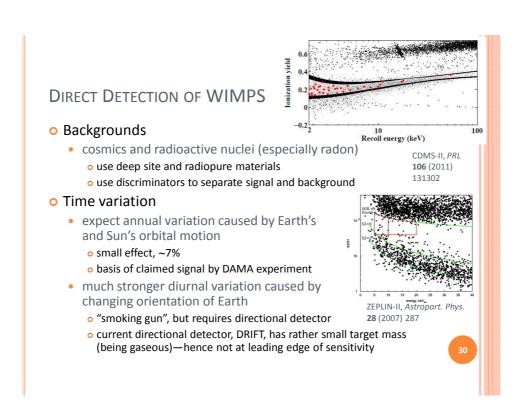
- X-ray background
- presence of small-scale structure
 - o sterile neutrinos are "warm dark matter" with Mpc free-streaming


AXIONS

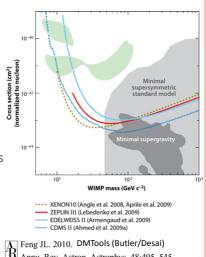
- Introduced to solve the "strong CP problem"
 - SM Lagrangian includes CP-violating term which should contribute to, e.g., neutron electric dipole moment
 - o neutron doesn't appear to have an EDM (<3×10 $^{-26}$ e cm, cf. naïve expectation of 10^{-16}) so this term is strongly suppressed
 - introduce new pseudoscalar field to kill this term (Peccei-Quinn mechanism)
 - o result is an associated pseudoscalar boson, the axion
- Axions are extremely light (<10 meV), but are cold dark matter
 - not produced thermally, but via phase transition in very early universe
 - o if this occurs before inflation, visible universe is all in single domain
 - if after inflation, there are many domains, and topological defects such as axion domain walls and axionic strings may occur

AXIONS



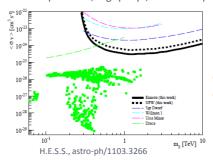

- Axion mass is $m_a \approx 6 \, \mu \text{eV} \times f_a / (10^{12} \, \text{GeV})$ where f_a is the unknown mass scale of the PQ mechanism
- Calculated relic density is $\Omega_a \approx 0.4$ $\vartheta^2 (f_a/10^{12} \text{ GeV})^{1.18}$ where ϑ is initial vacuum misalignment
 - so need f_a < 10¹² GeV to avoid overclosing universe
 - astrophysical constraints require $f_a > 10^9 \text{ GeV}$
 - therefore 6 $\mu eV < m_a < 6 \text{ meV}$

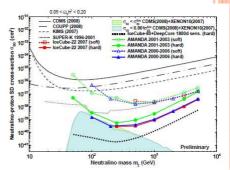
DETECTION OF DARK MATTER CANDIDATES


- Direct detection
 - dark matter particle interacts in your detector and you observe it
- Indirect detection
 - you detect its decay/annihilation products or other associated phenomena
- Collider phenomenology
 - it can be produced at, say, LHC and has a detectable signature
- Cosmology
 - it has a noticeable and characteristic impact on BBN or CMB
- Focus here on best studied candidates—WIMPs and axions

DIRECT DETECTION OF WIMPS

- Interaction with nuclei can be spin-independent or spin-dependent
 - spin-dependent interactions require nucleus with net spin
 - · most direct detection experiments focus on SI, and limits are much better in this case
- Conflict between DAMA and others tricky to resolve
 - · requires very low mass and high cross-section
 - o if real, may point to a non-supersymmetric DM candidate

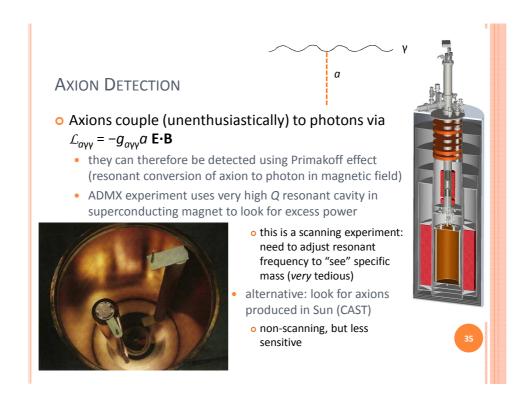

Annu. Rev. Astron. Astrophys. 48:495–545

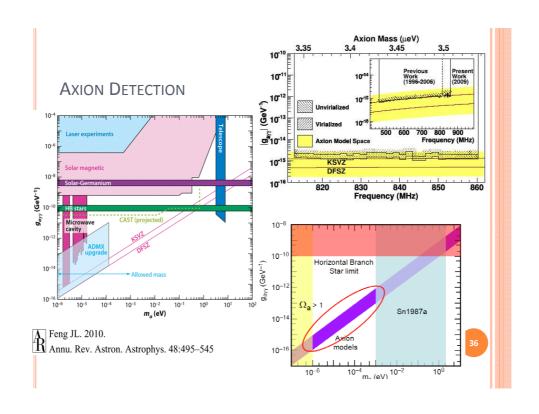

INDIRECT DETECTION OF WIMPS

- o After freeze-out, neutralino self-annihilation is negligible in universe at large
 - but neutralinos can be captured by repeated scattering in massive bodies, e.g. Sun, and this will produce a significant annihilation rate
 - number of captured neutralinos $N = C AN^2$ where C is capture rate and A is $\langle \sigma_A v \rangle$ per volume
 - o if steady state reached, annihilation rate is just C/2, therefore determined by scattering cross-section
 - annihilation channels include W+W-, bb̄, τ+τ-, etc. which produce secondary neutrinos
 - o these escape the massive object and are detectable by neutrino telescopes

INDIRECT DETECTION OF WIMPS

- Relatively high threshold of neutrino telescopes implies greater sensitivity to "hard" neutrinos, e.g. from WW
- Also possible that neutralinos might collect near Galactic centre
 - in this region other annihilation products, e.g. γ-rays, could escape


Braun & Hubert, 31st ICRC (2009): astro-ph/0906.1615


- search by H.E.S.S. found nothing
- signals at lower energies could be astrophysical not astroparticle

33

LHC DETECTION OF WIMPS AND SWIMPS

- WIMPs show up at LHC through missing-energy signature
 - note: not immediate proof of dark-matter status
 - long-lived but not stable neutral particle would have this signature but would not be DM candidate
 - need to constrain properties enough to calculate expected relic density if particle is stable, then check consistency
- SuperWIMP parents could also be detected
 - if charged these would be spectacular, because of extremely long lifetime
 - o very heavy particle exits detector without decaying
 - if seen, could in principle be trapped in external water tanks, or even dug out of cavern walls (Feng: "new meaning to the phrase 'data mining'")
 - if neutral, hard to tell from WIMP proper
 - but mismatch in relic density, or conflict with direct detection, possible clues

DARK MATTER: SUMMARY

- Astrophysical evidence for dark matter is consistent and compelling
 - not an unfalsifiable theory—for example, severe conflict between BBN and WMAP on $\Omega_{\rm b}$ might have scuppered it
- o Particle physics candidates are many and varied
 - and in many cases are not *ad hoc* inventions, but have strong independent motivation from within particle physics
- Unambiguous detection is possible for several candidates, but will need careful confirmation
 - interdisciplinary approaches combining direct detection, indirect detection, conventional high-energy physics and astrophysics may well be required

THE END

