$\gamma (\varphi_3)$ from $B \to DK$ and friends – where we are and what's next?

Tim Gershon

2nd B2TIP meeting; Krakow

28 April 2015
Importance of γ from $B \to DK$

- γ plays a unique role in flavour physics
 - the only CP violating parameter that can be measured through tree decays (*)
- A benchmark Standard Model reference point
 - doubly important after New Physics is observed

\[\propto V_{cb} V_{us}^* \]

\[\propto V_{ub} V_{cs}^* \]

Tim Gershon

Variants use different B or D decays require a final state common to both D^0 and \bar{D}^0
Essential to know the SM before we can go beyond the SM.
The GLW method

Common final state for D^0 and \bar{D}^0 – CP eigenstates
- CP even: K^+K^-, $\pi^+\pi^-$
- CP odd: $K_S\pi^0$, $K_S\eta$, $K_S\phi$ (see later), $K_S\omega$

these are challenging for LHCb
GLW results

$D_{CP} K A_{CP}$

- **BaBar**
 - PRD 82 (2010) 072004
- **Belle**
 - LP 2011 preliminary
- **CDF**
 - PRD 81 (2010) 091105(R)
- **LHCb**
 - PLB 712 (2012) 203
- **Average**
 - HFAG

$0.25 \pm 0.06 \pm 0.02$

$0.29 \pm 0.06 \pm 0.02$

$0.39 \pm 0.17 \pm 0.04$

$0.14 \pm 0.03 \pm 0.01$

0.19 ± 0.03

Tim Gershon

γ from $B \to DK$

p.s. please publish these results!
Subtleties of GLW

- Over the last few years, considerable effort expended to understand how to deal with % level (or smaller) effects
 - Possible CPV in SCS D decays
 -> report results for K^+K^- and $\pi^+\pi^-$ separately
 - Charm mixing effects
 -> understand D decay-time acceptance effects
 - CPV/regeneration effects in K^0 system
 -> still negligible
- The drive to control these effects has come from the desire to include results with $B \rightarrow D\pi$ (smaller r_B -> larger subleading effects)
 - Even if $B \rightarrow D\pi$ does not contribute much statistically to the γ combination, it is worth including to ensure control of systematic uncertainties
Can we use more D decays?

- GLW analyses to date have used
 - CP even
 - K^+K^-, $\pi^+\pi^-$
 - CP odd
 - $K_S\pi^0$, $K_S\eta$, $K_S\phi$ (see later), $K_S\omega$

- No other experimentally accessible pure CP eigenstates ...
 - are there “quasi CP eigenstates”?
 - can we handle them with a “quasi GLW analysis”?
$D \rightarrow \pi^+ \pi^- \pi^0$

- Seminal Dalitz plot analysis from BaBar (PRL 99 (2007) 251801)
 - Gives the parameter $x_0 = 0.850$ (without uncertainty)
 - Relation to fractional CP-even content: $x_0 = 2F_+ - 1$

- Effect of CP-even dominance included in modified GGSZ-type analysis
 - Message that simpler quasi-GLW analysis gives good sensitivity was not clear

- Noted that decay is almost pure isospin 0 (PR D78 (2008) 014015)
D → π⁺π⁻π⁰ with CLEO-c data

- Exploit Ψ(3770) → DD decays for direct measurement of CP content

\[F_+ = 0.973 \pm 0.017 \]
Aside on $D \rightarrow \pi^+\pi^-\pi^0$

- It seems remarkable that $D \rightarrow \pi^+\pi^-\pi^0$ is so close to pure CP-even
 - no known a priori reason for this to be so
 - n.b. $K \rightarrow \pi^+\pi^-\pi^0$ is ~pure CP-odd (but this is understood)

- How about $B \rightarrow \pi^+\pi^-\pi^0$?
 - if this is almost pure CP-eigenstate, what happens to the Snyder-Quinn method to measure α?
Can we use more D decays?

- GLW analyses to date have used
 - CP even
 - K^+K^-, $\pi^+\pi^-$
 - $\pi^+\pi^-\pi^0$ ($F_+ = 0.973 \pm 0.017$), $K^+K^0\pi^-$ ($F_+ = 0.732 \pm 0.055$), $\pi^+\pi^-\pi^+\pi^-$ ($F_+ = 0.737 \pm 0.028$)
 - CP odd
 - $K_s\pi^0$, $K_s\eta$, $K_s\phi$ (see below), $K_s\omega$
- Other 3 body modes have more complicated CP-content
 - $K_sK^+K^-$, $K_s\pi^+\pi^-$ both have $F_+ \sim 0 \rightarrow$ GGSZ analysis
 - n.b. $K_sK^+K^-$, has $\sim 50\%$ CP-odd ($K_s\phi$) + $\sim 50\%$ CP-even (the rest)
First quasi-GLW analysis with $D \to \pi^+\pi^-\pi^0 \& K^+K^-\pi^0$

- LHCb-PAPER-2015-014 (arXiv:1504.05442) (see Sneha's talk for details)

Expect these modes to be useful for Belle II
Beyond $B \rightarrow DK$

• Attractive feature of $B \rightarrow D*K$
 - Effective CP-flip between $D^* \rightarrow D\pi^0$ and $D^* \rightarrow D\gamma$
 • PRD70 (2004) 091503
 - Additional sensitivity, but also necessitates good separation between the two D^* decays

• Attractive feature of $B \rightarrow DK^{*0}$
 - Interference between D_2^{*} and K^{*0} resonances resolves ambiguities
 • PRD 79 (2009) 051301(R), PRD 80 (2009) 092002
Extension to $B \to D\pi K$ decays

- Powerful extension of the method exploits additional sources of interference that occur in multibody decays
 - $B^0 \to D(\pi^-K^+)$ decays can have CP violation
 - $B^0 \to (D\pi^-)K^+$ decays have no CP violation
- Provides ideal reference amplitude from which to determine relative phases via interference between different resonances on the Dalitz plot

Toy example containing $K^*(892)^0$, $K_2^*(1430)^0$, $D_2^*(2460)^-$ effects of spin clearly visible

Tim Gershon from $B \to DK$
Extension to $B \to D\pi K$ decays

- Powerful extension of the method exploits additional sources of interference that occur in multibody decays
 - $B^0 \to D(\pi^- K^+)$ decays can have CP violation
 - $B^0 \to (D\pi^-)K^+$ decays have no CP violation
- Provides ideal reference amplitude from which to determine relative phases via interference between different resonances on the Dalitz plot

Toy example containing
- $K^*(892)^0$
- $K_2^*(1430)^0$
- $D_2^*(2460)^-$

Tim Gershon from $B \to DK$

Interference region

effects of spin clearly visible
B → DπK Dalitz plot

- LHCb-PAPER-2015-017 (arXiv next week)
 - use D → Kπ decays to determine Dalitz plot model for favoured b → c amplitude

n.b. axes flipped c.f. previous slides
The $B \to D\pi K$ Dalitz plot method

- Basic idea is that pion from D^*_2 decay tags flavour of that resonance
- Amplitude for $B^0 \to D^*_2 K$ is same, independent of D decay used
- Allows direct reconstruction of GLW triangle
- How is the sensitivity?
 - PRD 80 (2009) 092002 claims similar to $B \to D K$
 - will need to wait and see …
 - (n.b. $r_B(DK^0) = 0.240^{+0.055}_{-0.048}$ – LHCb PRD 90 (2014) 112002)

Tim Gershon

γ from $B \to D K$
Summary

• Despite many people thinking about γ for many years, there are still good new ideas emerging

• The best sensitivity comes from combining results from all of $B \rightarrow DK$ and friends

• Many channels make useful contributions
 – including several that I did not discuss today
 – still a lot of work (potential improvement) to arrive at ultimate precision on γ for both LHCb & Belle II

• Measurements from BESIII on $\Psi(3770) \rightarrow D\bar{D}$ are needed