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ZUSAMMENFASSUNG

In der vorliegenden Arbeit wird die Eindeutigkeit des Grundzu-
standes von Heisenberg, Hubbard und ¢tJ-Modell mit Hilfe des Per-
ron-Frobenius Theorems untersucht. Halbgruppenmethoden und
Verallgemeinerungen der klassischen Perron-Frobenius Theorie wer-
den benutzt, um in Anlehnung an Arbeiten von Faris [F 72] und
Glimm-Jaffe [GJ 70|, die Eindeutigkeitsbeweise von Lieb-Mattis zu
vereinfachen [LM 62a, LM 62b, L 89].

ABSTRACT

This thesis investigates the uniqueness of ground states in the
Heisenberg, Hubbard, and the ¢.J-model using the Perron-Frobenius
theorem. Following ideas of Glimm-Jaffe [GJ 70] and Faris [F 72],
semigroup methods and generalizations of the classical Perron-Fro-
benius theory are used to simplify the uniqueness theorems of Lieb-

Mattis [LM 62a, LM 62b, L 89).
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Chapter 1

Introduction

In this thesis, we investigate the existence and uniqueness of ground states for a
number of models of strongly correlated electron systems. Interest in these models
has been greatly stimulated by the discovery of high-T. superconductors in 1986
by J. G. Bednorz and K. A. Miiller!. Since then the search for an explanation and
theoretical description as well as the study of the properties and possible uses of
these materials has resulted in numerous publications and conferences [PT91].

The starting point for most theories of strongly correlated electron systems is
usually the one-band Hubbard model. This is a model in which band electrons in-
teract via a two-body repulsive Coulomb interaction and no phonons are present.
For this reason, the Hubbard model has been associated with magnetism. Super-
conductivity, on the other hand, has been traditionally interpreted as instability of
the ground state because of the effectively attractive electron-phonon interactions
of the standard BCS theory?.

A novel situation has arisen with Anderson’s suggestion [A87] that in the new
high-T;. materials, superconductivity may originate from purely repulsive interac-
tions. This suggestion was motivated by the observation that superconductivity
occurs al an insulator-metal transition and thus seems to originate from doping
(that is, extracting or adding charges to) the insulating state.

Two other models are also of interest in this context. The first one is the
general (quantum) Heisenberg model which describes the interaction of localized
magnetic moments. The second one is a direct outgrowth of detailed studies of
superconducting materials and their respective electronic orderings as well as the
ideas of Anderson [ZR 88]. It is called the ¢J-model and may be viewed as a
merger of the localized behavior of the Heisenberg model and the bandlike behavior
of the Hubbard model. For all these models, no rigorous solution exists except
for some special cases [LW 68]. This is largely due to the fact that neither the

'J. G. Bednorz, K. A. Miiller, Z. Phys. B 64, 189, (1986)
2. Bardeen, L. N. Cooper, J. R. Schrieffer, Phys. Rev. 108, 1175, (1957)

1



(quantum) Heisenberg [S 85] nor the Hubbard model exhibit reflection positivity;
this inhibits the usual proof technique of Frohlich-Simon-Spencer [FSS 76] and
Dyson-Lieb-Simon [DLS 78]. For example, currently there exists no proof of a
nonzero spontaneous magnetization in the (quantum) Heisenberg model. Only for
the classical model and the § > 1 antiferromagnet does such a proof exist.

It is thus fortunate that there is a (rather old) mathematical theory which may
be used to obtain rigorous and non-perturbative information about the ground
state-and sometimes about the ordering of all electronic energy levels as well-of
these models. At the beginning of this century O. Perron and G. Frobenius studied
the spectra of nonnegative matrices [P 07, F 08, F 12]. They showed that for
these matrices-mapping nonnegative vectors into nonnegative vectors-the spectral
radius is an eigenvalue. Assuming an additional property, for which Frobenius
coined “unzerlegbar” and which we will denote as irreducible, they then proved
that the corresponding eigenvector is unique.

Krein-Rutman [KR 48] and various other authors (see the introductory remarks
in chapter 3 for a more complete list) have subsequently generalized this concept
to operators which leave cones in Banach spaces invariant. For Hilbert spaces
and quantum theory, the applications of Perron-Frobenius theory have developed
in two directions. For quantum field theory, the starting point is a 1970 pub-
lication by Glimm-Jaffe {GJ 70]. In this as well as in a number of subsequent
papers [F 72, GJ 87, and references therein], they used Perron-Frobenius theory in
conjunction with semigroup methods to establish the existence and uniqueness of
physical ground states.

As early as 1962, D. Mattis and E. Lieb applied the- essentially classical-Per-
ron-Frobenius theorem to models of statistical physics [LM 62a, LM 62b]. Besides
proving uniqueness of the ground state, they were able even to specify the value
of the total spin. This resulted in a proof that the antiferromagnetic Heisenberg
model indeed has § = 0. In addition, they showed that on a linear chain of atoms
ferromagnetism must result explicitly from either spin or velocity dependent forces.
This last result is now known as the Lieb-Matlis theorem.

The impetus to this thesis was given by a recent publication by E. Lieb [L 89].
He showed that for the Hubbard model, uniqueness of the ground state may be
assured when using a nonstandard cone. He called this property spin-reflection
positivity in analogy to the reflection positivity mentioned above. For an attractive
on-site interaction the total spin value equals zero, but for the repulsive case and
for the half-filled band, the spin value may be nonzero. Thus the Hubbard model
exhibits a provable itinerant-electron ferromagnetism®.

3K. Osterwalder, R. Schrader, Comm. Math. Phys. 31, 83, (1973), 42, 281, (1975)
4Here ferromagnetism is used in the sense that the spin is an extensive quantity. No spatial
ordering is implied.
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In the present work we use the ideas of Lieb-Mattis and the semigroup methods
of Glimm-Jaffe to give slightly alternative proofs of the uniqueness of the ground
state for the linear chain of itinerant electrons, the general Heisenberg model,
the Hubbard mode! and the tJ-model. None of these proofs have been given in
conjunction with semigroup methods before. The application of Perron-Frobe-
nius arguments for the ¢.J-model is new and has not previously appeared in the
literature.

The thesis is organized as follows:

In chapter 2, we review the existence and uniqueness theorems of the classical
Perron-Frobenius theory for positive matrices as established by Perron. Then
we generalize these results to nonnegative matrices. Irreducibility of matrices is
introduced to insure uniqueness.

In chapter 3, we investigate the possible generalizations of the classical Per-
ron-Frobenius theory to Banach and Hilbert spaces. We first introduce the notion
of a cone and study its geometry. Then in section 3.2 we study matrices that
leave a cone invariant. In section 3.3 we review a Perron-Frobenius theory for
Banach spaces and investigate so-called minihedral cones. An existence theorem
is given. Positive operators in Hilbert spaces are studied in section 3.4. Here the
important concept of an ergodic operator, closely related to irreducible matrices,
is introduced. We show that for ergodic operators a uniqueness theorem holds.
At the end of this chapter, we present possible generalizations of the concept of
irreducibility.

The idea that enabled Lieb-Mattis to apply the Perron-Frobenius theorem to
ground states of spin-lattice models is presented in chapter 4. Semigroups are
introduced and three ‘perturbation’ results for Hamiltonians of the form H =
Hy — V are derived.

In chapter 5 we apply the results of the previous chapters to the Lieb-Mattis
model and the Heisenberg model. Canonical transformations are used to rearrange
the Hamiltonians in the H = Hy — V order. The total spin value for the ground
state of both models is derived.

Chapter 6 is devoted to an extensive inquiry into the application of the Per-
ron-Frobenius theory for the Hubbard model. After a short review of the model,
we derive the equivalent matrix problem. The no-coupling limit is treated first,
then the attractive and the repulsive Hubbard models are studied. We show that,
whereas the attractive model explicitly exhibits a spin-reflection positivity, the
repulsive model does so only after a hole-particle transformation which can be
applied using the assumption that the interaction parameter is a constant. We
then add a one-body potential so that the resulting repulsive Hamiltonian once
again exhibits spin-reflection positivity. The total spin value is determined by the
limiting behavior of the strong-coupling Hubbard model.



Finally, in chapter 7, we apply the ideas of the previous chapter to the ¢J-model
on a linear chain.

Notation For the reader’s convenience, a notational guide is provided in the
appendix. In general, standard notation is used. Emphasized passages (a) indi-
cate that a term not previously encountered is introduced or (b) denote especially
important statements. Single quotes ¢ ” label a slightly misused term such as ‘per-
turbation’ in chapter 4. Double quotes enclose a quotation.

Two different citation symbols are used. The brackets [ | denote a publication
that is to be found in the references. Footnotes are sometimes used to give ref-
erences that are of a more general character and are given for convenience and
completeness only.



Chapter 2

Fundamental Concepts and
Results of the Theory of
Nonnegative Matrices

In this chapter, we will review the fundamental concepts and theorems of the theory
of nonnegative matrices as established by O. Perron [P 07] and G. Froebenius
[F 08, F 12] at the beginning of the century. Our review will be rather brief since
this material can now be found in most text books on matrix analysis. The classical
source is still Gantmacher’s book on matrix theory [G 59], but somewhat more
modern accounts are given by Seneta [S 73] and Horn-Johnson [HJ 85]. We will
largely follow the latter in our notation and in the exposition of the material
presented.

2.1 Preliminaries

We recall some of the basic definitions and notations of matrix theory to be used
throughout the following chapters.

We denote the n-dimensional vector space over the field F, usually the real
numbers R or the complex numbers C, by F”. The set of real-entried (or complex-
entried, respectively) vectors is thus denoted by R™ (C*), both interpreted as col-
umn vectors. By Mp.(F) we denote the m x n matrices over F. We think of
a mattix A € My, (F) primarily as a linear transformation of F* into F™ (with
respect to given bases in F™ and F™), but is is also useful to think of it as an array
of numbers [a;;]. If m = n, the matrix is said to be square and M, .(F) is abbre-
viated to M,(F). In most cases in which F = (, M,(C) is further abbreviated to
M, and M, ,(C) to My, .

The transpose of A = [a;;] € M ,(F) is the matrix [a;] € My n(F), denoted
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by AT, and, if F C C, the Hermitian adjoint is the conjugate transpose [@;:) of
A, denoted by A*. Similarly, if 2 € F", 2T denotes the row vector with the
same entries as @, and, if F € C, «* denotes the row vector whose entries are
the complex conjugates of those of z. Here the overbar * denotes the complex
conjugate of a complex scalar or the component-wise complex conjugate of a vector
or matrix. The absolute value of some vector z € C* (matrix A € My, (C))
denotes the vector (matrix) formed by taking the absolute value of each coordinate
(entry), ic. |e| = (il] (JA] = [lail}). The matrix D = [dy] € M, is called
diagonal if d;; = 0 whenever § # i. By convention, we denote such a matrix by
D = diag(dy,ds,...,ds). A permutation matriz P is a square mabrix in which all
entries are 0 or 1; in each row and column of P there is precisely one 1. The matrix
I(A) is called the indicator matriz of A € M, and is given by I(A)i; = L iff ay; £ 0.

In the next two definitions, we recall the concept of a spectrum o(A) and its
accompanying eigenvectors.

Definition (2.1.1) If A € M, and z € C*, we consider the equation
Az =z, 2#0 (2.1.2)

where ) is a scalar. If a scalar A and a nonzero vector = happen to satisfy this
equation, then X is called the eigenvalue of A and = is called the eigenvector of A,
associated with A.

Definition (2.1.3) The set of all A € C that are eigenvalues of A € M, is
called the spectrum of A and is denoted by o(A). The speciral radius of A is the
nonnegative real number p(A) = max{]A| : A € o(A)}. This is just the radius of
the smallest disc centered at the origin in the complex plane that contains all the
eigenvalues of A.

The classical Perron-Froebenius theory to be reviewed in this chapter deals
basically with the spectra of matrices that leave invariant a special set of vectors.
These vectors and matrices are defined next.

Definition (2.1.4) Given the vector z = [x;] € C" and the matrix A = [ay;] € Mn..
We say that z = 0 (4 > 0) is a nonnegative vector (nonnegative matriz) if all
coordinates z; (entries a;;) are real and nonnegative. If z; > 0 (a;; > 0) for all
permissible coordinates (entries), then the vector 2 (matrix A) is called positive.

Note that > induces a partial ordering for nonnegative vectors and matrices.
Therefore we may order vectors and matrices, i.e. given two matrices A, B € My n,
A > B iff a;; > b;; for all permissible ¢ and j indices.

Before we proceed to the main results in the next sections, we will show some
well-known facts regarding upper and lower bounds for the spectral radius p(A) of
a matrix A € M,.
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Lemma (2.1.5) Let A € M, and suppose that A > 0. If the row sums of
A are constant, then p(4) = |lAlle = maXigicn 2 ;y 10ij| (the mazimum row
sum matriz norm). If the column sums of A are constant, then p(A4) = 1Al =
maxi<i<n Yore |@i;] (the mazimum column sum matriz norm).

Proof (2.1.6) By [HJ 85, theorem 5.6.9], p(4) < ||Al|e. Now, if the row sums
are constant, © = [1,...,1]7 is an eigenvector with eigenvalue || A, and therefore

p(A) = ||Allco. The statement for column sums follows from applying the same
argument to AT, since [|AT[jec = J|Ali1- 5

Theorem (2.1.7) Let A € M, and suppose A > 0. Then for any positive vector
z € (" we have

1« 1
i —— e < ol o 1.
11213131 2 ;Gwmf < p(4) £ 1121%7; z; ; i (2.1.8)
and
. agj aij
N8 < A ik 1.
Jin o; E;I = < p(A) < pax o >3 (2.1.9)
Proof (2.1.10) We first prove that
i
@gz ai; < p(A) (2.1.11)

Let @ = minigicn 2 5oy @ij- We now want to construct a matrix B such that
the row sum Y 5, by = a for all s = 1,2,...,n. In addition, we require that
A > B > 0. The construction is straightforward, i.e. if @ = 0, we could choose
B =0, and if a > 0, we could set b;; = aa;;(37, a;;)~". By lemma 2.1.5 above,
we then have p(B) = a. Since A > B, we know by [HJ 85, Corollary 8.1.19] that
p(A) > p(B), and this establishes equation (2.1.11).

Now we generalize this result in order to obtain equation (2.1.8). Whenever S is
invertible, p(5~1AS) = p(A) holds such that we may choose S = diag(zy,..., Tn),
and if all 2; > 0, then A > 0 implies S~*AS > 0. Thus, substituting A = [a;;] —
S-1AS = [a;;z;27"], we obtain equation (2.1.8).

In the same way, the upper bound can be established. As before, the column
bounds follow from applying the arguments to AT. |

Corollary (2.1.12) Let A€ M,. TA>0and ) 7 ja; > 0foralli=1,2,...,n,
then p(A) > 0.



A > 0 alone is not sufficient for p(A) > 0 since if

0 1
= (50)
then A is certainly nonnegative but p(A) = 0. On the other hand, a zero row sum
alone is not sufficient for a zero spectral radius since

2= (5 0)

has spectral radius p(B) = 1. Note that, in particular, p(4) > 0 if A > 0.

Corollary (2.1.13) Let A € M,, let z € R*, and suppose that A >0 and & > 0.
If @, 8 > 0 are such that az < Az < Bz, then o < p(A) £ 8. If ax < Az, then
a < p(A); if Az < Bz, then p(A) < .

Proof (2.1.14) If az < Az then & < milygicn 7~ 37—y ;. By theorem 2.1.7

we conclude o < p(A). If ez < Az, then there exists some o/ > o such that
o’z < Az and thus p(A) > o > . Again, the upper bounds are verified similarly.

2.9 The Perron-Frobenius Theorem for Positive
Matrices

The theory of nonnegative matrices assumes its simplest and most elegant form
for positive matrices, and it is for these matrices that Perron made his discoveries
in 1907.

As discussed on page 2, the Perron-Froebenius theory shows the existence and
the uniqueness of the eigenvector corresponding to the eigenvalue of p(A). The
first of the following more technical lemmata shows the existence and the second
proves the uniqueness.

Lemma (2.2.1) Let A € M, be positive. Assume that Az = Az, @ # 0,
|A] = p(A). Then Alz| = p(A)|z| and || > 0.

Proof (2.2.2)
Ale| = |Alle| 2 |Az| = 2] = Miz| = p(A)l2] (2.2.3)

Thus if we define
y = Ale] — p(A)|z|
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then we know that y > 0. Since |z| = 0, = # 0, we know by the positivity of A
that Alz| > 0. Corollary 2.1.12 shows that in addition p(A) > 0. It remains for us
to show that y = 0. Assuming the contrary, we set z = A|z| > 0 and thus obtain

0 < Ay = Az — p(A)z

By corollary 2.1.13 this implies p(4) > p(A), which is an absurdity. Therefore

y = 0. This in turn yields the eigenvalue equation with eigenvector lz| = f{% > 0.
|

Lemma (2.2.4) Let A € M, be a positive matrix. Let z, y be nonzero, positive
vectors in C" and assume that Az = Az, Ay = Ay, A # 0. Then thereis an a € C
such that z = ay.

Proof (2.2.5) Set o = mincicn :cgyg'l and define r = 2 — ay. Notice that r > 0
and that there is at least one coordinate of r that is equal to zero, so r is by
construction not positive. But Ar = Az — aAy = Az —aly = Ar. Assuming r # 0,
we get r = A"1Ar > 0 since A > 0. But this is a contradiction, and thus r = 0.
Therefore z = ay. [

Next, by summarizing the contents of the above lemmata, we deduce the main
result for positive matrices.

Theorem (2.2.6) [Perron] Let A € M, and suppose that A is positive. Then
p(A) > 0, p(A) is an eigenvalue of A, and there is a positive vector @, unique up
to a scalar multiple, such that Az = p(A)z.

Proof (2.2.7) By lemma 2.2.1, we know that there exists an eigenvalue A such
that |A] = p(A) > 0, and an associated eigenvector |z| > 0 . Suppose now that
there exists another vector y € C* which is also an eigenvector of A with eigenvalue
p(A). Then by lemma 2.2.4, there exists an o € C such that ¢ = ay, and hence
the eigenspace corresponding to the eigenvalue p(A) is one-dimensional. [

A matrix A € M, is said to have the Perron propertyif p(A) is an eigenvalue.
In this case, p(A) is often called the Perron root of A. The eigenvector as given in
the theorem may be called the Perron vector. Since the above theorem applies to
AT as well, the Perron vector of AT is known as the left Perron vector.

2.3 The Perron-Frobenius Theorem for Irredu-
cible Matrices

We now wish to extend the above theorem so that it applies to nonnegative matrices
as well. For the existence part, we will show that simply by taking limits, the
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theorem can be proved. As to the positivity of the Perron vector and thus the
uniqueness, we have to introduce some new characterizations of mafrices.

Definition (2.3.1) A matrix A € M, is said to be reducible if either
() n=1and A=0;or

(b) n > 2, there is a permutation matrix P € My, and there is some integer r
with 1 < r < n — 1 such that

r.p_s_ (B C
PAP—AW(U D) (2:3.2)

where Be M,, De M,..,,C € My, and 0 € My, is a zero matrix.

Remark (2.3.3) Here, B, C and D are allowed to have zero entries. We only
insist that we should be able to get an (n — r) X r block of zero entries in the
indicated positions by some sequence of row and column interchanges. f A > 0,
then A is not reducible, and if A is reducible, it must have at least (n — 1) zero
entries.

Definition (2.3.4) A matrix A € M, is said to be irreducible if it is not reducible.

The next theorem allows us to extend the Perron-Frobenius theorem to non-
negative matrices.

Theorem (2.3.5) A matrix A € M, is irreducible iff
(1 +1Ap~"'>0

or, equivalently, if [1 + I(A)*! > 0.

Proof (2.3.6) The proof can be found in the appendix, section A.1. It is rather
elaborate, not so much w.r.t. hard mathematics, but w.r.t. the number of new
definitions needed. Some of the concepts will become useful in later sections of
this thesis. 1

Theorem (2.3.7) [Frobenius] Let A € M, and suppose that A is irreducible and
nonnegative. Then

(a) p(4)>0;
(b) p(A) is an eigenvalue of A;

(c) There is a unique positive vector z such that Az = p{A)x.
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Proof (2.3.8) Assertion (a) follows from corollary 2.1.12 since irreducible matrices
can not have a zero row or column.

Assertion (b) follows from a limiting argument. For any € > 0, define Ale) =
[a;; + €] > 0. Then by theorem 2.2.6, there is a normalized Perron vector z(€)
of A(c) and z(e) > 0. Since the set {z(e) : ¢ > 0} is contained in the compact
ball {z : & € C*,3_%, |&:| < 1}, there is a monotone decreasing sequence €y, €, . . .
with limy_. €5 = 0 such that limy ., z(ex) = @ exists. Since z(ex) > 0 for all
k=1,2,..., it follows that z = limp. z(ex) > 0. z = 0 is impossible since all
z(ex) are normed for all £ =1,2,....

Since A(ex) > Afers1) = ... = A by construction, it follows that p(Aler)) =
p(Aler1)) > ... = p(A) for all & = 1,2,..., so the sequence of real numbers
{p(A(er))}e=12,.. is a monotone decreasing sequence. Thus, p = lim_.c p(Aler))
exists and p > p(A). On the other hand, we have

Az = lim A(er)e(er)
- klgzlop(A(ek)):c(Ek)
- klggop(A(ek)) klﬁl.}om(ﬁk)

= px (2.3.9)

and since z # 0, p must be an eigenvalue of A. But then we have p < p(A) which
implies p = p(A4).

We next prove the positivity of the eigenvector z. Since Az = p(4)z, it follows
that (I + A"z = (1 + p(A))"'z. By the irreducibility of A, we know from
theorem 2.3.5 that (1 + A)"™! > 0 and thus z = (1 + p(4))' (1 + A)" "'z must
be positive.

Finally, assuming that there exists a y € C* such that Ay = p(A)y, y # 0, we
apply the above argument again to show that y = (1 + p(A))'™"(1 + Aty >0,
and thus, by lemma 2.2.4, there is an o € C such that y = ay. |

Aside from irreducible matrices, there exists another class of matrices to which
the Perron-Frobenius theorem is applicable. Since the existence of the Perron
root is assured by the nonnegativity of the matrix alone, we only need a property
analogous to theorem 2.3.5 to prove the strict positivity of the Perron vector, 1.e.

Definition (2.3.10) A nonnegative matrix A € M, is said to be primitive if there
exists a positive integer k such that A* > 0.

It should be clear how the arguments of proof 2.3.8 apply to primitive matrices.
Therefore, substituting ‘nonnegative’ with ‘primitive’, theorem 2.3.7 holds here,
also. For a direct proof, see [S 73].



Chapter 3

Generalizations of the
Perron-Frobenius Theory

Generalizations of the classical Perron-Frobenius theory as discussed in the previ-
ous chapter can be made, in principle, using three different methods:

The most obvious one is to extend the existence and uniqueness theorems to
infinite-dimensional spaces. For Banach spaces this was done for the first time in a
fundamental paper’ by Krein-Rutman {KR 48] which was published in 1948. More
recent operator theories are provided by Krasnoselskii [K 64] and Schéfer [S 74],
among others.

The second possible method of extending the Perron-Frobenius theory attempts
to generalize the notion of the invariant positive hyperoctant to cones, left invariant
under some operator. This approach has been taken mostly in conjunction with the
first one, yielding a wealth of characterizations of cones in different spaces B 73].
Besides Perron-Frobenius theory, applications range from invariance theory and
iterative procedures to operator inequalities [S 87].

Finally, the concept of an irreducible matrix may be redefined to cope with
the extensions stated above. Several new characterizations of this kind have been
developed over the years by numerous authors [K 64, V 68, SV 70].

In this chapter, after having introduced the concept of cones in a Banach space
in section 3.1, we go on to develop Perron-Frobenius theories for Banach and
Hilbert spaces (section 3.3 and section 3.4, respectively). Section 3.5 is devoted
to the extension of irreducibility. Lastly, in section 3.6, we will study the cone of
positive semidefinite matrices as an important example of a matrix cone.

The paper is fundamental in the sense that Krein-Rutman were the first to construct a
complete Perron-Frobenius operator theory from scratch. Before them, P. Jentsch had already
developed a Perron-Frobenius theory for integrals with a positive kernel, P. Jentsch, Uber Inte-
gralgleichungen mit positivem Kern, Reine Angew. Math. 141, 235, (1912).

12
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3.1 Basic Definitions

Before we start, we extend the notation developed in section 2.1 to infinite-dimen-
sional spaces.

As usual, we call a complete normed linear space a Banach space and denote
it by the symbol X. For convenience, we will always assume X' to be real This
restriction is customary throughout the literature, and will be commented upon
again in section 3.4.1. The finite dimensionality of X', if true, is again indicated
by a superscript, i.e. X™. Hilbert spaces (possibly over C), denoted W, are Banach
spaces equipped with an positive definite inner product (-, -), antilinear in the first
and linear in the second entry such that ||z}|® = (z, ), where || - || is the Banach
norm. Vectors of either Banach or Hilbert spaces are typically denoted by z,y,...
. For cones in Banach and Hilbert spaces we use the symbol K; cone elements are
typically denoted by w,v,.... The inferior of a cone K is K° and its boundary is
given by 0K.

3.1.1 Convex Cones

Definition (3.1.1) Aset SC X is convezif Mz + (1 - Ay e Sforallz,y ek
and 0 <A< 1.

Definition (3.1.2) [Cone] A set K C X is a cone if o C K for all @ = 0. K is
a convez cone if it is a convex set and a cone. A proper cone will then denote a
closed convex cone which is also peinted, i.e. KN —K = {0}. A convex cone will
be called solid if it contains interior points, i.e. K° # . A convex cone K is called
reproducing if every element = € X' can be written as z = u — v where u, v € K2,
K is a full cone if it is pointed and solid.

For convenience we will use the term cone instead of proper cone in most of the
following sections. If a cone is explicitly neither pointed nor closed we will retreat
to the use of the complete specification.

Example (3.1.3)

(a) Let O,y denote the functions which are continuous on a. bounded, closed set
[@,b]. With the sup-norm, CJ, is a Banach space. Then K = {u € Cpoy :
u(t) > 0} is a solid cone since the constant uo(t) = 1is in K and is an interior
point.

(b) K = {u € LP(M,dp) : u(t) > 0} where dy denotes some measure on M. K
is reproducing since any u € L can be written as u(t) = uy(t) — u_(t). But

2Note that in general v and v are not unique.
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K is not solid. To see this, suppose that there is some u € K°. This means
that given some ¢ > 0, u+z € K for all z such that {|z]} <e. Let E be a
measurable set such that u(t) > 0 for all ¢ € E and |luxgll < &/2, where x&
is the characteristic function of E. Then let v = —2uxg. v is an L? function
and ||v|] = 2|Juxzl| < 2¢/2 = ¢. But u +v € K, a contradiction.

(c) K = {u € Cly : v(t) = 0,u nondecreasing}. K is a cone, but it is not
reproducing since only functions of bounded variation can be written as a
difference of K elements [R 88].

Figure 3.1: A cone in R%, the so-called “ice-cream-cone”.

A general method of constructing cones in Banach spaces was pointed out in
[K 64]. In the above examples of cones in some standard spaces of functional anal-
ysis, it is evident that reproducing cones are not always solid. The next theorem
therefore makes the connection between the two concepts explicit.

Theorem (3.1.4) Every solid cone in X’ is reproducing. If the space X is finite-
dimensional, then the converse is also true.

Proof (3.1.5) Assume that K C X is solid. Let u € K° and @ € X be arbitrary.
Then, for sufficiently small € > 0, w = u + ez is in K; but this means that the

element z can be written as # = 2 — %, Thus K is reproducing.
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To show the converse in the finite-dimensional case, assume that X C X™ is not
solid. But then K — K is of dimension less than n and thus K is not reproducing.

3.1.2 The Partial Ordering

As we have stated above, the introduction of cones is useful in many different
contexts, particularly in the theory of operator inequalities. The basic tool is the
following:

Definition (3.1.6) Let u, v € X. Let K C X be a cone. We write u = v if
u—-veEKandu>=vifu—veks

In particular u > 0 means that u € K and u > 0 stands for v € K°. If in some
cases it is not clear which cone is meant, we write

K
u = 0. (3.1.7)

Lemma (3.1.8) = induces a partial ordering in the space X, i.e. = is a reflexive,
transitive and antisymmetric relation.

Proof (3.1.9)
Antisymmetry Let u,v € K. Then
urveu—v-0

and
vruev—u=-—(u—v)>=0

Since K is pointed, this implies u — v = 0 and thus v = v.

Transitivity Let u,v,w € K such that u = v(& u—v € K) and v = w(& v—w €
K). Then by convexity,

y—vt+v—w=u-—wrl
which is equivalent to u = w.

Reflexivity 0 € K implies that v > u for all u € X..
N

An important property of a partial ordering, defined by means of a cone, is that
one can pass to the limit in the inequalities, i.e. if ||z, — || — 0, |lyn —yl| = 0
and z, =< ¥y for all n, then z < y. Thus such notions as differentiability and fixed
points can be defined [K 64].
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3.1.3 The Geometry of Cones

Several useful properties of cones can be established by purely geometrical argu-
ments. This will be done here.

Definition (3.1.10) We define a ray in a cone K as the set {Az : A > 0} for
some given z € K. A ray is an eztreme ray if ¢ = ay + bz, a,b >0 and y,2 € K
imply that both y and z lie on the ray. Elements of an extreme ray will be called
extremal. A face F of K is a subset of K, which is a pointed cone such that
e F,yeK,z—y €K impliesy € F. F ¢ {0,K} is called proper. A subcone
of K is any cone contained in K, and an eztremal subcone is a subcone which is
generated by some subset of the extremal vectors of K. In this sense, a face F
is nothing but an extremal subcone which is contained in the boundary 0K of K.
The smallest subspace containing a given face F will be denoted by Hy.

Theorem (3.1.11) Let K C X be a pointed cone. Then there is no straight line
in X such that it also lies completely in the cone K.

Proof (3.1.12) Let z,y be two arbitrary elements of X. Then the collection
2(t) =z +ty, t€]— co,00] (3.1.13)
is a straight line in X. Suppose that y # 0 and 2(t) € K for all 1. Then for ¢ # 0,

we have
z(t) =

T m+sgn(t) y € K for all [t| < o0
Then taking the limit |¢| — oo, we have that y and —y lie in K since by definition
K is closed. This is a contradiction to X being pointed. |

It follows from the convexity of the cone that the set of those values ¢ for which
the element (3.1.13) belongs to the cone (if such #'s exist), either forms a finite
closed interval [to, 1], or one of two half-infinite closed intervals: either [to, o0[ or
] — 00,10]. The first case occurs in the case y € K, the second in the case —y € K.
The next four corollaries can be obtained from these facts.

Corollary (3.1.14) Let u € K, z € &. Then 2 = {ou for some ¢ implies that
z =< tu for all t > 1.

Corollary (3.1.15) Let u € K. For an element z € A, suppose that there exists
a t such that x < tu. Then there is a smallest to for which z = tou.

Corollary (3.1.16) Let u € K. For an element z € X, suppose that there exists
a t such that ¢ = —tu. Then there is a smallest tp for which z = —tqu.

The last corollary is an extension of theorem 3.1.11 to unpointed cones.



(Gleneralizations of the Perron-Frobenius Theory 17

Corollary (3.1.17) Let X C X be a pointed cone and let z,y € K. Assume that
the ray z(t) = z + ty lies completely in K U —K for all ¢ €] — 0o, c0[. Then x and
y are collinear.

Proof (8.1.18) Assume first that 2({) = = + ty lies in K. Then 2z + ity = 0
and thus ¢ > —ty. By corollary 3.1.16, there exists some smallest £, such that
z+t.y = 0. Now assume that z(t) = z-+1y lies in —K which implies that z+ty < 0
and thus ¢ < ~ty. By corollary 3.1.15-keeping in mind that the corollary has to
be changed from dealing with K to —K- there exist some smallest ¢ such that
z+1t.y 2 0. If 2(1) is to lie completely in K U—K, then £, and ¢_ should be equal,
i.e. tg = ty = {_. But then the inequalities for £, and .. imply that 0 2 x4ty X 0
and thus z = —t5y. Therefore z and y are collinear. |

Definition (3.1.19) A cone is generated by a set of vectors, if any element in
the cone can be written as a finite linear combination of these vectors, using only
nonnegative coefficients. A polyhedral cone is a convex cone generated by a finite
set of vectors.

A polyhedral cone is e.g. R}. In figure 3.2 we show another example of a
polyhedral cone. A typical cone that is not polyhedral® is the “ice-cream-cone”
(W 72], i.e.

ice = {(z,y,2) e R®® 12 > 0,2° —y* — 2* > 0} (3.1.20)

which is shown in figure 3.1.

Theorem (3.1.21) Let £ C &A™ be an arbitrary cone. Then X is generated by
its extremal rays.

Proof by Induction (3.1.22)

¢ : For n = 1 the theorem is obvious. For n = 2, the cone is either generated
by only one vector which is thus the extreme ray, or by two linearly independent
vectors which are thus extreme, also. In addition, we note that any interior vector
of the cone can be written as the sum of two vectors on the boundary. For suppose
z € K° Then select a u € X linearly independent of z and let R be the plane
spanned by v and z. K = RN K is a cone and z € K., K is two-dimensional and
thus spanned by its two extreme vectors, say @, ¥, which is turn lie on the boundary
of K, i.e. &t,© € K. Thus we only have to show that any z € 9K is generated by
extreme rays.

s : So suppose that the theorem has be proved for all ng < n. Let z € 9K and
suppose that z is not extremal. Thus z = u + v, and u, v are linear independent
of z. If either u or v are in K°, so is ¢ and thus we may assume u,v € OK.
Then z € {ou+ fv: a8 2 0} = S. Denote by § the largest such cone S such

3The statement is true only in dimensions greater than two. In two or fewer dimensions, any
cone is polyhedral.



18

Figure 3.2: A polyhedral cone, generated by 4 vectors in R?.

that z € § C 8K, and by Hs the smallest linear subspace containing §. Since
dim Hs < n, § is generated by extreme rays by the induction.

To complete the proof, we have to show that an extreme ray in S is an extreme
ray in K as well. Assume the contrary, i.e. y is extremal in & but not in K. Write
y = u-+v, u,v €K and wlo.g we may take u € S. Define §' = {w+ou:w €

K
S,a>0}. Thenw+ou=w+aly-v) Zw+tay €S CIK and thus ' C S.
But S was defined to be the largest such cone. Thus y cannot be extremal in S. |

To every element z € 8K there corresponds a particular face whose properties
we will examine in the next lemma.

Lemma (3.1.23) Given any z € 9K, there exists a face F, such that
(a) z € F2, relative to the space Hr,,
(b) Fr = 0K N Hr,
(¢) O § y g r implies y € F5.

Proof (3.1.24) By theorem 3.1.21, any z € 0K can be written as

L[]
X = E ey

g1
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where o; > 0 and e; is extremal for all i = 1,...,m. The cone generated by these
z; satisfies assertion (a). Assertion (b) is also true. Let F, be the largest face such
that (a) is true. Then F, € 9K N Hg,. Since 9K N Hz, is a cone satisfying (a),

we have F, = 0K N Hg,. Finally, 0 g y g z implies that y € OK. If y & Hy, then
let H' be the subspace spanned by y and Hr, and F' = 0K N H'. F' is a face and
2 —y € F' which in turn implies that z is interior to 7', relative to H'. Thisis a
contradiction to the definition of F, and thus y € Hr,. [

3.1.4 Operators Leaving a Cone Invariant

Having introduced the concept of cones, we are now in a position to generalize
definition 2.1.4 to operators leaving a cone in a Banach space invariant.

Definition (3.1.25) Let Ky and K; be cones in &, and A5, respectively. Denote
by II{K;,K;) the set of operators A: Ay — X, for which AK; € K. TH{K,K,) is
called the cone of positivity preserving operators.

If K; = Ky = K, we abbreviate II(Ky, K2) to II{K). As in definition 3.1.6 we
introduce an equivalent notation for A € II(K): We use A > 0. If it may not be
clear which cone is meant to remain invariant under the action of A, we make this
explicit by putting the cone symbol above the relation >, i.e.

K
Ax 0. (3.1.26)

Example (8.1.27) For Ky = R} and K; = RE, M(K4,K3) is the set of all
nonnegative m x n matrices, studied in chapter 2.

Theorem (3.1.28) II(Ky,K3) is a proper cone if Ky is reproducing,
Proof (3.1.29) TI(K1,K,) is a cone since if A,B = 0, then for all u &€ Ky,

(A+ B)u m&+\%@b = 0.
0 0

Let o > 0. Then
(xA)u = a(Au) = 0
»0

Finally, if both A and —A are in II{K1,K2), then

Au >0

——Au>~0}MAum0



20

for all u € Ky and thus A = 0 since K, is reproducing. (K1, K2) is therefore a
(pointed convex) cone. B

Note that Ky had to be reproducing in order to assure that II(K;, K2) is pointed.
If we drop this requirement, TI(K1,K3) is still a cone though not pointed. If in
addition K; and K are full cones, then so is II(K). Furthermore, if A, B € {0},
then AB € II(K).

3.2 More about Matrices

Before we proceed to the general theory of operators leaving a cone invariant in
either Banach or Hilbert space, we again consider the positive hyperoctant of the
classical Perron-Frobenius theory.

Definition (3.2.1) Given a cone X C R*, we will call K fat, if we can find an
orthonormal basis {€;}i=1,...n sSuch that

(a) ;e Lforalli=1,...,m

(b) for all u € K there exist real numbers v; such that v = Sor jvies and v; > 0.

The basis {€;}i=1,..» is called the cone basis.

Fat cones are full (z = (1,1,...,1) € K) cones and certainly reproducing (by
theorem 3.1.4 or, more simply, by the fact that its generators form the basis). In
addition, the following lemma is evident.

Lemma (3.2.2) Let K C R" be a fat cone. If for some u € R, (u,v) = 0 for all
v € K, then already v € XK.

Theorem (3.2.3) Let K C R" be a fat cone. Then the cone basis {€;}i=1,..n
consists of extreme rays.

Proof (3.2.4) Let e be an arbitrary basis vector. Assume that e, is not an
extreme ray, i.e. there exist z = {z;},y = {:} € K such that ez =z +y and
z,y # 0 do not both lie on the ray of e,. But then for all i = 1,2,...,n, we have

(.’I) + Y, 65)
i+ Y
ik

(ek, 85)

and since z;,¥; > 0 by the cone property, we have that

z = {0,0,..., Zk, ,0,...,0)

kth position
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Figure 3.3: A fat cone in R®.

and the same for y. Thus e; 1s an extreme ray. i

An important property of fat cones is the mutual orthogonality of their ex-
treme rays. Since this is certainly not true for any icc, the next lemma serves to
distinguish fat cones from icc in dimensions larger than 2.

Lemma (3.2.5) Given some cone K and some s € K. Denote by S+ the set
St={ueck:(u,s)=0Vs€S}

Then if K is a fat cone and z is some element of K, we have that {z}* and {{z}*}*
generate K. This is not true if K = icc.

Proof (3.2.6) First, let K be a fat cone and {e;}i=1,..» be the cone basis. Let
z = Y.r, xie; be in K and define the index set S(z) = {i : z; = 0}. Then {z}+ =
{y € K :y = Yo vici}. Further, [{z}t} = {z € K1 2 = 3;cqy #i6i} and
thus K is generated by {z}* and {{z}*}*.

We next show the statement for K = ice. Observe first that for any a € icc®,
{a}* = 0 and thus {{a}*}* = icc. So we may restrict our attention to elements of
the boundary. Let a € dicc. We now show that there is only one ray in icc that is
perpendicular to a. Let z = (ao, —a1, ~az)}. Clearly z € dicc and (z,a) = 0. Now
suppose that there is some other vector y € dice such that y = z+c where ¢ is some
nonzero difference vector. Then if y is perpendicular to a, so is ¢. From y € iccis
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follows that ¢ — 2 — ¢ = 0. Thus, after normalization, we obtain ¢o(co+ 2a0) = 0.
g™ €1~ C3

The solutions to this equation are either ¢o = ~2ao, which implies that y € —ice,
or ¢g = 0 and thus ¢ = 0, which gives uniqueness of z. Therefore {a}* = {z} and
{{a}*}* = {a} and thus icc is not spanned by the vectors of these two sets in
more than two dirmensions. |

Theorem (3.2.7) Let X C R* be a fat cone. Then the following holds:
(a) TI{K) ~ M,(Ry).
(b} A > 0 implies A* = 0.
(c) Suppose that U is unitary and positivity preserving. Then U —1 e II(K).

(d) U is necessarily a permutation matrix.

Proof (3.2.8)

to (a) Given the cone basis {€;}iz1,..» and some A € II(K). Let [a;] be the
representation of A w.r.t. the cone basis and let v > 0. Then

(A’U,)g‘ = Z ;iU Z 0.
j=1

Since this must hold for all v = 0, the matrix is nonnegative, i.e. a; > 0
forallz,7 =1,...,n.

to (b) Assume A € II(K). Then for any u,v € K, 0 < (u, Av) = (A"u,v). By
lemma 3.2.2, A* € II(K).

to (c) U is unitary; thus U™ = U*, and this in turn is in II(K) by (b).

to(d) U; > 0 for allé,j = 1,...,n by (a). In addition, since U/ is unitary, we
have
k)
Ui =1 « ZUijUkj = Oi
=1
Therefore U;Uy; = 0V i # k, which is equivalent to saying that each
column has only one nonzero element. By the transpose relation U*U =1,
we get U Uiy = 0 Y i # k, which is equivalent to saying that each row has
only one nonzero element. Again by unitarity, these elements can only be
equal to one, and thus U is a permutation matrix.
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An important corollary of the above theorem is the following:

Corollary (3.2.9) Let K C R” be a fat cone. Then the orthogonal cone basis of
K is essentially unique (i.e. up to a permutation of the basis vectors).

Proof (3.2.10) Let {e;} and {f;} define two cone bases of K. Let U be some
unitary transformation such that Ue; = f; forall i = 1,...,n. U is in II(K) and
thus by theorem 3.2.7, U is a permutation of the basis vectors. B

More can be said about irreducible matrices before we go on to generalize this
concept in a later section. We are especially interested in the question of whether
irreducibility of A already implies irreducibility of the exponential exp(—tA). As
it turns out, this is indeed the case.

Lemma (3.2.11) Let A € M, be reducible. Then A™ is reducible for all m € N.

Proof (3.2.12) Let A be given as in definition 2.3.1 and let P the permutation
used to reduce A. We then show that the size of the zero matrix in A remains
invariant for A% i.e.let i € N[n —r,n] and k € N[1,7]. Then

(/;i)zk = Zﬁfﬂlgk + Z A”éﬁﬁ
g=1 P FEN—-~T 8
= 0 (3.2.13)

Thus }
PTAP = PTAPPTAP = A®

is reducible, which by repetition of the argument implies reducibility for allm e N.

Corollary (3.2.14) Let A € M, be reducible. Then exp(—iA) and exp(—itA)
are reducible for all ¢ € R.

Proof (3.2.15) By the series expansion of the exponential and the fact that sums
of A’ have the same zero matrix in the lower left corner if A is reducible by the
above theorem. |

The logical negation of the next theorem then proves the above proposition,
i.e. A irreducible implies exp(—tA) irreducible for some ¢ > 0.

Theorem (3.2.16) Let A € M,. Suppose that exp(—tA) is reducible for all
t > 0. Then A is already reducible.

Proof (3.2.17) Let
F(A,t) = exp(—tA)
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be reducible for all ¢ > 0. Then 1 — f(A,t) can be reduced by P if P is the
permutation matrix that reduces f(A,t). For all £ > 0, the term

1 - f(A7 t)
w1

can be reduced by P, too and thus

lim LA

$usl) —1

is reducible. |

3.3 Positive Operators and Cones in a Banach
Space

The particular Perron-Frobenius theory for Banach spaces as presented in this
section reviews some facts given in Krein-Rutman [KR 48] and Krasnoselskii [K 64]
important to the course of this thesis. We remark that Krein-Rutman uses the term
linear semi-group for what we call a convex precone; Krasnoselskii uses conjugate
for dual and both use cone for what we call a full cone.

3.3.1 Minihedral Cones

Various types of cones in Banach spaces have been studied in the literature. Among
the more important ones are regular, normal and minihedral cones. The first
two types are useful primarily for establishing seminorms, bounds and limits of
sequences [K 64]; the last one is of more interest to us and will be studied in the
following,.

Definition (3.8.1) Let K C X. We write 2 = sup(z,y) if there is a z such that
z> 1z, z > yand z < £ holds whenever ¢ > z, { > y. In an analogous way, we
define inf(z,y) = ~ sup(—e, —y).

We remark that the suprenum as defined above is unique for each pair z,y. For
suppose that there exists some additional z’ = sup(z,y). This then implies that
z <% 2" and 2’ < z which gives z = 2.

Lemma (3.3.2)

(a) Let z = sup{z,y) and w € X. Then z + u = sup(z + u,y + u). The same
holds for the infimum.
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(b) Given two elements z,y € X such that sup(z,y) and inf(z,y) exists, then
sup(z,y) + inf(z,y) = z +y.

Proof (3.3.3) The first part of the lemma follows directly from the definition
of the suprenum (infimum). The second part follows from the first one by the
following identities

sup(z,y) = = + sup(0,y — z)
inf(may) =y + 11’1f(.'L‘ - y,O) =Y — sup(y - .’17,0)
E

Definition (3.3.4) A cone K C X will be called minihedral if, for each 2,y € K,
z = sup{z, y) exists.

Remark (3.3.5) Given an z € X. Define K, = {2/ € X : ¢’ = u + z,u € K}.
Thus K, is defined from K by a translation. Minihedrality of X then means that
for all 2,y € K, there exists a sup(z,y) € K such that

Kz ﬂ Ky = }Csup(w,y)

The cones 1 and 2 presented in example 3.1.3 are minihedral. In addition, the
cone of all elements ¢ € I = {a : |a|, = (2, lan[p)}? < oo}, with nonnegative
coordinates is minihedral, i.e. if z = {z;} and y = {y:}5°, then sup(z,y) =
{max(zi, y:)}5°-

Polyhedral cones are not necessarily minihedral, but the converse is true by
theorem 3.3.13 below. See figure 3.4 for an example of a polyhedral cone which is
not minihedral.

Minihedral cones are important in the study of Banach lattices [S 74). Explic-
itly, an ordered pair (X, ) is called a lattice, if for all x,y € X, sup(z,y) and
inf(z,y) exist. The importance of minihedral cones in the study of Banach lattices
is evidenced by the next lemma.

Lemma (3.3.6) Given a minihedral cone K C X. K is reproducing iff for all
z,y € X (and not only K) there exists a z = sup(z, y).

Proof (3.3.7) Assume K C X minihedral and reproducing. Let z,y € & and
Uy, Us, V1,V € K such that = uy ~vy,y = uy—vy. Thenx+vi+vs, y+vitvs € K,
and, consequently, there exists

w = sup(e + vy + v,y + v+ va).
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Figure 3.4: The intersection of these two polyhedral cones is not of the same form
as the original cone. Therefore this cone is not minihedral.

But then, by the computation rules applied before,
w — vy — vy = sup{z,y).

To show the converse, assume that for each z,y € X there exists z = sup(z,y).
Then for each z there exists z, = sup(z,0). Then define z_ = z, —z = sup(z,0)—
x = sup(—zx,0). By the definition of sup(:,-}, 4, —.. € K and 2 can be written
as & = Ty — T - |

Let z € X and assume that z; and z_ exist. Then the decomposition z =
r4 —x_ is called the minimal decomposition among all decompositions of the form
z = 2’ - 2" 2',2" = 0. The decomposition is called minimal in the sense that
z' ¥ xy, & = z_ for all such possible decompositions.

An important property of Banach spaces is the concept of the dual space X,
i.e. the set of all linear continuous functionals on A. It is therefore natural to
extend this concept to cones as well.

Definition (3.8.8) The (not necessarily pointed) cone of positive functionals on
the cone K C X is called the dual cone and is denoted by K£*. If X = K*, then K
is called self-dual.

Let K be a cone in X™. Then Krein-Rutman [KR 48] have shown that X* exists
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if K is reproducing and K is pointed iff K* is solid. This implies that only pointed
cones can be self-dual.

Lemma (3.3.9) Fat cones in R* are self-dual.

Proof (3.3.10) See lemma 3.2.2. E

Theorem (3.3.11) If X is a solid minihedral cone, then the dual cone K* is
minihedral.

Proof (3.3.12) The proof can be found in Krein-Rutman [KR 48, page 223]. The
principal idea goes back to F. Riesz [R 40]. 0

Theorem (3.3.13) Let X be an n-dimensional linear space and K C A™ be a
reproducing cone*., Then K is minihedral iff there exists in A™ a (not necessarily
orthogonal) basis {e;}i=1,..» such that the set of vectors z = 37 | a;e;,a; > 0 for
all 7 coincides with K.

Proof (3.3.14) see [KR 48, page 225ff] ]

3.3.2 The Krein-Rutman Theorem

The version of the Krein-Rutman theorem that we will state here is called the
“finite-dimensional” Krein-Rutman in the literature {B 73]. The full theorem for
operators in a Banach space X may be proved by a direct method as in [KR 48]
or by applying the Schauder fixed-point principle as in [K 64]. Another more
constructive proof which uses instead the Jordan canonical form, was given by
G. Birkhoff [B 67]. We will not prove the theorem, but rather outline how the
fixed-point principle may be applied.

Theorem (3.3.15) [(finite-dimensional) Krein-Rutman] Let K € A™ be a full
cone. Assume that there exists a linear operator A4 on X™ such that AKX C K.
Then K contains an eigenvector w whose eigenvalue is the spectral radius of A, 1.e.

Aw = p(A)w (3.3.16)

Proof (3.3.17) Recall that by the well-known Brouwer fixed-point principle (the
finite-dimensional version of the Schauder fixed-point principle [RS1 80]), any lin-
ear operator f that leaves invariant a compact and convex subset & of A" and
which is in addition continuous, has at least one fixed point € §. The fixed point
z is a solution of the equation fz = z.

4In finite dimensions this implies solidity.
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Let S be the intersection of K and the unit sphere in X", If Az = 0 for some
« € K the theorem is shown for A = 0. Thus in the following, assume that Az # 0.
Then we define the operator f: § — 8, x — Az/| Az|| which is continuous. Then
by the Brouwer fixed-point theorem, there exists a u € & such that fu =u which
implies that Au = Au and A = ||Au| > 0. 3

3.4 Positive Operators and Cones in a Hilbert
Space

A Perron-Frobenius theory applicable to quantum mechanics and quantum field
theory in Hilbert spaces was first developed by Glimm-Jaffe [GJ 70]. Extensions
and improvements are due to Gross [G 72}, Faris [F 72] and Faris-Simon [FS 75].
Tn this section, we introduce the basic definitions as put forward in Faris [F 72].

3.4.1 Real Hilbert Spaces

In quantum mechanics one deals usually with a complex Hilbert space. However,
many problems can be reduced to problems in a real Hilbert space. For suppose
that W is a complex Hilbert space and let T': W — W be a conjugation. That is,
T is antilinear, 7% = 1 and (Tu,Tv) = (u,v)*. Then we call an element z € W
such that T = u real. The set of all real elements forms a real Hilbert space H.

Now if A: W — W is a linear operator such that AT = T A, then A leaves
the real space invariant. Such an operator is called real with respect to T'. Many
questions concerning the spectrum of A : W — W may be reduced to questions
about the restricted operator A : H — ‘M acting in the real Hilbert space. For
instance, if Au = Au with ) real and w € W, then Au, = du, and Au; = Au;,
where v = u, + tu; and u,,u; € H. Thus the multiplicity of the eigenvalue A may
be computed in the real space.

Example (3.4.1) Let W = L*(M, p) with inner product (u,v) = [, u*vdp. Then
Tu = u* defines a conjugation and H is the space of real functions in L?. This is
the typical example used in nonrelativistic quantum mechanics of particles [F 72].
Here the conjugation can be given a physical meaning. The Hilbert space of a
system of n particles is given by W = L?*(R*,dz). The conjugation is given
by Tu(z) = u(z)*. Let us now go into the momentum representation by the
isomorphism F : W —» L?(R®,dk) (the Fourier transform). Then the formula
FTF-14(k) = g(—k)*, g € L?(R*,dk) shows that T" reverses the momenta, i.e. T
is the time reversal conjugation. Thus operators invariant under time reversal are
real with respect to T



Generalizations of the Perron-Frobenius Theory 29

3.4.2 Hilbert Cones and Ergodicity

Thus far most of the cones considered have been solid. But already the exam-
ple 3.1.3(b) shows that there are important cones that do not have a nonempty
interior. Therefore, we are interested in a Perron-Frobenius theory that includes
cones which are not necessarily solid. This is done by the next definition of a cone,
which includes fai cones and icc.

Definition (3.4.2) [Hilbert cone] Let M be a real Hilbert space with scalar product
(-,-). A Hilbert cone K C M is a cone such that

(a) u,v € K implies (u,v) > 0,
(b) For all w € H, there exist u,v € K with w = u — v such that (u,v) =0,

Note that this condition implies that a Hilbert cone is reproducing.

Lemma (3.4.3) The above decomposition w = u — v is unique for all w € H,
w # 0.

Proof (3.4.4) Given a w € H, we assume that there exist u,v = 0 and f,g =0
such that u # f, v # g and w = u—v = f — g with (y,v) = (f,9) = 0. Then there
exist ¢,d € H such that u = f+cand v = g+d. It follows that u—v = f+e—g—d
and thus ¢ = d. Now we have

w)=@g)+(c,g) ~ {e,9) = (u,9) 20

>0 =0
I )= 3 )= Y, >0
(v, 1) = (9, f) +(e. f) ~ (e f)=(v,f)
>0 =0
and consequently
(uyv) = 0
= (f+eg+e)
= (f,9)+(f.e)+(e,9)+(c )
=0 >0 >0 >0
Thus ¢ = 0 and therefore u = f, v =g. E

Lemma (3.4.5) Let K be a Hilbert cone. If there exists a w € ‘H such that
(w, f) > 0 for all f € K, then already w € K.

Proof (3.4.8) Let w € H and u,v € K such that w = u —v, (u,v) = 0. Assume
(w, f) > 0 for all f € K. Select f = v. Then
0L (w,v) = (u,v) — (7—’$U)
0 o]
0

A
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This implies v = 0 and thus w = v € K. We remark that this lemma together
with the definition of a Hilbert cone assures that Hilbert cones are self-dual.  §

The introduction of a Hilbert space, and consequently the existence of an inner
product, enables us to introduce some new characterizations of elements of (k).

Definition (3.4.7) Let H be a real Hilbert space and K € H be a Hilbert cone.
A vector w > 0 is strictly positive, if whenever u > 0, u # 0, then (u,w) > 0.

Definition (3.4.8) In a straightforward translation of definition 3.1.25, we call
a linear operator A : H — H positivity preserving if u > 0 implies Au = 0. In
addition, we define the following two new concepts: A is positivily improving, if for
all w = 0, u # 0, Au is strictly positive. A is ergodic if A is positivity preserving
and in addition if for all u,v = 0, u,v # 0, there exists an integer n > 0 such that
(u, A"} > 0.

As before, we will usually write A4 = 0 or A > 0, when A is a positivity pre-
serving or positivity improving operator, respectively. Note that if A is positivity
preserving and u,u’,v,v' € K, u & v/,v = v’ implies (u, Av) > (W', Av'). In ap-
pendix A.2 we show that the above definition of an ergodic operator is indeed
compatible with the more common one in the von Neumann or Birkhoff-Khinchin

theorems [CFS 82, RS4 T8].

Remark (3.4.9) When proving uniqueness of the Perron vector in chapter 2,
we needed either irreducibility or primitivity of the operator A in question. The
connection between these two concepts and ergodicity is given as follows:

Let K € H be a fat cone and let {e;} be the cone basis. Then a sufficient
condition for A to be ergodic is that for all e;, ¢; in the cone basis there exists some
n € N such that

(e, A"ej) >0 (3.4.10)
In section A.1, we show that equation (3.4.10) is equivalent to A € M,(R*) being
connected which in turn is equivalent to irreducibility. Primitivity of A merely

means that the exponent n may be chosen to be independent of e;, e;. Therefore,
for a fat cone, ergodicity is equivalent to irreducibility.

3.4.3 The Faris Theorem

The version of the Perron-Frobenius theorem that we will need most during the
application to spin-lattice models is due to Faris [F 72].

But before continuing, we must redefine the notion. of the spectrum (A) since
A is now an operator on a possibly infinite-dimensional Hilbert space.

Definition (3.4.11) Let A be a bounded operator on W. Then A € C is said to
be in the resolvent set o(A) of A if Al — A is a bijection with a bounded inverse.
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If otherwise A & o(A), then A is said to be in the spectrum o(A} of A. In addition,
the spectral radius of A is defined as p(A) = supye,a Al

Thus by this definition, p(A) need not be an eigenvalue of A as in the finite-
dimensional case of definition 2.1.3. If A is a self-adjoint operator, then by [RS1 80,
theorem V1.6, VL8], o(A) C R and p(A) = ||A]|, where ||Al| is the usual operator
norm ||All = supjy-y [|Az]|. Since we will always consider self-adjoint operators,
we will therefore use p(A) instead of [|A]| is the next theorem and the following
chapters.

Theorem (38.4.12) [Faris] Let 4 : H — H be a bounded, positive and self-adjoint
operator on the real Hilbert space H. Assume that p(A) is an eigenvalue of A.
Let K C H be a Hilbert cone. Assume that A is positivity preserving and ergodic.
Then p(A) is a simple eigenvalue and the eigenspace is spanned by a strictly positive
vector.

Proof (3.4.13) We first show the strict positivity of the eigenvector. For conve-
nience, let A = p(A). We will assume X # 0 throughout the proof.

Consider w € H, w # 0 with Aw = Aw. By the Hilbert cone property 3.4.2 we
can write w = u — v with u,v = 0 and (u,v) = 0. Set z = u +v. Then z > 0 by
the cone property and

(z,2) = {u,u) —I—(\%ﬂ?ﬂl-&@?}—{-(v,v)

PPN .,
= (u$ 'U,) - (u?v) - ('U,’U,) "{“(’U, U)
= {w,w).

By hypothesis A™ is positivity preserving so that (w, A"w) < (2, A"z). Therefore

A (w, w) (w, A™w)

(2, A"z} (3.4.14)
p(A")(z,2)

p(A)"(z, z)

Nz, 2)

= A*(w,w) (3.4.13)

A

fl

4

This leads to the 1dentity
(w, Aw) = (2, A"z), (3.4.16)

which in its explicit form is given by

(u, A"u) — (u, A") ~ (v, A"u) + (v, A™v)
= (u, A"u)+ (4, A") + (v, A"u) + (v, A™)
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We therefore get
(u, A™0) + (v, A"u) = 0. (3.4.17)

Since A is ergodic and u,v > 0 by assumption, it follows immediately that either
w =0 or v = 0. Thus we have shown that w = 0 or —w > 0, and we may choose
w = 0.

We next show that A can have multiplicity of at most one. We will give two
reasons. The first is based on the pointedness of Hilbert cones. The second-the
one used by Faris-again uses the ergodicity of A.

The geometrical argument goes as follows. Let w,¢ # 0 with Aw = Aw and
Az = Az. Then w,z € K U —K by the above; by the linearity of the eigenvalue
equation, w -+ tz is an eigenstate for all ¢ € R corresponding to the eigenvalue A,
also. But by corollary 3.1.17, this implies that w,z are collinear if the ray is to lie
completely in KU —K.

Faris’ argument again uses the ergodicity of A. For all u 2= 0, u # 0 there exists
an m € N such that

(u, A™w) = A" (u,w) >0 (3.4.18)

and therefore w is strictly positive (note that A is positive by construction). Assume
that the eigenspace is two-dimensional, i.e. spanned by w,z and (z,w) = 0. But
then the above arguments hold and thus w,z are strictly positive and (w,z) > 0,
which is a contradiction. i

Remark (3.4.19) Under the hypothesis of the theorem, uniqueness of the eigen-
value and strict positivity of the eigenvector are sufficient to ensure ergodicity for
A. Assume that w is the unique and strictly positive ground state of A. Let
u,v € K be nonzero vectors such that (u, A™) = 0 for all n > 0. Then for all
t € R, (u,expt(A — p(A))v) = 0. By the spectral theorem of bounded operators
[RS1 80], the exponential reduces to the projector onto the ground state w, ie.
1ty oo (1, exp (A — p(A))v) = (u,w)(w,v) = 0 which is a contradiction since w
is strictly positive. Thus there must be some n such that (u, A"v) > 0, and this is
ergodicity.

3.5 Generalizing Irreducibility

Before generalizing the notion of irreducibility, we give an alternative definition
which emphasizes the geometric nature of this concept [G 59]. If er,€z,...,€n
are the unit coordinate vectors in A", then a coordinate subspace is a subspace
spanned by any subset of {ei,...,e,}. An drreducible matriz is a matrix which
has no invariant coordinate subspace of dimension less then n. Since the positive
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hyperoctant is generated by the vectors ey, ..., €x, 2 nonnegative irreducible matrix
maps the positive hyperoctant onto itself and leaves no face invariant.

After replacing the hyperoctant by an arbitrary solid cone K, the above defini-
tion leads to the following generalization.

Definition (3.5.1) A matrix A € II(K) is K-irreducible if A leaves no face of K
invariant. Otherwise A is called K-reducible.

Theorem (3.5.2) A4 € II(K). Then A is K-irreducible iff no eigenvector of A lies
on the boundary of K.

Proof (3.5.3) Suppose that A = 0 is K-reducible. Then there exists at least
one face F of K which is left invariant by A. So A, restricted to Hr, leaves the
solid cone F invariant. By the Krein-Rutman theorem 3.3.15 there exists a vector
z € F such that Ay, = Az. But z is also an eigenvector of A, operating on the
whole space, and z is in 8K. Conversely, suppose that z is an eigenvector of Ain
9K and let F, be the face associated with z as defined in lemma 3.1.23. Then,

Fa K
given any y € JF,, there exists an o > 0 such that aw = ¥ and hence az > y. Since
A € TI(K) by hypothesis, this implies

K K
Ay % Alaz) 2 Aaz

which lies in F,. Thus by lemuma 3.1.23(c), Ay € F,. Therefore F, is invariant
under A and thus A is K-reducible. E

Theorem (3.5.4) If A € II(K) has two eigenvectors in K°, then A also has an
eigenvector on the boundary of K. Furthermore. the corresponding eigenvalues
are all equal.

Proof (3.5.5) Let 71,2z, € K° be two linear independent eigenvectors of A with
corresponding eigenvalues A; and A;. Let ¢ be the smallest possible ¢ as given by
corollary 3.1.15 such that z; = foz; holds (where we assume that Ay 2 A > 0).
Then x5 = tozs — &3 lies in K. If Ay 5 0, then

A A
j&:to _2... mzmwl EK
M M
N’
<1
Therefore A; = A;. If A; = 0, then Ay = 0 and thus Azz = 0. Therefore 3 is an
eigenvector of A on the boundary 9K for both cases. E

The above lemma and theorem can be combined to yield the next theorem.

Theorem (3.5.6) A € II(K) is K-irreducible iff A has exactly one eigenvector in
K, and this eigenvector is in K°.
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The Perron-Frobenius theorem for K-irreducible operators then reads:

Theorem (3.5.7) [Vandergraft] If A € II(K) is K-irreducible, then
(a) p(A) is a simple eigenvalue,

(b) there is an eigenvector corresponding to p(A) in K¢, and no other eigenvector
lies in K.

Proof (3.5.8) Assertion (a) is the existence statement and as such is implied
by the Krein-Rutman theorem 3.3.15. The uniqueness follows as in the Faris
theorem 3.4.12, again using the fact that a degenerate eigenvalue would imply an
at least two-dimensional eigenspace and by the above theorems on K-irreducibility
this is impossible. E

Another generalization of irreducibility is given by

Definition (3.5.9) Let A € II(K). Then Ais called K-positive if A(K—{0}) € £°.

We note that this generalization strongly mimicks the definition 2.3.10 of a
primitive matrix. Again a Perron-Frobenius type theorem can be given.

Theorem (8.5.10) If A € II(K) is K-positive, then the assertions of theorem 3.5.7
hold.

There exist several other Perron-Frobenius theories. A well-known Perron-Fro-
benius theory builds on the notion of a up-positive operator and is developed in
Krasnoselskii [K 64] and Schafer [S 74].

X
Definition (3.5.11) An operator A = 0 is called ug-positive if for some nonzero
uo € K and any nonzero z € K there exist real numbers o(z), 8(x) > 0 and an
integer k(z) > 0 such that

alz)up < AFz < Bz)uo (3.5.12)
Another Perron-Frobenius theory is developed in Schneider-Vidyasagar [SV 70]
for classes of operators of the following type:

K
Definition (3.5.13) An operator A > 0 is called quasi-interior if for some A >

p(A),
AN — A)""l >0 (3.5.14)

The following connections exist between the various concepts of irreducibility.

(a) K-irreducibility ¢ quasi-interior
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(b} K-positivity ~» K-irreducibility
(c) uo-positivity ~» K-irreducibility

Further approaches to a Perron-Frobenius theory for II(K’) can be found in [B 73]
and the references therein.

3.6 The Cone of Positive Semidefinite Matrices

3.6.1 Characterizations

An important example of a natural cone in M, is given by the following class of
matrices.

Definition (3.6.1) An n X n matrix Hermitian matrix A is said to be positive
definite if
z"Az >0 (3.6.2)

for all nonzero z € C". If the strict inequality is weakened to 2" Az > 0, then A is
called positive semidefinite. We remark that the assumption of Hermiticity is not
a necessity but customary.

Positive semidefinite matrices play an important role in many fields of math-
ematics [T 66]. The next two theorems recall some well-known facts of positive
semidefinite matrices which we will later use extensively. Their proofs can be found
e.g. in Horn-Johnson [HJ 83].

Theorem (3.6.3) A Hermitian matrix A € M, is positive (semi)definite iff all
of its eigenvalues are positive (nonnegative). If follows that the trace and the
determinant of A are positive (nonnegative). Also, at least one diagonal element
of a positive semidefinite matrix is nonzero.

Theorem (3.6.4) A matrix A € M, is positive definite iff there is a nonsingular
matrix B € M, such that A = B*B. If A is positive semidefinite, then there exists
for all integers & > 0 a unique positive semidefinite matrix C such that C* = A.

Since any nonnegative (nontrivial) linear combination of positive (semi)definite
matrices of the same size is again positive (semi)definite, the set of all positive
(semi)definite matrices in M, forms a cone, denoted PSD, the cone of positive
(semi)definite n x n matrices. PSD is a proper cone and since the unit matrix I
is positive definite, PSD is solid.

Definition (3.6.5) Let V be the real space of nxn Hermitian matrices, isomorphic
to R™. Let the inner product be defined by

(A, B) = trace(A"B) (3.6.6)
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If A= [a;], B = [by] € M, then the Hadamard product of A and B is the matrix
Ao B = [aibyl (3.6.7)

Theorem (3.6.8) [Schur product theorem] If A, B € M,, are positive (semi)defi-
nite, then A o B is also positive (semi)definite.

Proof (3.6.9) See Horn-Johnson {HJ 85, Theorem 7.5.3] M
Theorem (3.6.10) Given the Hilbert space V and the cone PSD, PSD is self-
dual, i.e. PSD = PSD".

Proof (3.6.11) [BB 73]
PSD C PSD*: We want to show that given A, B € PSD, then (A, B) > 0. Thus
let A,B ¢ PSD. Ao B ¢ PSD by theorem 3.6.8 and thus

((Ao B)z,z) > 0Vr € C"
Let e = (1,...,1). Then

n

(A,B) =Y aibi; = (Ao Be,e) 2 0

4]
PSD* C PSD: Let A € PSD". Then

(Az,z) = (A, zz") 2 0
since xz* € PSID and thus A is positive semidefinite. |

Theorem (3.6.12) If A € M, is a positive semidefinite matrix of rank k, then 4
may be written in the form

A = v1v] + 005 + ...+ ool (3.6.13)

where each v; € C" and the set {v;}i=1,..x is an orthogonal set of nonzero vectors.

Proof (3.6.14) By the spectral theorem, we write A = UAU*, where U is unitary
1

and A = diag(Ay,..., ;). Then let v; be A7 times the ith column of U. E

Lemma (3.6.15) A ray in PSD is an extreme ray, iff A has rank 1.

Proof (3.6.16) Let 0 # z € C*. Then zz* is in PSD and of rank 1. We now
want to show that z2* is an extreme ray. So suppose that there exist A, B € PSD
and a real number o €]0,1[ such that

zz* = aA+ (1 —a)B (3.6.17)
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Now let us choose an orthonormal set {v;}iy,.. . such that # = v;. Thus v, =
(z,v;) = 0 for all k > 2 and

vize v = |zl = 0 = avjAv, +(1 — @) v, Byg
bt s et

>0 >0

Thus viAv, = viBvy = 0 forall k > 2. By the positive semidefiniteness of A and
B this implies that Avy = Bu, = 0 for all £ > 0 and thus A, B have rank 1. In
addition, by theorem 3.6.12 we know that zz* = aA = bB. Thus zz* is an extreme
ray.
To show the converse, assume that rankA > 2. Again by theorem 3.6.12, we
can write
va1v;‘+v2v§+...

where {v;}i=12,.. is an orthogonal set of nonzero vectors in C?. Then if A is an
extreme ray, this would imply that

PSD 3 C = vy + ... = Ay vy

A # 0. Therefore
Coy = Mwiv})vy = Mo o1 # 0

which is a contradiction since Cvy = 0 by the orthogonality of the set {v;}. Thus
A cannot be an extreme ray. |

The assertions of theorem 3.6.12 and lemma 3.6.15 can be combined to yield
the following theorem.

Theorem (3.6.18) The cone of positive semidefinite matrices is generated by
the positive semidefinite matrices of rank 1. The boundary of PSD consists of the
positive semidefinite matrices, whereas interior of PSD, i.e. PSD° consists of the
positive definite matrices.

Theorem (3.6.19) PSD CV is a Hilbert cone.

Proof (3.6.20) Since PSD is self-dual by theorem 3.6.10, and reproducing by the
solidicity, it remains to show that PSD is reproducing such that the decomposition
is indeed orthogonal. Let W be an arbitrary Hermitian operator in V. Then the
modulus of W is defined as the positive square root of W?, i.e.

W] =/ (W?) (3.6.21)

With the help of the modulus, we subsequently define the orthogonal decomposi-
tion,
_ (Wl W)

Wi 5

(3.6.22)
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By this definition, W = Wy — W_ and |W| = W, + W_. We first show that the
decomposition is indeed orthogonal, that is (W, W_) = 0.
WoWw. = —((IW]+W)({W]-W))

(WP - W2 = |W|W + W)

| ot pn e ] b

= J(-IWIW + W|w)

which is indeed zero, since W commutes with [W| [HJ 85, theorem 7.2.6]. Finally,
it remnains to show that W, W.. are positive semidefinite. Define W, by

v
(T +nW})

n

(3.6.23)

Then by the orthogonal decomposition, we have W, |W = W, W,. In addition,
w3
(1 +nW2)
_We e
(1 +nW?)
L
(1 +nWZ2)?
W2 1
|l

o . |
(1 +nW3) (1 +2W3)
1

1 1
e L e

[WolW| = Wel* = [n — Walf?

= |

|

Now since o((1 +nW2)) = [1,00[, and hence o((1 + nW2)~1) = [0,1], we have

that
1
Wl - Wl < 4

Thus W,|W/| converges uniformly to W,.. But W,|W| can be written as

1 3
1 1 : 1,
W, = (qump (gw.i) 1W+121W14)

which is an element of PSD by theorem 3.6.4. Since PSD is closed, W, € PSD.
i
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Theorem {8.6.24) PSD is in general not a fat cone.

Proof (3.6.25) Let K be a fat cone in a space H". Then this implies that K
is generated by n orthogonal vectors. Here we will show that the cone of positive
semidefinite matrices is generated by infinitely many vectors, thus it can not be
a fat cone. We recall the well-known analogy of the lightcone in four-dimensional
Minkowski space M* with the cone of positive semidefinite matrices in M. Let A
be a positive semidefinite matrix and let z = (2o, ;) be an element of M*. Then

A= ( a1 a1 ) _ ( To+ Tz Ty — LTy ) (3.6.26)

do1 Q22 Ty + 1y To— T3

where z lies on the forward lightcone, that is zg > 0 and (z,2)m = 2§ — 32 zh

As in lemma 3.2.5, the forward lightcone is a four-dimensional icc and thus not a
fat cone. Now, adding an arbitrary number of dimensions such that we deal with
the positive semidefinite matrices in M,, we have to add generating vectors. Thus
the number of generating vectors increases and will never be finite. |

3.6.2 Some Operators Leaving PSD Invariant

This section is devoted to the study of operators® on V that leave PSD invari-
ant. By the isomorphism of V to R, elements of ¥ will then be replaced by
n2-dimensional column vectors for which a suitable ordering has to be applied.
Operators A on V will be elements of M2 =2(R).

Results on the structure of II(PSD) are rare. A. Berman states in [B 73],
that “the general question of characterizing II(PSD) seems to be a very difficult
one”. Most tesults that can be found in the literature are due to O. Taussky
[T 66, T 67, T 72]. Unfortunately, we were not able to uncover more recent results.
Indeed, it seems that little work has been devoted to that question since 1973 [S 911

The next lemma is concerned with products of two or three positive semidefinite
matrices.

Lemma (3.6.27) If A= 5;5; and S; is Hermitian and positive semidefinite, then
A has real and positive roots and a full set of eigenvectors. If A= 555 and
S, > 0 is Hermitian as well as A, then A is also positive semidefinite.

Proof (3.6.28) We note that the second assertion is due to E. Wigner®. Various
other proofs are reviewed in the paper by Taussky [T 66]. 0

Taussky further reviewed a lemma on so-called “generalized automorphs”. This
lemma is important since it provides the basic ingredient needed to apply the finite-
dimensional Krein-Rutman theorem 3.3.15.

5For notational clarity, such operators on V will be typeset as boldface characters, ie. T,
5E.P. Wigner, On weakly positive matrices, Canadian J. Math. 15, 313, (1963)
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Lemma (3.6.29) Let 7' € M,(R). Then the transformation T : A — TAT"
transforms a positive semidefinite matrix A into a positive semidefinite matrix.
If in addition, 7" is nonsingular, then a positive definite A is transformed into a
positive definite matrix.

Proof (3.6.30) (z, Az) > 0 for all = implies that (T*z, AT*z) = (z,TAT"z) > 0
for all z and thus the first assertion is proved.

Assume now that A is positive definite and that T is nonsingular, that is,
Tz = 0 implies x = 0. Then (T*z, AT*z) = (2,TAT*z) = 0 only if z = 0 and
thus TAT™* is positive definite. |

Remark (3.6.31) T is certainly not K-irredicible or even K-positive, thus the
uniqueness of the Perron vector is not assured by the above generalized Perron-
Frobenius methods. Taussky further examined the characteristic roots of T and
established conditions for the strict positivity of some characteristic vectors. If
t1,...,t, denote the characteristic roots of a real matrix T, then T has charac-
teristic roots #ity, 5,k = 1,...,n. If 2; is a characteristic vector of {; then #,f; has
characteristic vector x;o} + zpzf. If X = 22} + zpay is real, then ¢ # k implies
that X is not positive definite. For ¢ = k, X is positive definite iff T' is similar to
the product of an orthogonal matrix and a scalar matrix. If z; € C" and z; = &;,
then X is not positive definite unless n = 2.

In the next theorem, we establish a straightforward generalization of Taussky's
result on generalized automorphs. We will later make extensive use of this result.

Theorem (3.6.32) Let 2 € PSD. Suppose that there exists an operator S on V
such that
Ay STATY (3.6.33)
]
where S is a positive semidefinite matrix in M,, and {T:}i=1,...m & set of matrices
in M,(R). Then the mapping is positivity preserving w.r.t. PSD.

Proof (3.6.34) The proof again utilizes the unitary diagonalization of a positive
semidefinite matrix. Let § = UAgU* where Ag = diag(A1, ..., An).

S SGTAT; = Y (UAsU*)iTAT]
ij i
= Y UahuUyTAT}
iglk

= Y UshU;TATS

a5



Generalizations of the Perron-Frobenius Theory 41

= Y UahUSTAT]

il

- S (S ) a (Sosm)
I i j

= Y MKAK]
i

which is indeed positive semidefinite since all A; > 0 for S positive semidefinite
and by lemma 3.6.29. |

At the end of this section, we present another interesting property of the gen-
eralized autornorph T.

Theorem {3.6.35) [Stein] Let T € M,. Then T™ — 0 iff there exists a matrix
A € PSD°® such that
A TAT" (3.6.36)

Proof (3.6.37) The theorem is due to P. Stein. An alternative proof is given by
Taussky. See [T 66] for further details. M



Chapter 4

Ground States and Semigroups

To the best of our knowledge, the first time Perron-Frobenius theory was applied to
establish uniqueness of ground states for a physical model was in a paper of Ellio}
Lieb and Daniel Mattis [LM 62a] on a certain one-dimensional spin-lattice model.
There, as well as in a subsequent paper of the same authors [LM 62b], essentially
the classical Perron-Frobenius theory as presented in chapter 2 and section 3.2 is
used, i.e. in the context of fat cones and connected matrices.

In 1970, Glimm-Jaffe used the ideas of section 3.4 to establish existence and
uniqueness theorems for some models of quantum field theory [GJ 70]. There, for
the first time, semigroups of operators were used instead of the operators them-
selves. An abstract version of their result was given by Faris [F 72}, the funda-
mentals of which are partially recounted in section 3.4. As stated on page 28 a
number of authors improved this treatment and a summary of results can be found
in [RS4 78, GJ 87].

In this chapter, we present the two different approaches as put forth in the
literature cited above. In section 4.1 we briefly summarize the ideas that enabled
Lieb-Mattis to apply Perron-Frobenius theory to ground states of Hamiltonians.
In section 4.3, after having introduced semigroups in section 4.2, we subsequently
develop the perturbation theory of semigroups along the lines of Faris.

4.1 The Idea of Lieb-Mattis

Lieb-Mattis show the uniqueness of the ground state for a certain class of Hamil-
tonians, assuming its existence. Their basic idea is the following:

Let H be a real, finite-dimensional Hilbert space as defined in section 3.4.1.
Let H be a Hamiltonian on H and assume that H can be written is the form

H=Hy-V (4.1.1)

42
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where Hg is assumed to be diagonal w.r.t. a given cone basis {e:}i=1,..n in H. Let
K = {e;}* denote the fat cone in H, i.e. the cone spanned by nonnegative linear
combinations of the basis vectors e;. Assume further that Hy and V are both
positivity preserving w.r.t. the fat cone K.

Denote by w = 377 wie; the ground state of the Hamiltonian H. Then if the
ground state energy is Fo, all other energy expectation values are larger, i.e.

By = (w, Hio) < (fol, Hw]) (4.12)
where |w} = S, |wile;. Thus we have
(w, How) — (w, Vw) < (Jwl, Holw|) ~ (fwl, V]w])
and since Hy is diagonal by hypothesis, it follows that
(w, How) = eo(w, w) = eof|w], {ww]) = (|w], Holwl])
and thus we are led to the inequality
(w, V) 2 (Jwl], Viw]) (4.1.3)

which in turn implies equality in (4.1.2). Therefore, if w is a ground state, then
so is |w] € K. Additional assumptions with regard to V, equivalent to ergodicity,
then assure that w = |w| and w is strictly positive, thus implying uniqueness.

The essential tool that enabled us to carry out the above argument is the minus
sign in equation (4.1.1). At first glance this sign seems to be a nuisance since the
overall positivity of H is lost, but with its help, we are able to redo the Perron-
Frobenius argument as presented in equation (2.2.3) (see also equation (3.4.15)) by
circumventing the need of the spectral radius p(-) yet still producing the desired
inequality. The minus sign even penetrates into the semigroup arguments presented
in the next section.

4.2 Ergodic Semigroups

Definition (4.2.1) A family of bounded operators {T'(t) : 0 < ¢t < oo} on a
Banach space X is called a strongly continuous semigroup if

(a) T(0) =1,
(b) T(s)T(t) = T(s +1) V s, € RY,

(c) For each ¢ € Xt~ T'(1)y is continuous.
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Such semigroups arise in the theory of partial differential equations (e.g. the
heat equation du/dt = —T'u) and in quantum theory. Accounts devoted to their
study are [P 53, K 66, RS2 78].

From the above definition, it is easy to see that semigroups are somewhat
connected to exponentials. Let T(t) be a strongly confinuous semigroup on a
Banach space X'. As is the case with unitary groups on Hilbert spaces’, we obtain
the infinitesimal generator of T(t) by differentiation. Set

A= L_%flﬂ (4.2.2)
Then the generator A of the semigroup T'(t) is given as
| Az = smléfix)lAta: (4.2.3)
for all z € X such that the limit exists. We write
T(t) = exp(—tA) (4.2.4)

A fundamental question of the theory of semigroups in Banach spaces is whether,
given a semigroup T'(t), does its generator A exist and if it does what is its do-
main D(A). On the other hand, given an operator A on X, what is the semigroup
T(t) = T(t, A) thus generated. Since in our case, we will always deal with bounded
operators defined on the whole of X, the first problem do not exits. As to the sec-
ond problem, assume that an operator A is given. Then we can simply define the
exponential on X by its Taylor series,

exp(—tA) = Z (_nt‘)ﬂ A" (4.2.5)

as we already did implicitly whenever we used the exponential during one of the
last chapters. The group property

exp(—sA) exp(—tA) = exp(—(t + s)A) (4.2.6)
follows from (4.2.5) and A is indeed the generator, since by differentiation,

d
aexp(——tA) = —Aexp(—tA). (4.2.7)
The applicatibility of semigroups to ground states via the Perron-Frobenius

theory is due to the following simple fact: Let H be a self-adjoint and semibounded

1Gee M. Stone, Linear Transformations in Hilbert space III, Proc. Nat. Acad. Sci, US.A. 18,
172, (1930)
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operator, Then if Ey = info(H), sup o(exp{—tH}) = exp(—tEy) for all ¢t > 0 by
the spectral theorem.

In the next definition, we introduce a characterization of semigroups that will
allow us to apply Perron-Frobenius theory to semigroups.

Definition (4.2.8) Let £ € H be a Hilbert cone. Let H be a bounded, self-
adjoint operator acting in H, generating the semigroup exp(—tH). Assume that
exp(—tH) is positivity preserving for all ¢ > 0. Then exp(~tH), t > 0 is called an
ergodic semigroup, if for all u,v € K, u,v # 0, there exists a ¢ > 0 such that

(u, exp(—1H)v) > 0 (4.2.9)

Theorem (4.2.10) [Perron-Frobenius for semigroups] Let K € H be a Hilbert
cone. Let H be a self-adjoint operator acting on H. Assume that H is bounded
below by an eigenvalue Fy. Assume further that exp(—tH) is positivity preserving
for all ¢ > 0. Then if exp(—tH) is an ergodic semigroup, Ey is an eigenvalue of
multiplicity one and the corresponding eigenspace can be chosen strictly positive.

Proof (4.2.11) Set A = exp(~tH). Then 0 < ¢(A4) < p(A) = exp(—tEy)
The eigenvector w of H corresponding to Fy, is also an eigenvector of exp(—tH)
corresponding to exp(—~tFEy). Ais positivity preserving by hypothesis and positivity
improving for a fixed t. Alternatively we could define A’ = exp(—H) and then (A’)*
is ergodic if we generalize ergodicity to non-integral exponents ¢. Since the Perron-
Froebenius argument holds for a positivity improving A as well as an ergodic A,
the proof is completed. B

4.3 Perturbation Results

In this section, we develop some perturbation theorems for semigroups. The term
‘perturbation’ used here is not to be taken too technical, since we do not talk
about the standard Rayleigh-Schrodinger expansion in powers of V. Indeed, there
is no requirement as to the smallness of V, as has normally to be assured to
yield convergence of the expansion. By perturbation, we merely wish to indicate,
that the Hamiltonian of the system in question can be written in the form of
equation (4.1.1).

The following theorem is an abstract version of Glimm-Jaffe {GJ 70} as in [F 72].

Theorem (4.3.1) [Perturbation Result 1] Let £ € H be a Hilbert cone. Let Hy
and V be self-adjoint and bounded operators in H such that H = Hy — V is also
bounded in H. Assume that exp(—tH,) and exp(tV') are positivity preserving for
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all £ > 0. Assume finally that u,v € K, (u,v) = 0 implies (u, exp(4+tHy)v) = 0
for all £ 2 0. Then if exp(tV) is an ergodic semigroup, exp(—tH) is positivity
preserving and generates an ergodic semigroup.

Proof (4.3.2) By the Trotter product formula [RS1 80],

t i
exp(—t(Ho — V)) = s—lim {exp(——gﬂg)exp(}%‘/)} (4.3.3)
Both exp(—£Hy) and exp(+V') are positivity preserving by hypothesis and thus by
3.1.28, exp(—tH) is positivity preserving,

Let v € K, v # 0. Define

M(v) = {u € K|(u,exp(—tH)) =0V ¢ > 0}. (4.3.4)

In order to prove the ergodicity of exp(—tH) it suffices to show that M(v) = {0}.
We first observe that M(v) is a closed cone and exp(—tH) leaves M(v) invariant.
The same is true for exp(tHo). For suppose that u,v > 0 and (u, exp(—tH)v) = 0,
then by assumption (exp(tHo)u,exp(tH)v) = 0. But then again by the Trotter
product formula we have

. ¢ ¢
exp(—#(H — Ho)) = s~ lim {exp(——H) exp(+~Ho)}"

and thus exp(—t(H — H,)) leaves M(v) invariant. But since H — Hy = -V,
this implies that exp(tV) leaves M(v) invariant. Now given any u € M(v) then
exp(tV)u € M(v) and thus for all ¢ > 0

(exp(tV)u,v) =0

But by construction we know that exp(tV) is an ergodic semigroup and that v s 0.
Thus we have shown that u = 0 and therefore M{v) = {0}. |

In the next theorem, we replace the final assumption of theorem 4.3.1 — namely
that exp(tHo) transforms orthogonal elements of K into orthogonal ones — with a
mild positivity improving quality of exp(—tHy).

Theorem (4.3.5) [Perturbation Result 2] Let X € M be a Hilbert cone. Let Hy
and V be self-adjoint and bounded operators in H such that H = Hy — V is also
bounded in H. Assume that exp(—tHo) and exp(tV) are positivity preserving.
Assume finally that exp(—¢Hp) is positivity improving in the sense that

(u,exp(—tHo)v) 2 (u,v) (4.3.6)

for all £ > 0,u,v € K. Then if exp(tV) is an ergodic semigroup, exp(—tH) is
positivity preserving and generates an ergodic semigroup.
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Proof (4.3.7) Again as in theorem 4.3.1, by the Trotter product formula, exp(—tH)
is positivity preserving. Let u,v € K, then

(u, exp(—t(Ho — V))v)
— lim (o, (exp(—t D) exp(4£2))")
— lim (exp(+2) exp(—t 12, (exp(—t52) expl(+- )" o)

o0

> lim (exp(-{—t—:z-)u, (.. )" )
> lim (exp(—{—Zt-Z-«u, (...)" %)

> lim (exp(+tV)u,v)

= (exp(+tV)u,v)
> 0

where the last inequality follows by the ergodicity of exp(¢V). Thus exp(—tH) is
an ergodic semigroup.

Note that if —H is positivity preserving, than this is sufficient for equa-
tion (4.3.6) to hold.

Faris proved an additional perturbation result starting at the operator-valued
function

RN =(H +¢o)™ (4.3.8)

Although we will not use it in the course of the present thesis, we still include it
here, since it may serve as a starting point in future investigations. The connection
with the above theorems is immediate by

Proposition (4.3.9) Let K € H be a Hilbert cone. Let H be a bounded self-
adjoint operator on H. Assume that exp(—tH) is positivity preserving for all ¢ > 0.
Let ¢ be a real number such that —c¢ < inf o(H). Then exp(—tH) is an ergodic
semigroup iff (H + ¢)™! is positivity preserving.

Proof (4.3.10)

(u, (H +¢c) o) = / exp(—tc)(u,exp(—tH)v)dt (4.3.11)
0
by the formal Laplace transformation [RS2 78, page 237]. E

Theorem (4.3.12) [Perturbation Result 3] Let K C M and Ho, V be given as in
theorem 4.3.1 and H = Hy— V. Assume that (Ho+¢)™? is positivity preserving for
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all ¢ € R, such that ¢+ inf o{Hp) > 0 and that V is positivity preserving. Assume
also that (Hy+¢)™? is ergodic. Then (H +¢)™! is positivity preserving and ergodic
for all such c.

Proof (4.8.13) We first show that (H + ¢)™! is positivity preserving. Consider
real numbers ¢ such that —c¢ < inf ¢(Hy). Then we have the following expression

IV(Ho+o)7 | < IVII(H + )7
IV I(inf o (Ho) + )™
1

A

for large enough c. Hence we have the convergent series expansion

(H+e)! = (Hy—-V+e)?
= (Ho+ o)/ (1-V(Ho+¢)™)!

= (Ho+e¢)™ f:(V(He +o7) (4.3.14)

n={

for all such c. It follows from this series representation and the hypothesis (Hp +
c)™, V = 0 that (H + ¢)™? is positivity preserving for all such c.

Let Ey = inf o(H). We now know that there exists a —¢ < Ey with (H + ¢)~?
positivity preserving. Consider a d € R with d < ¢ and —d < Ey. Then

le—d)(H +o)7 = (c—d)(Bo+c)”
1—dfc
1+EU/C
< 1

So

(H+d)™ = H+e)™ ) (e~ d)(H+o)7T° (4.3.15)
n=0
is also positivity preserving and the first half of the proof is finished. We next show
the ergodicity of H for all ¢ sufficiently large. We may write

(H+e)'=(Ho+c)' +T (4.3.16)

where T' = (Ho+¢) 1 (V)(H+¢)"? is positivity preserving by the above arguments.
If (Hy + c)™! is ergodic, then there exists an n € N, such that for all u,v € X we
have

(u, (Ho + ¢)™™v) > 0 (4.3.17)



Ground States and Semigroups 49

Thus it immediately follows from above that
(u, (H +¢)™) = (u, [(Ho 4+ €)'+ T]*) > 0 (4.3.18)

and so {H +¢)! is ergodic for all such ¢. Finally, we show that (H +d)~? is ergodic
for all d such that ¢ > d > —Ey. But this follows from the expansion (4.3.15) and
the ergodicity of (H +¢)~. ]

In closing, we remark that all the above theorems can be proved for a more
general setting. The usual restrictions on the operators are then of the following
type: Assume Hy bounded below and V relatively bounded w.r.t. Hp with relative
bound less than 1.



Chapter 5

Spin-Lattice Models

In 1962, E. Lieb and D. Mattis studied the ordering of electronic energy levels
in two models. In the first paper, they considered a one-dimensional chain of
electrons under the dynamics of one-electron hopping [LM 62a}. The second paper
deals with the ground state of the antiferromagnetic Heisenberg model in arbitrary
dimensions [LM 62b]. Both papers use the idea presented in section 4.1 to prove
the uniqueness of the ground state. In this chapter, after having introduced the
notation we will use in the context of spin-lattice models, we will give a slightly
alternative proof of the theorems of Lieb-Mattis by applying semigroup methods.

5.1 Preliminaries

In the subsequent chapters, we will study the ground state properties of various
models of strongly correlated electron systems on a lattice of arbitrary dimension
d, i.e.

Definition (5.1.1) Given a finite set A = {z,..., 2} of elements of Z%. We call A
a lattice and each x = {wx,...,z4} € Z% a lattice site. We will furthermore denote
the number of lattice sites in the lattice by |A|.

Constructing a Hilbert space for the lattice A is done in two steps. First we will
define a Hilbert space H(z) for each lattice site & independently. Essentially two
different lattice site Hilbert spaces will be encountered in the following sections.
For the Lieb-Mattis model, which we will study in this chapter, and the Hubbard
model, to be studied in chapter 6, the Hilbert space at some lattice site z is given
by the Fock space

H(x) = €D Hal2) (5.1.2)

nel
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where H,(z) denotes the n-particle Hilbert space at site z. Ho(z) (= C) is spanned
by the no-particle (vacuum) state |0} and Hi(z) (= C?) is the l-particle space
spanned by | 1) and | |). Ha(z) is constructed from the 1-particle space by the
antisymmetric tensor product, i.e. Ha(z) = Hi(z) ®* Hy(z) (= C) and spanned
by | 11). On this fermionic Fock space H(z), we define the creation operator cl,
such that!

ct,10) = o)
chelo’y = (1 =door)loc’)
c lod’y = 0 (5.1.3)

where o denotes the spin index and is as such either T or |. The annihilation
operator ¢z, is correspondingly defined as

Cos|0) = 0
Czol0") = 6500|0)
Croloo’) = |0} (5.1.4)

et cyo satisfy the usual anticommutation relations®, i.e.
{deac;a'} = byyboor (5.1.5)

{Cmaacyﬂ"} - {CIZU’CLU’} =0 (516)

With the help of the creation and annihilation operators, we next define the number
operators,
Ny = Mgy + M| = cchmT + CLLCN- (5.1.7)

The Hilbert space for the Heisenberg model, which we study in section 5.3, has
another form. At each site 2 we assume that there exists a particle with spin value
s(z). We denote the spin operator at @ by o(z) = (01(2), 03(x), o3(x)) and the
components of o(z) obey the commutation relation

[o1(2), o2(2)] = to3(x) (5.1.8)

The remaining relations follow by cyclic permutation of the indices. o(z)? and
o3(z) may be diagonalized simultaneously, s(z¢)[s(x)+1] and m(z) being the eigen-
values, respectively and m(z) lies in the interval —s(z) < m(z) < s(z). Then

H(ﬂ?) — C?s(m)~i~1.

1Tnstead of *, we will from now on denote the Hermitian adjoint of an operator by the symbol
t, as is customary in our context.
2We use natural units such that % = 1 from now on.



52

Next we construct the Hilbert space for the whole lattice by using either the
symimetric or the antisymmetric tensor product of these lattice site spaces, i.e.

H(A) = Q) H(z) or H(A) = (X) H(=) (5.1.9)

TEA €A

On this Hilbert space, we introduce operators in the following way.

Definition (5.1.10) Let o(x) be an operator on H(z), then A(z) is an operator
on H(A) defined by

site @
A@)=1®--®az)®--®1 (5.1.11)

-
jAlth tensor product

where the tensor product ® may be symmetric or antisymmetric. In addition, we
use the notation A(A) to indicate that A(A) operates on every lattice site of A. A
typical such operator is e.g.

A(A) = A=) (5.1.12)

zEA

For the operators cf_, ¢,, as well as the number operators ngp, ns|, We will not
distinguish their corresponding a(z) and A(z). As is customary in the literature,
both will be denoted by ¢!, ¢y, But for the spin operators, we make the following
definition:

Definition (5.1.13) Let o(z) = (o1(z),02(2), 03(z)) be the spin operator on
the space H(z). Following our above introduced notation, we then construct spin
operators on H(A) such that

S(z)=1&" - ® o(z)® - @1 (5.1.14)

and

S(A) = >_S(), (5.1.15)

zEA
The eigenvalues are denoted by S(S + 1) and M for S(A)* and S3(A).

That these operators on H{A) indeed obey the spin commutation relations as
did the components o1(x), 02(x), 0s(z) of the spin operator on H(zx) can be seen
by the next calculation.

[S1(A), S2(A)]

= D Si@), ) Sa(y)]

zEA yEA
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= S8 .. 8 nr)e .0 1,18 .. .8 0y e ... 8]
= Z 1®°...Q°% [o1,05)(z) @ ... ® 1 &(x,y)
= Z 1@ ... @ ioa(z) @ ...@° 1 8(z,y)

= Y1¢°...8%0s(2) @ ... ®°

= i95(A) (5.1.16)

The remaining relations follow again by cyclic permutation. In analogy to the
Fermi creation and annihilation operators, we define spin creation and anndhilation
operators for the whole lattice such that

Su(A) = %(sm(z\) L3 S,(A)) (5.1.17)

and we may write

S(x)-S(y) = Si(e)Si(y) + Sal2)Saly) + Sa(2)Sa(y)
= S(2)S-(y) + S-(2)S+(y) + Ss(x)Sa(y)  (5.1.18)

Using the Fermi operator representation of above, we may even construct spin
operators in the Fock space such that

S5(A) = 5 (a1 — 721) (5.1.19)

€A

1
Se(A) = (S-(A)F = —= ) clyenl (5.1.20)
\/-i.’EEA
It can be shown that these spin operators indeed fulfiil the spin commutation
relations as in equation (5.1.16).

5.2 The Lieb-Mattis Model

Although the model under investigation by Lieb-Mattis in [LM 62a], which we will
henceforth call the Lieb-Maitis model, is rather simple, it serves well to introduce
the principal points of the application of semigroups.

Let A denote a one-dimensional chain consisting of discrete atoms labeled
z = 1,2,...,|A| separated by a distance [ such that only nearest-neighbor over-
lap of the electron wave functions is important. We assume that each atom in this
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chain has only one valence state (capable of double occupancy, however, because of
spin degeneracy). Therefore the Hilbert space of the Lieb-Mattis model is the an-
tisymmetric tensor product of the Fock space H(z) as discussed in the last section.
The dynamics in this model is such that only one-electron hopping® is present. As
a minor generalization of the original account, the corresponding real, symmetric
hopping matriz t(z,y) need not be constant; we require only that the sign of #{z,y)
is the same for all z,y € A.

Aside from the hopping matrix, we assume that the Hamiltonian is diagonal
and that the energy in a given state is calculable by specifying which atoms have
empty, single occupied or double occupied valence states. This leads directly to
the Hamiltonian

Hiw = Y Hz,y)ebocso + Holo o iny- ) (5.2.1)
(zy)
omi,]
where Ho(...,ns,...) is an arbitrary function of the number operators.
We first note that the energy spectrum of Hyys is invariant under an overall
sign change of ¢(x,y) [LW 68]. The proof assumes bipartiteness of A, that is

Definition (5.2.2) We call a lattice A bipartite, if the sites of A can be divided into
two disjoint sets A, Ap such that {(z,y) = 0 whenever z,y € Ag or z,y € Agt.
We note that by this condition, which is more an assertion about the hopping
matrix #(z,y) than the lattice A, we have t(z,z) =0 for all 2 € A.

Now, we may apply the unitary BCT transformation (see appendix A.4.1) which
changes the overall sign of the hopping part of Hra but leaves invariant the number
operators n,, and thus Hy. We therefore assume that #(z,y) < 0 for all z,y € A
from now on. The Hamiltonian of the Lieb-Mattis model then reads as

Hip = Ho(oooynay o) — Z t(z,y)cl cp0 (5.2.3)

{z)

=Tl

and we have the desired form of equation (4.1.1).
Let N = Y ., s be the number operator®. N commutes with Hppy (charge
conservation) and thus we may restrict ourselves to a subspace with a fixed and

30One-electron hops are those where one electron hops from its present site to another site,
previously not occupied by an electron of the same spin direction. Double hops denote the
exchange of two electrons at different sites and are related to spin exchange as we will show in
chapter 7.

4See appendix A.1 for an equivalent definition of bipartiteness in the context of matrix theory.

5We do not distinguish the number operator N from its eigenvalue N by using different
symbols. Since we will always work in subspaces with a fixed number of particles, this will not
cause any problems.
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even number of electrons, i.e. N = 2n. Necessarily, N < |Al, since each site can
accommodate at most two electrons.

The Hamiltonian Hyasr commutes with S(A)? and S3(A). Thus let ¢ denote
some simultaneous eigenstate of Hyar and S3(A) with eigenvalues E(y) and M ().
Then S_(A)YMe # 0 and S.(A)"M4 # 0 and both states are S3(A), Hrar eigen-
states and belong to M = 0, E(3), respectively. Therefore the ground state in the
M = 0 subspace is the ground state of the Hamiltonian.

In the M = 0 subspace, there are n electrons with spin up and n electrons with
spin down. Thus it is spanned by

p= ( Iﬁ] )2 (5.2.4)

linear independent pure states. Each such pure state can be created by applying
the corresponding creation operators to the no-particle (vacuum) state |0)®, i.e.
clldiclwz eeh 10} (5.2.5)

Pursuing the path of Perron-Frobenius theory as outlined in the preceding
chapters, we should now start to look for a suitable cone in the M = 0 subspace.
Unfortunately, we immediately run into difficulties, since in any cone we might
consider, the ordering of the Fermi creation operators is extremely important. To
see this, suppose that we have selected an arbitrary but fixed ordering for the
product of the creation operators for different configurations. We might for example
choose the natural order as given by the linear ordering of the lattice sites. Then
applying a creation or annihilation operator, located at some lattice site, to this
state, we have to commute it through the product of creation operators to preserve
this ordering. Since we have no means of knowing how many such commutations
have to be performed until the operators are in their standard ordering again and
each such commutation introduces a minus sign, it is clear that preserving positivity
will be hard to insure.

Tt is thus fortunate that there exists a unitary transformation -the Jordan-
Wigner transformation [JW 28]-which transforms the Fermi operators el ., Cyo into
Pauli operators bF by, It is the advantage of Pauli operators that they commute
at different lattice sites and anticommute only for b7, b,.. In the appendix we show
that the hopping form of the Hamiltonian of the Lieb-Mattis model as well as Hy
remain invariant under the Jordan-Wigner transformation if we have restricted
ourselves to nearest-neighbor interactions. 'Thus, in terms of the Pauli operators,

6§Note that this vacuum state {0) is actually the tensor product of the vacuum states for each
Jattice site z, i.e. [0) = [0} @* ... ®% |0).
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equation (5.2.3) becomes

H=Hol..,ns..) = Y H2,9)55,by0 (5.2.6)
(=)
o=1{
and the p distinct states, labeled by the multi-index a = {z101,T202,. .., TNON)
are
¢ = const - bF -~ bF . 10) (5.2.7)

Since we are now dealing with Pauli operators, the sign of the constant in the
above formula may be chosen as positive.

We may now apply the classical Perron-Froebenius arguments of chapter 2. The
Hamiltonian (5.2.6) consists of two p X p matrices and as our cone, we select the
fat cone spanned by the positive hyperoctant in the M = 0 subspace and denote
it by Kzm.

Lemma (5.2.8) The semigroup generated by Ho is positivity preserving w.r.t.
Kinm.

Proof (5.2.9) Hy is diagonal in the chosen basis. Thus let e, be the eigenvalue
of Hy corresponding to the basis vector ¢,. Then for any u = S P unda € K, we

have ) » )
Hyu = Hy zuaqsa = ZuaHUQSa = Zuueaﬁﬁa
and thus ’ ) '
P p
exp(—tHo)u = Zu exp(—tHo)¢o = zu exp()—{;tea) bo € Kinr

The semigroup generated by the hopping part of the Hamiltonian is positivity
preserving, since the b%,b,, part does not change the overall sign if applied to a
given configuration ¢, as can be seen by the next calculation.

(bjdby") b:;au T b+ iO)

ETNON

_ + + ot +

- bmcr E bm;cn T [by0’1 bx;ami]bmi.;,1oxi+3 Tt b:cNaN IO)
[

_ Bt + +

- bxo Z b.’.!:101 Tt 634'1':'6U0'z" e b:t:chN ‘0)

= Z 6’9“/’;'60'0'2;_ b:-tt-ldg T (bjd)b:ja’z- Tt ijUNI())
i

E

= Z 6@;3;;60015 (}] — §$u"9j50'0'zj) b:;rn T b:Neng) (5210)
o> - d

20
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where we used the fact that the application of an annihilation operator to the
vacuum state yields zero.

Before we may now apply the perturbation result of theorem 4.3.1, we have
to show that the hopping part of the Hamiltonian— denoted by T' from now on-
generates an ergodic semigroup, We are therefore looking for a characterization of
the hopping matrix that ensures that given two arbitrary configurations ¢,, ¢p, we
have

(¢, T"¢6) > 0 (5.2.11)

for some n € N. So let ¢q, ¢ be two configurations which have the same configu-
ration at each lattice site except at site z, where z € a,z ¢ b, and af site y, where
y & a,y € b. Then there exist an integer n such that (¢p, T"¢o) > 0 if and only if
there exists a sequence of hopping matrix elements such that

t(a:, 1,‘2) . t(:{?g, :1'3) et t(iL‘n_h y) >0 (5212)

By remark 3.4.9, we know that the existence of such a sequence for all such pairs
of states a, b is indeed equivalent to ergodicity of T'. By theorem 3.2.16 this implies
that the semigroup is also ergodic.

Before we may go on, we have to ask ourselves whether the assumption of
ergodicity in spin-lattice models is generic. Thus, suppose that the hopping matrix
is not connected. Then this means that there exists at least some pure state a, 1.e.
some configuration of electrons on A, such that (¢, T"¢,) = 0 for all b € S1, p]
and all n € N. This in turn implies that there exists at least one lattice site x such
that there is no hopping to end from z. Generalizing this argument to more than
one such state a, it means that the lattice separates into noninteracting sublattices.
Excluding this case, we may thus in general assume connectivity of the hopping
matrix.

We summarize the assertions obtained about the hopping part of the Lieb-
Mattis Hamiltonian in the next theorem.

Theorem (5.2.13) If the hopping matrix #(z,y) is connected, then exp(tT) is an
ergodic semigroup w.r.t. Kra.

Applying theorem 4.3.1 and theorem 4.2.10, we then know that the Hamiltonian
of the Lieb-Mattis model has an unique and strictly positive ground state ¢o in
the M = 0 subspace.

The above argument holds even for the case that Ho is the zero operator,
because its semigroup then reduces the unit matrix which is clearly positivity
preserving w.r.t. the cone considered. But in this case, it is well-known that among
the ground states, there is some that belongs to § = 0. The Ho =0 ground state
is nonnegative, too and therefore not orthogonal to ¢o. Him and the special
Hamiltonian Hp,—o both commute with S(x)? and thus the ground state belongs
to S = 0 in the M = 0 subspace and for an even number of electrons.
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The same argument applies in some M-subspace, that is the ground state of
Hiar belongs to § = M. In addition, an M-subspace includes all § > M states
and thus the ground states are all ordered such that we conclude

Theorem (5.2.14) [Lieb-Mattis]

E(S+1) > E(S) (5.2.15)

5.3 The Heisenberg Model

The general Heisenberg Hamiltonian for a system of interacting spins on a lattice
A of arbitrary dimension is given by

H=>" J(z,y) S(z) - S(y). (5.3.1)

z,yEA

where the real and symmetric J(z,y) is called the (spin-)exchange matriz. The
corresponding Hilbert space, as discussed in section 5.1, is given by H(A) =
@2 ep C@H, The Heisenberg model is a reasonable candidate for describing
magnetzc systems, where the magnetic moments are localized. '

For J(z,y) < 0, the model favors a parallel alignment of the individual lattice
spins such that the model exhibits ferromagnetism. Assuming J(z,y) = 0 for
all sites z, y, then the models describes either ferrimagnetism (when the individual
spins are of unequal magnitude) or antiferromagnetism (when the spins are of equal
magnitude) if we restrict ourselves to nearest-neighbor interaction only. Otherwise,
the model may be frustrated by a negative exchange matrix. That is, e.g. for the
linear chain of three elements {z,y, 2}, the nearest-neighbor spins , y and y, 2 want
to align antiparallel as do the next-nearest-neighbor spins z, z which is impossible.
Finally, if none of the above cases applies, that is, J(z,y) is of arbitrary magnitude
and sign for each z,y € A, then the Heisenberg model describes a so-called spin-
glass.

In this section, we will prove uniqueness of the ground state of the antiferro-
magnetic (ferrimagnetic) and the ferromagnetic Hamiltonian. We start with the
antiferromagnetic case.

5.3.1 The Antiferromagnetic Heisenberg

We are interested in proving uniqueness of the ground state for a lattice of arbitrary
dimension. We are therefore looking for a characterization of the J(z,y) matrix
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that circumvents the above mentioned problem of frustration. The solution is a
modification of the bipartiteness introduced in section 5.2.

Definition (5.3.2) [Bipartite Condition] Given a collection of sites A, then A is
said to be bipartite if the sites of A can be divided into two disjoint sets A4 and
Ag, such that for all z4,y4 € A4 and all zp,yp € Ap

J(:u,yg) =0, J(mB,yA) > 0. (5.3.3)
and (in contrast to the previous definition),
J(wa,94) £0, J(zp,ys) <0 (5.3.4)

Correspondingly, we will define spin operators for the disjoint sublattices in the
manner given in definition 5.1.10, i.e.

S(Aa)= > S(x), (5.3.5)

el

and

S(Ag) = Y S(2). (5.3.6)

rEAR

As desired, the above requirement gives a tendency for antiparalle! nearest
neighbor alignment and parallel next-nearest neighbor alignment for the Hamilto-
nian (5.3.1). Henceforth, we will thus assume that the lattice A is bipartite.

For the application of the Perron-Frobenius theorem, we would like to write our
Hamiltonian in the form of equation (4.1.1). By the bipartite condition, we may
now apply the bipartite canonical transformation again, but this time instead of
Fermi creation and annihilation operators, we are dealing with spin creation and
annihilation operators. Thus let

Sy -51
S(.’I:A) = Sz (.’EA) ¥ —-Sg (:EA) (5.3.7)
Ss S3
and
S(z5) — S(zs). (5.3.8)

This transformation does not change any of the dynamics’, but rather shows the
intrinsic symmetry properties introduced by the bipartite condition in a more ob-
vious way.

TThe {ransformation rotates the spins on the A, sublattice in the Sy, Sy-plane by 180°* and
is therefore given by the unitary matrix U = exp(in 3 ,¢a, S3(z)). This is similar to the usual
BCT.
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Theorem (5.3.9) The antiferromagnetic Heisenberg Hamiltonian on a bipartite
lattice can be written as

Hyp = Ho~V
= > J(@y)S(@)Ss(y) - Y 1J(z,9)[{S+(z)S-(y) + h.c.}
z,yEA T, yEA

Proof (5.3.10) By the help of equation (3.1.18), we have

H(A) = 3 J(z,y) S(z)- S(y)

= > J(@,y){SH(«)S-(y) + S_(2)S+(y) + Sa(2)Sa(v)}
z,yEA
= Y J(o,9)S(2)Ssy)
z,yEA
= > W@ y){SH@)S-(y) + k),
J(24,y4)S+(2a)S-(za) — —1J(24,92)|54(24)5-(4)
J(zp,yp)S+(zB)S-(xp) — —|J(zB,y8)|S+(zp)S-(zB)
and

J(24,y8)S+(za)S-(zB) — —|J(z4,yB)|5+(24)S-(zB)
J(z5,y4)S+(zB)S-(za) ~ ~|J(zB,ya)|S+(2B)S-(24)

Thus, using the modified bipartite condition and after performing the canon-
ical transformation (5.3.7), we have succeeded in rewriting the antiferromagnetic
Heisenberg model in the form of equation (4.1.1).

As in the last section, the total spin S(A) is a conserved quantity and by
S(S +1) and M we denote the eigenvalues of S(A)? and S3(A), respectively. We
again restrict our attention to some M-subspace and construct a basis for this M-
subspace. Assume that we denote an eigenfunction of o3{x) by |m(z)). Then we
choose the basis set to consist of all distinct eigenfunctions ¢, of S3(A), compatible
with an overall eigenvalue M, i.e.

g

o = Q) Im(x)) (5.3.11)

zeA
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and as in the Lieb-Mattis model, the subscript ¢ labels the finite number of possible
such configurations, which we will again denote by p. We then have for some ¢,

S(W)de = 3 5u(2) R Im(e))

= Y () @ (@)
= (Zm(ac)) b
Y

Definition (5.3.12) Constructing our Hilbert cone for the application of the
Perron-Frobenius arguments, we choose the phase of each basis vector @, such
that

$a = C Q) S{™ ()| - s(a)), (5.3.13)
wEA
where C' > 0 and s(z)[s(z) + 1] is the eigenvalue for S(z)? on each lattice site. Our
actual cone, denoted by Kypgg, is then given by all possible linear combinations of
those ¢,, such that the superposition coefficients, that is the fat cone of the positive
hyperoctant, is positive again.

We note that this can be done because of the commutation relations of the spin
operators. Indeed, by the well-known connection between spin operators and the
Pauli operators b, b,, [B 88], it is clear that in contrast to the Lieb-Mattis model
encountered in the last section, we need not employ any special transformation at
this point.

Again, Hj generates a positivity preserving semigroup since it is diagonal in the
basis chosen. In order to show that the spin exchange part V of theorem 5.3.9 is
positivity preserving, we will show that V¢ = 0 holds for an arbitrary basis vector

¢y € Kupe.

Theorem (5.3.14) The spin-exchange part of the bipartite Heisenberg model of
theorem 5.3.9 is positivity preserving and generates an ergodic semigroup w.r.t.
the cone Kgpq.

Proof (5.3.15) Let ¢, € Kypg be some basis vector as defined above. Then

Véa = + Y (@ y){Se(e)S_(y) + h.c.} 4,

zyeh
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= + 3 (e, y){S4(@)S-(3) + h.e} x

r,yeh
¢ Q) S ()] - s(2)
ZEA

One can easily see that the only terms that might violate the positivity preserving
property of V are the ones originating from the equal-place commutation relations®
which give a negative sign for the commutator, i.e.

S_Sy = [5-,54]+S545-
= —S5+5,5. (5.3.16)

Using the operator identity of lemma A.3.1, we now calculate these factors.

s+m—1
S-Syml—s) = Y SES-,SSE T <)
k=0

+ 8™ S| — )
L—

0
spm-1

= 3 SH=S)symH )

k=0
st+m—1

= ZS’ (—S3)elm—1—k)
k=0
s+m—1

= Y Si(-m+ 14k - s)
k=0

s+m—1
= { Y (-m+1+k) }Sﬁm-l;—s)

k=0
= o= m (s +m)SFm -~ o)
= {s(s+1) ~m(m — 1} 577~ s)
Since —s < m < +s, it follows that {s(s -+ 1) —m(m — 1)} > 0 and thus
S_S*™™Kpupe C Kuse (5.3.17)

and thus V is positivity preserving.

8We drop the lattice site labels and set /i == 1 as before.
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Assuming that the spin-exchange matrix J(z,y) is connected, we know that for
arbitrary u,v € Kgpa, #,v # 0, there exist an n € N such that (u, V"*v) > 0. Then
the generated semigroup may be called ergodic, since by the series expansion, we
again have

(u,exp(tV)v) = (u,v) + #(u, Vo) + %i(u, Vi) +...>0, (5.3.18)

We summarize these results to yield our major theorem about the antiferro-
magnetic Heisenberg model.

Theorem (5.3.19) Given the Hamiltonian of theorem 5.3.9, let Kgpe be the
fat cone spanned by the basis vectors of definition 5.3.12 in a given M-subspace.
Assume that J(z,y) is bipartite and connected, Then Hppg has a unique ground
state in this M-subspace.

Proof (5.3.20) We apply theorem 4.3.1 to show that Hp generates an ergodic
semigroup which by theorem 4.2.10 implies that the corresponding ground state is
unique. E

As was the case in the Lieb-Mattis model, we now try to specify the spin of the
ground state. As it will turn out, the total spin is § = 0 for an antiferromagnet
and some nonzero constant for a ferrimagnet. The mechanics of the proof is again
as on page 57. We compare the ground state of some easy solvable system, which
in addition is a special case of the Heisenberg Hamiltonian, with the one for the
antiferromagnet (ferrimagnet). Since they are not orthogonal, their total spin value
must be the same.

Theorem (5.3.21) Let us define the special Hamiltonian H' by choosing the
J(z,y) matrix elements such that

J(z4,y4) = J(zB,y5) = 0, (5.3.22)

J(za,yp) =J >0, (5.3.23)
Then the lowest energy belonging to each spin is given by
E(S) = J{S(S+1) — 854a(Sa+1)— Sp(Sp + 1)} (5.3.24)

where S4 = Y.y, 8(z) and Sp = 3 ey, s(z) are the maximum possible spin
values on the bipartite sublattices. Therefore the ground state belongs to 5 = & =

|54 — Sgl.
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Proof (5.3.25) The above model has infinite-range forces such that the Hamil-
tonian reduces to the interaction of the overall spins on the bipartite lattice, i.e.

1l

H > J(z,y) S(z)-S(y)

zyEA

=27 Y S(z)- Y S

TEA 4 z€EAR
— 2J S(Aa) - S(AB)
= J{(S(A4) +S(An)}* — S(A4)" ~ S(AB)"}.
8(A)

The eigenvalqes are thus given by
E(S) = J{S(S +1) — s(Aa)(s(Aa) + 1) — s(Ag)(s(A5) + 1)}
Correspondingly, the lowest eigenvalue of H' for each § > & value is given by
E(S) = J{S(5+1) ~ Sa(Sa+1)— Sp(Sp + 1)} (5.3.26)
and the ground state belongs to 5 = §. E

Theorem (5.3.27) The ground state of the bipartite isotropic Heisenberg model
belongs to total spin § = &.

Proof (5.3.28) We now go into the M = 0 subspace. Since theorem 5.3.19 applies
for the special Hamiltonian 5.3.21 too, the ground state w’ of H' is nonnegative
(although not necessarily positive). Therefore (w’,w) > 0 and thus w and w' are

not orthogonal, 8% and H,H' commute, so every ground state is an eigenstate of
8% ie.

S8+ 1)(w',w) = (8%, w) = (v',8%w) = §(S + 1)(v',w) (5.3.29)

and thus § = $'. Since by theorem 5.3.21 the ground state of H' has a spin value
of §' = & in the given M = 0 subspace, so does H. Therefore the spin value of H
is § =&, too. |

Remark (5.3.30) For the antiferromagnetic case we have § = 0, and thus the
ground state belongs to a total spin value S = 0.
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5.3.2 The Ferromagnetic Heisenberg

The ferromagnetic Heisenberg Hamiltonian is given by

Hp(A) =~ ), J(z,y) 8(z) - S(y) (5.3.81)

z,yeEA

and J(z,y) = 0 for all z,y € A, favoring parallel alignment of spins throughout
the lattice A. Using relation (5.1.18), the Hamiltonian may be easily written in a
form compatible with (4.1.1).

Hp(A) = = > J(z,y)S(z) - S(y)
2,yEA

= — Y J(2,y){S:(2)S_(y) + 5-(2)S+(y) + Sa()S3(y)}

zyEA

= — E J{(z,y)S3(x)S3(y)

zyeA

= " J(2,y){S4(2)S-(y) + hec)

o,y€EA

— Ho—v

The only difference from the Hamiltonian of 5.3.9 is that the sign of the diago-
nal part is changed. This does not alter the positivity preserving quality of the
semigroup generated by Hp, and thus we may again conclude

Theorem (5.8.32) The ground state of the ferromagnetic connected Hamiltonian
Hy is unique in each M-subspace, and thus up to the usual 25 4 1 degeneracy.



Chapter 6
The Hubbard Model

As pointed out in the introduction, this work has its origin in a 1989 publication
of E. Lieb in Physical Review Letters [L 89]. In this paper, Lieb applied the ideas
put forth in the preceding chapters. But as we will see now, the application of the
Perron-Frobenius arguments to the Hubbard model is considerably more subtle
than in the case of the Lieb-Mattis or the Heisenberg models considered in the last
chapter. The problems that arise are largely due to the special structure of the
cone for the Hubbard model.

6.1 Introduction

The Heisenberg model introduced in section 5.3 deals with localized permanent
magnetic moments and thus is a good model for magnetic insulators only. In
order to describe successfully magnetic metals such as Fe, Co, Ni, where the band
electrons are responsible for both conductance and magnetism, we need another
model.

Such a model was proposed by J. Hubbard in a series of papers’ in the beginning
of the sixties. The Hubbard model merges the bandlike behavior of the Lieb-Mattis
model and the localized behavior of the Heisenberg model, since it is a model
of itinerant electrons which interact via Coulomb forces. The rather large set
of bound and continuum electron levels of each lattice ion is reduced to a single
localized orbital s-level and the Coulomb interaction is assumed to be screened,
such that only “on-site” interaction terms have to be included explicitly. The
second-quantized Hamiltonian on the finite lattice A is given by

H= z t(z,y)el e + }:U(m)nﬁnﬁ (6.1.1)
2o

1. Hubbard, Proc. Roy. Soc. A276, 238, (1963), A277, 237, (1964), A281, 401, (1964)
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where we use the notation of chapter 5, and U(z) denotes the Coulomb interaction
parameter at site z. This model Hamiltonian is a somewhat generalized version of
the standard Hubbard model, in which the hopping is usually restricted to nearest-
neighbors only and the Coulomb parameter U(z) is assumed to be independent of
the lattice site and positive, U > 0.

The Hilbert space at each lattice site is the same as in the case of the Lieb-
Mattis model, i.e. it is the tensor product of four states per site: |0) is again the
no-particle state (at site ), | T) and | |} represent a spin up, spin down eleciron,
respectively, and | T]) is the up-down pair.

The Hubbard Hamiltonian obeys charge conservation, that is the total charge
Q = €Y ,ep " = eN is constant. In addition, the model is invariant under a
SU(2) rotation of the quantization axis. The last assertion is clearly true for the
hopping part of equation (6.1.1). W.r.t. the on-site potential term, we note that
with the help of the relations (5.1.19, 5.1.20), we may calculate that

S(z)? = Sa(z)*+ (S+(2)S-(z) + h.c.)

1 1
= (et —nep)’ + 5(chyearcl ear + B

1 1 1

= 7(n%y+ 1)) = Snetney + 5(ner(1 ~ noy) + hoc)
3

= TRy ?"annml
4 2

and we have the following identity

> U(@)napna = -g- S U(@)S(2)? + é S U(e)n, (6.1.2)

zEA zEA TEA

It is clear that the right-hand side of this equation is spin invariant.

For U(z) 2> 0, the Coulomb interaction is repulsive because singly occupied
lattice sites are favored over doubly occupied ones. Two special cases, dealing with
the relative strength of the hopping matrix ¢(z,y) and the on-site repulsion U(z),
may be studied.

For U >» t and N = |A| (half-filled band), we consider the strong-coupling limit
U — oo. Doubly occupied states are not only minorized but forbidden in this
lirnit2. Thus only | 1) and | |) states are present and they are all degenerate eigen-
states of the interaction part of the Hamiltonian®. We will now include the effects
of the hopping part of H as in a perturbation expansion in terms of & in order to
derive the effective Hamiltonian in this limit. We first note that the hopping part
of H creates pairs of electrons at some sites and thus its first-order matrix elements

2This property is called hard-core repulsion.
3Note that we restrict ourselves to I/ = const in this argument.
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are zero. We therefore have to extend the expansion to second-order where virtual
states of paired electrons are possible. These states are larger than the ground
states by an energy U. The formation of the virtual states may occur in two ways,
and so the strength of the resulting perturbation is equal to 2t%/U, 1* because the
matrix elements in second-order are squared. In addition, since the only allowed
transitions are of the spin exchange type, a reasonable candidate for the effective
Hamiltonian is the antiferromagnetic (quantum) Heisenberg Hamiltonian,

Hys: = %‘; S S(2) - S(y) (6.1.3)

A rigorous calculation of the above hand-waving arguments can be found in [E 79].

Apart from half-filling, the Hilbert space includes holes as well as singly occu-
pied sites. Thus the hopping part of the Hamiltonian may move electrons from
occupied sites to these holes, and charge is transported. The effective Hamiltonian
in this case is the tJ-model which we will study in the next chapter.

In the weak-coupling limit U < t, the Coulomb interaction is treated as a
perturbation of the otherwise free-electron gas. Such a situation is usually called
a Fermi liquid and describes a metallic solid.

Exact solutions and rigorous results about the Hubbard model are rare and
mostly treat only special cases. For the one-dimensional nearest-neighbor chain, E.
Lieb and F. Y. Wu have solved the Hubbard model explicitly [LW 68]. We already
know by theorem 5.2.14 that the ground state in this case is antiferromagnetic.
Furthermore, for U/ > 0, Lieb and Wu showed that the ground state for a half-
filled band is insulating for any nonzero U, and conducting for U = 0. Thus there
is no so-called Mott transition between insulating and conducting state for nonzero

U.

Another famous result for the Hubbard model is the absence of spontaneous
magnetization in one or two dimensions at any temperature T > 0. This fact is
known as the Mermin-Wagner theorem of the Hubbard model, and is named after
N. D. Mermin and H, Wagner? who proved the theorem for the Heisenberg model.-
The proof for the Hubbard model uses completely analogous methods (Bogoliubov’s
inequality) and is due to D. K. Ghosh®.

The attractive Hubbard model (U(z) < 0) is related to the repulsive case via
a hole-particle transformation. It favors the building of spin pairs which indicates
that the ground state should have total spin 5 = 0. This, among other things, we
will prove in this chapter.

4N. D. Mermin, H. Wagner, Phys. Rev. Lett. 17, 1133, (1966)
5D. K. Ghosh, Phys. Rev. Lett. 27, 1584, (1971)
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6.2 The Equivalent Matrix Problem

As in the previous chapter, we now reformulate the problem so that we end up

dealing with matrices in a real and finite-dimensional vector space. By spin conser-

vation, we again choose a special M subspace in which to work. All other subspaces

belonging to some S? value have representatives in the M = 0 subspace and we

choose it for that reason. Let N be the (even) number of electrons in A. Then there

are n = N/2 electrons of either spin up or and spin down type in this subspace.
Let ¢, denote any distribution of spin up electrons on A. There are

pe= ( '2! ) (6.2.1)

different such pure states and thus {@uf}e=1,..p 15 a complete set for the spin up
electrons. In addition, we require that each such ¢qq is a real polynomial in the
¢l ’s acting on the vacuum state |0).

The same description holds for the spin down electrons. Therefore any con-
figuration ® of spin down and spin up electrons on A may be written as a linear
combination of pure states, i.e.

14
b = Z Gab%r @ 9651 (62.2)
a,b

Here A = [aa) € M,,(C) and the configuration @ is completely determined by the
complex matrix A.

Let W € M,, denote some eigenstate of the Hamiltonian. By our construction,
the basis vectors are real. In addition, the Hamiltonian is symmetric w.r.t. the
spin index (that is, between spin up and spin down). Thus W™ is an eigenstate
for the same eigenvalue. By linearity, the same holds for the sums W + W* and
{(W — W*). We may therefore restrict our attention to those configurations that
may be described by Hermitian matrices A and reduce our space to the space V
of all Hermitian matrices, which has been introduced in definition 3.6.5. In this
representation, the Hamiltonian (6.1.1) is a real p* x p* matrix® acting on the
Hermitian p x p matrices.

Let us now derive the Schrédinger equation in this representation. Suppose
that E(W) is the eigenvalue corresponding to the eigenstate = 3, Wasda1 ® dsy
which in order to streamline our notation during the following calculations will
be written as 3, Wasla) ® |b). The spin directions are assumed implicitly by the

6Such p? x p? matrices will be denoted by boldface characters such as H.



70

ordering in the tensor product. Then

HO = Y tz,y)ce Y Wasla) ®15)
ab

2,YEA
o

+ Z U(z)n, ® ng Z Wasla) & |b)

rEA ab

= ZWab { Z t(z,y) {Cjccyla) ®[b) +la} ® Clcylw}

z,yEA

+ Y U(z)nla) @ n.lb)

zEA

We first treat the hopping part in this equation.

3 tz,y) {cleyla) ® [B) + la) ® cley[b) }

T,yEA

= Z t{z,y) Z {|C>(C|C£Cyta) ® 16} + la) ® |C)(C[Ciculb)}

&, YEA cEA

= Y {Tucle) ® [b) + la) ® Ticle)}

where

Tup = (b] Y t(z,y)cley]a) (6.2.3)

2,yEA

Including the summation over @ and b, this yields for the hopping part the following
expression.

S WaTule) @ [6) + Y WeaTusle) ® [6)

abe abe

Since t(z,y) is real and symmetric, so is Tqp.
The on-site interaction term can be calculated in a complete analogous fashion
by inserting the identity 3__|ec}{c| twice. Defining

(Lo)ay = {blna]a), (6.2.4)

this then yields
z Ulz) Z(Lm)acwad(Lw)db!c) ® [b)

abed

as the equation for the on-site term. In addition, (L;)e is real and symmetric,
too. Thus the Schrédinger equation for the Hubbard model in matrix formulation
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reads
HW =TW + WT + Y U(z)L WL, (6.2.5)

and if we suppose that E(W) is the energy expectation value corresponding to the
state ®, we have

(8, HO) = (W, HW) = 2 trace(TW?) + > _ U(2) trace(LsW L, W) = E(W)

(6.2.6)
where the scalar product {-,-) is defined via the trace as before. We have therefore
succeeded in rewriting the Hamiltonian in matrix notation. For convenience, we
will introduce the matrices Hg and V such that HoW = TW + WT represents
the hopping part of H and V = Y U(z)L.W L, is the potential term. The reader
should note that this definition is quite different from that in previous chapters,
where Hg described the diagonal potential term and V represented the kinetic
energy term (or its equivalent). We switch the meaning here not to confuse; as it
will turn out, the sign of V (in the present notation) will again be the important
ingredient of the Perron-Frobenius arguments.

We now try to find a cone in V such that the hopping part, as presented by
the matrix Hg, as well as the on-site energy (with a suitably chosen sign) leave it
invariant. Our first choice is certainly the fat cone spanned by the p? state vectors
6o @ ¢y whose analogues we used so successfully in the last chapter. Unfortunately,
since we did not fix the sign of the hopping matrix ¢(z,y), we can not be sure that
TW + WT is again a nonnegative matrix. Even if we did fix the sign, the hopping
term clc, applied to some state again would invite all the dangers lurking within
the violation of the ordering of the Fermi operators as discussed in section 5.2. In
that section, we overcame the problem by retreating to the Jordan-Wigner trans-
formation and restricting ourselves to nearest-neighbor hopping only. In addition,
we had to reduce the dimension of our lattice to one, since generalizations of the
Jordan-Wigner transformation to higher dimensions do not exist (there exists a
two-dimensiona} version, but none for arbitrary dimensions). Thus, the fat cone
spanned by the p* state vectors ¢, ® ¢y is not the cone of the Hubbard model.

6.3 The No-Coupling Limit

In this section, we will restrict our attention to the hopping part Hp.

Lemma (6.3.1) Let Hg : V -+ V be given as above. Then the semigroup
generated by Hp is

exp(—tHg)z = exp(—tT)z exp(—tT) (6.3.2)
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where x € V.

Proof (6.3.3) We will show by differentiation that the generator of the semigroup
is indeed Hg.

d d
—exp(—tHg)| 2 = -—exp(—tT)| xexp(~tT)
dt =0 dt =0
+ exp(—tT)x 4 exp(—tT")
dt =0
= —(Tz+=2T)
= —H{}SB

In section 3.6.2 we studied the cone of operators I[I(PSD) € V leaving invariant
PSD. As showed in lemma 3.6.29, the semigroup generated by Hp is an element
of II(PSD). Therefore, we may apply the Krein-Rutman theorem 3.3.15 which
states that there exists the Perron vector (which is thus a positive (semi)definite
matrix) for the semigroup generated by Hyg.

Definition (6.3.4) The Hilbert cone of the Hubbard model is given as the full
cone of positive semidefinite p x p matrices, i.e.

’CHBD = PSD (6.3.5)

This leads to the following results.

Theorem (6.3.6) Let Hg be the hopping part of the Hubbard model in the
no-coupling limit acting on the space V. Then

(a) Among the hermitian matrices in V that describe the ground states of Ho,
there is one that is a positive (semi)definite matrix W.

(b) There is some ground state corresponding to total spin S = 0.

(c) The ground state of Hp is not unique.

Proof (6.3.7)

to (a) We have shown that the semigroup generated by Hp is of the same form as
the operator in lemma 3.6.29. Thus by the Krein-Rutman theorem 3.3.15,
there exists a ground state matrix which is positive (semi)definite.
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to (b) Let W be the positive (semi)definite ground state among the ground states
of Hg. Then we know that for some a € Sf1,p] we have Wy, > 0 by
theorem 3.6.3. Corresponding to this matrix element W, is the state
D, = ¢ot @ Bo) which satisfies (8)°®, = 0. Therefore the ground state
described by W has a nonzero projection into the space in which 5 = 0.

to (¢) Let Py be the Hermitian projector into the eigenspace corresponding to
the eigenvalue A of the matrix 7. Suppose that there are at least two
distinct eigenvalues ), yi— otherwise there is already degeneracy. Then the
projectors Py and P, ate eigenstates of Hp and therefore of its semigroup.
Projectors are positive semidefinite such that by theorem 3.5.2, Hy is not
K-irreducible. In addition,

(Py,exp(—tHo)P,) = (exp(~-tT) Py, exp(—tT)P,)

exp(—tA) exp(—tu)(Py, Pu)
0%0

il

and thus the semigroup is not ergodic.

6.4 The Attractive Case

We will now include the effects of the on-site Coulomb interaction for U{z) < 0
which, as indicated before, favors the forming of spin pairs at each lattice site.
First we show that the semigroup generated by V is positivity preserving w.r.t.

KuBp.

Lemma (6.4.1) The on-site potential V : V — V generates a semigroup that
leaves invariant the cone Kggp.

Proof (6.4.2) We first note that L, is a nonnegative matrix since its matrix
elements (L;)q are either 0 or 1 depending whether there is an electron at site
z in configuration ¢, and ¢. Therefore by lemma 3.6.29, L;WL, € Kgpp if
W € Kgpp. But then, by the series expansion of the exponential, we have that

(W,exp(—tV)V) = (W, V)=t U)W, LV Ls)

t2
+5 Zy U (@)U ()W, Ly LV L Ly) — ... (6.4.3)

IV

0 (6.4.4)
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for all + > 0,W,V € Kypp, and thus the semigroup is positivity preserving, since
U{z) < 0 for all « by hypothesis. |

So far we have shown that Hg and V do both generate positivity preserving
semigroups. In order to prove uniqueness, we now need ergodicity of at least one
of these operators.

Lemma (6.4.5) Assume that the hopping matrix #(z,y) is connected. Then the
matrix Top = (b] ) , en t(z,y)cle,la) is connected, too.

Proof (6.4.6) We want to show that for all multi-indices a,b € S{1, p] there exists
a sequence of multi-indices @ = ¢1, ¢z, ...,¢, = b such that

Tooy* Tosca + oo+ Tonsp £ 0 (6.4.7)

(where the product is ordinary, not a matrix product). Thus let a be any multi-
index labeling a pure configuration of electrons such that there is some zq € ¢
and some yo ¢ @ such that t(zo,y0) # 0. We note that this pair of sites zo,%
exists since #(z,y) is connected by hypothesis. Then ¢; = a\zo + yo denotes a
configuration identical to a except there is no electron at site zy but one at yo.
Thus T, # 0 and by the symmetry of ¢(z,y) the same holds for T,.. Again, we
can construct a configuration ¢z such that it differs only in two sites from ¢; and
Toes # 0. Finally, since any lattice site z may be reached by repeated hopping
~t(z,y) being connected—we can reach any configuration b € 311, pl. Therefore T'
is connected. |

Lemma (6.4.8) The matrix Hp on ¥, W — TW + WT is connected, if T is.

Proof (6.4.9) Before we start the proof in earnest, we must dwell a bit more on
the structure of V. So far we have only said that we consider the elements of V as
vectors and the operators on V, such as Hg, as matrices. But in fact these ‘vectors’
are p x p matrices and the ‘matrices’ are p* X p?. Therefore, in order to define how
to apply such a matrix to a vector, we have to say explicitly which entry is going
to be multiplied in what way. For example, we could order the p X p matrices in
one column such that the first row of the original matrix constitutes the first p
elements of the vector, and so on. Alternatively, we could choose the first column
to do so. Any such ordering may be selected if we only keep in mind that we will
have to arrange the p? x p* matrices accordingly.
For convenience we will choose a less elaborate way here. We define

(HoW)as = ) HogpeaWed (6.4.10)
ed
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such that instead of one summation index, we need two. Using the explicit form
of Hg we then have

(HoW)a = Zﬂoabcdwcd
ed

= (TW+WT)s

= Z(Tachb + Wadeb)
cd

— Z(Tachd‘Sdb + 6acW€deb)

cd

= Z(Tacédb + 6achb)ch (6.4,11)
cd

and therefore the matrix elements of Hg are given as Hoypog = (Tocbas + Saclap)-
A configuration of electrons on A is thus described by the multiindex pair
{a, b}, where a is for spin up and b is for spin down particles. Connectedness of Hyp
then means that starting at configuration {a,a’}, there exists a path of different
configurations {¢;, ¢/} such that we may reach the configuration {5,¥'}, i.e.

Hoaa’czcg : Hocgcgcscé ' Hocacgqci Tt Hocn_gc‘“ulbb’ % 0 (6412)

Intuitively, such a sequence of multiindex pairs is easy to construct if we keep in
mind that T is connected. Thus we first connect Hg w.r.t. the unprimed spin
down index, i.e. {a,a'} connects to {b,a'}. Subsequently we connect the primed
spin up indices, i.e. {b,a’} connects to {b,¥'}. Explicitly, we write for the unprimed
sequence
Hﬁaa’qa' * HOCga’c;;a’ ‘ Hﬂc;;a’c.; al T’ Hﬂc;,.la’bu'

where we assume that ! is the length of the path. In terms of equation (6.4.11),
this gives

(Tacg6a'a’ + 6acha'a') ' (Tczcaga.'a’ + ’50253Ta’a‘) et (Tcg_..lbéb’a.’ + 6c;w1bTa'a‘)

Tacz ) T02ca MR Tc;-;béa’a’a"..a'a'
+ Ta.cg * Ta’a‘ * T63C4 Censt Tc;_lbéa’a’(sczcs 6a’a’ “e 6&‘:1’
+...+ Ta’a" ' Ta’u‘ Tt Ta‘a"saczca...c;_.lb
= Tacz : Tczf-‘a Teent Tct—zb
# 0
where 6,501 = S4bOpeded - -« and the sequence a, cg, €, . . ., ¢1—1, b consists of distinct

configurations. We now assume that o/, ¢}, ¢, ..., ¢j_;, b connects the primed spin
down configurations. Then in analogy

ft

Hoparne, - Hovegsey - Hovegbe, -« - - - Hooel o
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= Tbcé . Tchcf TCL_IbI
# 0
Thus
(Hﬂaa’cga’ 4 Hocza’c;:,a’ BCEI Hoczwiu’ba") ' (Hﬂba’bcg : Hﬂbc%bcg B Hobcje__lbb’)
= (Tacz Topeg o TCt-ﬂ’) ’ (Tbcé ' Tcécé Teet TCL—lb')
# 0 (6.4.13)
Therefore, Hg is connected by a path of length n = [ + k. ]

As for the Lieb-Mattis or the Heisenberg model, we have extracted a connected
matrix that generates a positivity preserving semigroup. Using the connectedness,
we now wish to show that this semigroup is also ergodic as we showed in theo-
rem 5.3.14. Unfortunately, we are not allowed to do so. The cone Kypp we are
dealing with here is not a fat cone and thus the arguments presented in the theorem
do not apply here.

Therefore, in order to assure positivity of the ground state- which would then
again yield uniqueness-we have to adopt an alternate strategy.

Theorem (6.4.14) Let H be as given above and assume that U(z) < 0 for all
z € A and #(z,y) connected. Then if W is an eigenstate of H, so is |[W|, which is
either positive or negative (semi)definite.

Proof (6.4.15) The proof uses the fact that instead of viewing W as a vector
in V, we can view it as a p X p matrix acting on C?. Let @ = 2W, = |W|-W,
which is positive semidefinite as we showed in theorem 3.6.19. By linearity it
is an eigenstate to the same eigenvalue E(W), also. Denote the kernel of @ as
ker @ = {r € C?|Qr = 0}

Then given some 7 € ker ), we compute the expectation value of the Schrédin-
ger equation {6.2.6)

(r,TQr)+ (r,QTr) + > U(@)(r, L:QLor) = E(W)(r,Qr) (6.4.16)

The first two terms on the left hand side as well as the right hand side are zero by
definition. Thus

> U(z)(r, LeQLgr) =0 (6.4.17)

By the hypothesis U(z) < 0 for all € A, and since @ is positive semidefinite and
thus (r, L.QL,r) > 0, we conclude that (r, L,QL,r) = 0. Again by the positive
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semidefiniteness of ), this equation only holds if @QLyr = 0. Therefore L, leaves
ker () invariant.

We again apply the Schrédinger equation, but this time without taking expec-
tation values, i.e.

TQr+QTr + ; U(2)LeQLyr — E(W)Qr =0 (6.4.18)

-

0

Thus 7' maps ker @ into ker @, too.

Define

Lo=]] - (6.4.19)
zEa

which projects onto the basis vector ¢, in C?. Here e, has zero entries in each of
the p components except at component a, that is (e,); = &, for all i € S{L, p].
Therefore (L,)ed = 8acbaa. By its construction, each L, leaves ker ¢ invariant. In
addition, > 2 L, = 1.

Assume now that ker @ # {0}. Then there exists some r # 0 in ker @ and
L,r = l,e, # 0 for some configuration a and [, some constant. Then we have

(LbTchT Tt TLCn—iTL&r)i.'f
= Z (L isa Tty (LesYigia Tigis * * * Tinins (La)in-1iTi

1230 entn—1

= T Tores o+ Top_salata

cpCa

Since T is a connected matrix, such a nonzero vector can be constructed for any
b e 3{1,p]. Thus every basis vector of C? is in ker @ and ker @ = C? if it is not
empty.

Therefore we have shown that either ker@ = {0} and thus W = —|W|, or
ker @ = C? which implies that W = |W1}. [

Remark (6.4.20) We emphasize that the above theorem is an adaptation of the
Faris theorem 3.4.12. By proving that |W| lies either in K or —K, we have devel-
oped our arguments to be equivalent to the situation following equation (3.4.17).

Theorem (6.4.21) The ground state of the Hubbard model on a lattice A of
arbitrary dimension for an even number of electrons has total spin S = 0. If, in
addition, the hopping matrix (z,y) is connected and U{z) < 0 for all z € A, then
the ground state is unique.

Proof (6.4.22) By lemma 6.3.1 and lemma 6.4.1, we know that the semigroups
generated by Ho and V are positivity preserving. Products of positivity preserving



78

matrices are again positivity preserving and so is exp(—tH) by the Trotter product
formula. Thus we may again conclude that among the ground states there is one
belonging to Kypp. As in theorem 6.3.6 this again implies that some ground state
always has § = 0.

By theorem 6.4.14 we then know that if U(z) < 0 and #(z,y) is connected, any
ground state is either in Kypp or ~Kgpp. Now suppose that there are two ground
states W, W'. By the linearity of the Schrodinger equation, the ray W + tW' for
¢t € R is a ground state, too. But by corollary 3.1.17, W and W' are multiples of
each other and thus there is only a unique state. E

6.5 The Repulsive Case

In the attractive case, we were in the fortunate situation that the sign of the
Coulomb interaction, as our essential tool, enabled a direct application of the
Perron-Frobenius arguments. For the repulsive case U(x) > 0, as for the antiferro-
magnetic Heisenberg model, we need to employ a transformation of the Hubbard
model that switches the sign of U(z). A simple BCT transformation will certainly
not suffice, since we already showed that this only changes the hopping term but
leaves invariant the number operators. In order to see what we would want a
transformation to do, let U be some unitary transformation matrix. Then the
transformed Schrodinger equation reads

UHU™'UW = UTUT'UW +UWT + > U(z)ULU'UWL,
= T'W +WT+ > U@LWL, (6.5.1)

and therefore the conditions on the transformation U, for leaving invariant the
Hamiltonian H, are

T = UTU™ (6.5.2)
L, =— ULJU™ (6.5.3)

But since o(L;) € R*, the last equation can never be satisfied by a unitary matrix.
There are two ways out of this dilemma. The first one deals with a restriction
of the full Hamiltonian (6.1.1) to a special, but nonetheless interesting, case, and
will be covered in this section. The second possible way to circumvent the above
problem is to add a one-body potential, which we will do in the next section.
The transformation we will use here is the so-called hole-particle transformation
which we introduce in appendix A.4.3,

Ce} = d:nl (6.5.4)
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o+l ifzehs
G1 = {-djﬂ iz € Ap (6:55)

and we assume A to be bipartite. The net effect of this transformation-the dyo’s
are again Fermi operators—is that by changing from spin up particles to spin up
holes and leaving invariant spin down particles, it leaves invariant the hopping part
of the Hubbard Hamiltonian. but changes the on-site potential, i.e.

T =UTU! =T (6.5.6)
I =ULU =1-1L, (6.5.7)

The Hamiltonian is then given by

H=35" tla,y)dl,dy — D Ul@)iarfio, + > U(w)itg (6.5.8)

zyehAo zeEd zEA

where the number operators are now defined via the dg,’s. The corresponding ma-
trix form of the equation should be clear by comparison with equation (6.2.5). We
have therefore succeeded in flipping the sign of U(z) at the cost of adding an addi-
tional term to the Hamiltonian. This term, in matrix notation Y ¢, U(z)W Ly, is
not necessarily positivity preserving by lemma 3.6.27, if it is applied to some state
W.

If we now assume that the on-site interaction parameter U(z) is a constant,
independent of the lattice site, then the additional term is U 3 ¢ noy Which is a
constant, too, since the number of spin down particles is conserved. This constant
merely shifts the ground state energy but does not effect any of the dynamics. We
may therefore drop it for the moment and consider

H= > t(z,y)dl,dy — pRUCI (6.5.9)

zyEAe zeA

only. This Hamiltonian is the same as the Hamiltonian in the attractive case. Thus
the arguments leading to theorem 6.4.21 fully apply and we may conclude that the
ground state ¢ of the repulsive model is unique, too, and belongs to total spin
S = 0 for connected t(z,y) and U > 0.

Since we are not that much interested in the 5 value but rather in the value
of the spin operator S, we now return to the old variables. We want to show
that the unique ground state (U7) of the Hamiltonian (6.1.1) has spin value 5 =
(|As| — |A4])/2, if wl.o.g. we assume that |Ap| 2 |[A4]. The idea is due to B. Lieb
and works for the half-filled band only. Thus let N = |A| be even. Since (V) is
unique for all values of U, this implies that S is independent of U — otherwise there
is degeneracy for some U > 0. Now, as stated on page 68, the Hubbard model for
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large U reduces to the antiferromagnetic Heisenberg model, for which we showed in
section 5.3 that Hypg has a unique ground state and S = (JAp] — |A4})/2. For the
special case of finite lattices, the uniqueness implies a gap in the energy spectrum
of Hypg and therefore the spin value of Hypp is identical to the spin value of the
Heisenberg ground state for some large enough U. We summarize

Theorem (6.5.10) The ground state of the repulsive Hubbard model on a bipar-
tite lattice A of arbitrary dimension and an even number of sites is unique (up to
the 2(S+1) degeneracy) for the half-filled band and belongs to S = (|Az|—|A4l)/2
if the hopping matrix ¢(z,y) is connected and U{z) =U > 0.

Remark (6.5.11) There are three things worth considering before we leave this
section. First, it may seem unfortunate that we have to restrict ourselves to half-
filling. The contrary is true. For suppose we consider high-T; superconductors
(see the next chapter for more on this subject). It is now believed that supercon-
ductivity in the cooperoxides, say LayCuQy, takes place in the CuQ planes. The
Hubbard model, choosing appropriate values for ¢t and U, has been proposed as
a good starting point for modeling the behavior of these planes. The lattice is in
fact bipartite w.r.t. the Cu and the O sites. Now D. Mattis [M 88] has shown that
for electron occupation numbers below half-filling, the model features an antifer-
romagnetic state, and above half-filling, it exhibits ferromagnetism. At half-filling,
the spin value equals § = % in each unit cell. Thus, if the Hubbard model is a
good model for these materials, theorem 6.5.10 should hold for the half-filled band
only”.

Second, we note that if U = 0, theorem 6.4.21 says that the total spin S equals
zero and theorem 6.5.10 says that S = (JAp| ~|A4])/2. This puzzle may be solved
if we observe that by the bipartiteness of the hopping matrix, rank (z,y) < 2]|A 4]
as we show in lemma A.1.20. Thus there are at most 2|{A 4| nonzero eigenvalues
and half of them are negative. Thus we put spin pairs in these negative states and
fill the rest |A] —2|A 4] = |Ap| ~ |A 4| with, say, spin up electrons. Thus among the
ground states is one with § = [Ap| — |A 4| as well as one with S = 0. :

Lastly, the one-dimensional Hubbard model is a special case of the Lieb-Mattis
model of chapter 5. There we showed that the ground state belongs to § = 0
independent of the sign of the interaction term. This is compatible with our result
for the attractive case I/’ < 0. For the repulsive case, we note that necessar-
ily |[A4| = |Ag| in one dimension for a bipartite and connected nearest-neighbor
chain. Thus § = 0 again and the results of this section agree with the Lieb-Mattis
theorem 5.2.14.

"We thank E. Lieb for pointing out this fact to us.
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6.6 Adding a One-Body Potential

As indicated in the last section, we may add a one-body potential to the Hamilto-
nian (6.1.1) such that in matrix notation, we get the Schrodinger equation
1 1
HW =TW + WT + > U(z)(Le — SIW (L — 5) (6.6.1)
zEA

Again, we perform the hole-particle transformation of above. This time the on-site
term transforms as

UL~ U W (Lo~ 3) = (1~ (B = 5)W/(Ea = 3) = ~(Le = W' (Lo — )
(6.6.2)

Thus we have flipped the sign of U{z) but retained the form of the on-site term.

Before we may now apply the arguments leading to theorem 6.4.21, we have
to show that the on-site potential is again positivity preserving and generates an
ergodic semigroup. The first assertion is clearly true by lemma 6.4.1; the second
assertion requires a careful review of the proof of theorem 6.4.14. Using the same
notation as in proof 6.4.15, we see that the Schrodinger equation yields

(nTQr) + (1 QT™) + Y U (Lo = 5)Q(Le — 57) = BW)(r,Qr) (669

which implies that for U(z) > 0

1 1
(r)(Le = 5)Q(Ls = 5)r) =0 (6.6.4)

for all x and thus @L,r = 1Qr = 0. Therefore we again have shown that L, maps
ker ¢} into ker @ and we may proceed to construct the projection operators L,.
The ground state belongs in addition to S = 0, by the same arguments as in the
attractive case. Thus we have the following theorem:

Theorem (6.6.5) Consider the extended Hubbard model

H= Y ta, e + Y Ve~ 3o —3)  (665)

T,y€AT zEA

on a lattice A of arbitrary dimension. Assume that the hopping matrix ¢(z,y)
is connected and bipartite. Assume further that U{z) > 0 but not necessarily
constant. Then the ground state i is unique and the spin value corresponds to the

S = 0.



Chapter 7
The tJ-Model

7.1 Introduction

The discovery of the novel high-temperature superconductivity! has given rise to
searches for new mechanisms of superconductivity. In the standard BCS theory?,
superconductivity results from the instability of the ground state originating from
effectively attractive electron-phonon interactions. Since high-T, superconductivity
seems to be created by doping an insulating state, P. W. Anderson suggested
the possibility of superconductivity near a Mott transition in a model of strong
repulsive on-site Coulomb interactions [A87].

Using this as a starting point, several authors have derived [S 75, ZR, 88] and
studied [S 87, W 88, BB 90] the tJ-model, which, as indicated in the preceding
chapter, is a particular case of the Hubbard model. The main features of this
model may be described as exhibiting

o hard-core repulsion (P),
# nearest-neighbor hopping (¢} and
e spin exchange (J)

Therefore the tJ-model may be seen as a merger of the (no-coupling) Hubbard
model and the Heisenberg model.

7.2 Uniqueness of the Ground State

Consider a one-dimensional lattice A of N electrons, where each lattice site is ca-
pable of accommodating at most one electron; necessarily N < |A|. The dynamics

1. G. Bednorz, K. A. Miiller, Z. Phys. B 64, 189, (1986)
2J. Bardeen, L. N. Cooper, J. R. Schrieffer, Phys. Rev. 108, 1175, (1957)
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of the tJ-model in the form of [BB 90] is given by

H=PY ta,y) choe P+ Y J@9) {S(2)-8) - 2}, (121)
{my) ()
o=,
where P = [[,c5(1 — nopnzy) restricts the Hilbert space by the constraint of no
double occupancy and (z,y) denotes nearest-neighbor pairs. The Hamiltonian is
SU(2) invariant [BB 90], i.e. the total spin S is a conserved quantity. The spin
operators are given as on page 52, The hopping matrix t(z,y) and the exchange
matrix J(z,y) are assumed to be real and symmetric.
Rewriting the Hamiltonian (7.2.1) in terms of creation, annihilation and number
operators we get

H = Hy—-V
1
= —3 Z J(2,4) ngeNy—o

{z9)
e=T,l

+ 3 (e 9)Pet o P+ I (@, 9)chtrmah oo} (122)
(z:9)
a=1,l
In this form, it is easy to see that the spin-exchange part of the Hamiltonian
describes double-hops as mentioned in chapter 5. The number of spin up and spin
down particles is individually conserved®.

By SU(2) invariance, all states of allowed spin angular momentum can be
rotated into the M = 0 subspace with no change in their energy. The ground state
here is therefore the ground state of the Hamiltonian. The configurations which
form a complete set in this subspace have n = N/2 electrons (N even) with spin
up and n electrons with spin down. There are

p = ( l{;l ) . ( lA‘n‘“” ) (7.2.3)

distinct configurations, which we will denote by ¢,, a € 3{1,p]. We now choose
the phase of the ¢,’s such that

Bo=C - c:_:‘,i'_.la,lclr coect L 10Y, (7.2.4)

Bal2 TNON

where |0) denotes the no-particle state, C' is a positive normalization constant
and the spin on each site is either up or down. Let Ky be the set of all linear

3Denoting an empty lattice site a hole, we may therefore view the tJ-model as a three-
component quantum system [S 75]; species A are the gpin up, species B the spin down particles
— obeying Fermi statistics — and species C are the holes - obeying Bose statistic.
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combinations of the ¢, with nonnegative superposition coefficients (the fat cone).
Then the relations

CI:G"CI-"HT K:tJ C }C;LJ, (7.25)
C:fc-nocm Kir C Kigs (7.2.6)
e os Kis € Kugy (7.2.7)

hold for all lattice sites z and all possible spin directions o, 7. This can be eas-
ily seen from the anticommutation relations (here a crucial fact is the assumed
nearest-neighbor coupling). We will show one of the above equations, namely
equation (7.2.7). Since

[Clocy?'vclp] = €l byzbrp, (7.2.8)
we can shift the pair ¢! ¢,... until we reach the zth site without changing the sign.
Chromr €y Chaoy  Chyoyl0)
= cloyrr chtomrcly o0y [0)
C:Tzla‘l T CI’:‘T {“Cicrcw—‘f + {cn:—'ra Cia}] e clNaNlO)
0 ng =10
= 0 Nge = 1,0 =7 (7.2.9)
CI«':["I e Cj":'r T CLNU'NIO) Nge = 1,0 = —7T

The remaining relations (7.2.5) and (7.2.6) are proved in an analogous way. We
have thus shown that the operator V is positivity preserving w.r.t. K,y if we neglect
the sign of the hopping and the exchange matrix for the moment.

By the previously considered BCT transformation, the sign of the hopping
matrix may again be flipped under the assumption of bipartiteness. Thus for the
cases t(z,y) > 0, J(z,y) < 0 and t(z,y) < 0, J(z,y) < 0, we may again apply
the Perron-Frobenius arguments as we did in the case of the Lieb-Mattis and the
Heisenberg models. The connectedness insures the ergodicity of the corresponding
semigroup and the Hy operator is certainly diagonal in the chosen basis. Therefore
the ground state is unique up to spin degeneracy.

Let J(z,y) > 0. Then we have to find a transformation which changes the sign
of J(z,y) so that we may again apply the Perron-Frobenius theorems. We first
observe that

t 1 —
Cro c-ﬂ"«"—f’cy—d Cye =

¢t CuoCo—oChos
= clacya [6%, - c;f,_,,c,,_a]

—ct t i
_ { CroCyo Cy—g Camo if z # y (7.2.10)

Npe ™ NapoePy_o ifz=1y
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Thus in the first case the double hops appear explicitly. In the second case (z =
y), the double hops reduce to the number operator at each site, if we note that
NgeMa—e = 0, since double occupancy is projected out by P. Now we have run into
a major problem, since if we denote the hopping term for spin up by v and the
spin down hopping by d, we are looking for a transformation such that

wtd—u-d > utdtu-d (7.2.11)

This means that an overall sign change as produced by the BCT transformation
as well as a sign change in either up or down hopping operators as produced by
the hole-particle transformation will not suffice.

The transformation that we will use here is the Jordan-Wigner transformation.
We have already shown in chapter 5 that, restricting ourselves to one dimension
and nearest-neighbor interactions only, the number as well as the hopping opera-
tors remain invariant under this transformation. The same holds now for the spin
exchange part which, having been brought into the form of equation (7.2.10), is
nothing but two hopping operators combined. If we now interchange the order
of the operators again and bring them back into the standard form of the spin
exchange, then the sign does not change, since the Paulions at different sites com-
mute. Assuming J(z,) = 0, we have therefore succeeded in flipping the sign of
the J{z,y) matrix.

et C&:-—trcgt-—a Cyo = ~ClyCuoCymgoa = = bl beo bi.,_d byo = —blybyoby-abeo

(7.2.12)
We summarize these results in the next theorem.

Theorem (7.2.13) Let H; denote the Hamiltonian of the one-dimensional
nearest-neighbor tJ-model. Assume that the sign of the hopping matrix t(z,y)
is the same for all z,y € A, and likewise for the sign of the spin exchange ma-
trix J(z,y). Then if both matrices are connected (and bipartite if necessary), the
ground state of Hys is unique up to the 25 -+ 1 spin degeneracy.

7.3 The Spin Value of the Ground State

So far, the result is still unsatisfactory. If the #J-model is indeed a model of high-7-
superconductors, it should exhibit an antiferromagnetic ground state for NV ~ |A
[ABCKS88]. One might be tempted [M 91] to argue that by the theorem 5.2.14
of Lieb-Mattis the antiferromagnetism of the ground state is implied by the one-
dimensionality of the chain A. This is certainly not true since Lieb-Mattis [LM 62a]
point out that the “theorem is not valid if there are explicitly spin-dependent
forces” present. But we may again employ the mechanism which led to the spin
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value for the repulsive Hubbard model. In a calculation by A. Mielke [M 91] in
the same paper cited above, the author concluded that the {J-model for J > 0
reduces to the antiferromagnetic s = & Heisenberg chain if the spin-exchange term
is treated as a perturbation. Thus, using the same arguments as for the Hubbard
model, we may argue that

Conjecture (7.3.1) The unique ground state of the connected tJ-model for J>0
has total spin S = 0 for nearest-neighbor hopping and an even number N = |A] of
electrons on the linear chain A.

A. Mielke does not restrict himself to the half-filled band in the perfurbation
expansion, which should therefore hold for all N < |A|. Again, this would indicate
that the ground state spin value is zero for arbitrary filling. It is important to
note that this result is in contrast to the behavior of real two-dimensional high-
T. superconductors [ABCKS88]. There the antiferromagnetic state changes to a
spin-glass state as the number of holes is increased by doping. For an even larger
number of holes such systems then exhibit a superconducting phase. The result
also contrasts a recent calculation by A. Forster [F 91], who showed that on a
one-dimensional lattice of JA| = 10 sites, the § = 0 state is a unique ground state
for N = 10 only. For all other (even) values of N, the ground state is degenerate.
Thus the question of the spin value of the ground state of the ¢{.J-model apart from
half-filling has to yet to be resolved.

Before we leave this chapter, we study the possible generalizations of our the-
orems to two or more dimensions which are decidedly much more interesting from
an experimental point of view. In chapter 6 we point out that the tJ -model may be
viewed as a special case of the Hubbard model; thus we may ask ourselves whether
some of the arguments used there may be applied in the case of the ¢J -model.
Unfortunately, we cannot use the cone of the Hubbard model, Kxpp, since by the
hard-core repulsion of the ¢J-model, the diagonal elements of the state matrices
W € Kygp are zero and thus Kgpp = § by theorem 3.6.3.



Chapter 8

Conclusions

After having reviewed the classical Perron-Frobenius theory and introduced pos-
sible generalizations, we developed a semigroup version of the Perron-Frobenius
theory following the lead of Faris [F 72]. The ‘perturbation’ results thus derived
were used to prove the existence and, if applicable, the uniqueness of the ground
state for the Lieb-Mattis model, the Heisenberg magnet and the Hubbard model
on finite lattices. In addition, the tJ-model was successfully treated with the same
methods.

A number of open problems remain. As the reader has probably noticed, we do
not make explicit use of theorem 4.3.1 for the Hubbard model. Instead we state
and prove theorem 6.4.14 without using any semigroup terminology. As indicated
before, the reason for this is that the hopping term of the Hubbard model alone
is not ergodic w.r.t. the cone Kgpp. Thus the semigroup theorems, which use
the Trotter product formula and therefore decompose the semigroup generated by
Hpygp into products of two semigroups, are not applicable. For this reason we use
the hopping and the on-site potential term in theorem 6.4.14 to establish ergodicity
of the complete Hamiltonian Hgpp. A possible semigroup method for doing this
might be to use the Baker-Cambell-Hausdorff-Dynkin (BCHD) formula [RS1 80]

exp(A) exp(B) = exp(A+ B + %[A, Bl+..)

If the higher commutators vanish and if in addition the semigroup generated by
the commutator term is ergodic, we would have the desired form for the Perron-
Frobenius arguments. Unfortunately, this is not true in the Hubbard model for
the commutator of [Ho, V]. It is, however, certainly worthwhile to examine under
what assumptions the commutator of two operators A, B is ergodic.

In applying the Perron-Frobenius arguments to the #J-model, we had to re-
strict ourselves to the one-dimensional nearest neighbor version since we used the
Jordan-Wigner transformation. A possible generalization to two or more dimen-

sions may be pursued using at least two different methods. First, sticking to the
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fat cone K7, we might apply generalizations of the Jordan-Wigner transformation
to higher dimensions. Second, we might start to look for another cone. The first
idea is certainly the most promising, since generalizations of the Jordan-Wigner
transformation exist for at least two dimensions. With respect to the second idea,
we note that, as indicated before, the cone Kypgp of the Hubbard model can not
be used for the tJ-model.

The above problems are largely due to the fact that for fermionic systems,
the ordering of the Fermi operators is extremely important. For the Lieb-Mattis
and the {J-model we were consequently obliged to use the Jordan-Wigner trans-
formation, which restricted us to a linear chain. For the Hubbard model, we
circumvented that problem by using a nonstandard cone, thus inviting all the
problems mentioned in the above paragraph. Only for the Heisenberg model did
these problems not arise, since there we were dealing with spin operators that al-
ready commute at different sites. Another most promising way out of this dilemma
was presented by Gross [G 72] and Faris [F 72]. They developed a noncommuta-
tive, infinite-dimensional extension of the Perron-Frobenius theory by considering
a suitable Clifford algebra C over the Hilbert space W. Since then, not much work
has been devoted to the application of C* algebras to Perron-Frobenius type theo-
ries. It might be interesting to see whether any of the knowledge obtained from the
highly successful application of C* algebras in statistical mechanics and algebraic
quantum field theory over the last 20 years might be used to further generalize
and extend Perron-Frobenius theory. This in turn should yield new insights into
ground state degeneracy for a larger class of Hamiltonians.
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Appendix A

Miscellaneous Results

A.1 A Short Excursion into Graph Theory

Definition (A.1.1) A matrix A = {a;;] € M, is said to have property SC if for
every pair of distinct integers p,¢ with 1 < p,¢ < n there is a sequence of distinct
integers p = ki, ks, ...,k = ¢, 1 <m < n osuch that

Ghyky * Ghghy * v+ Okpcs b, F 0 (A.1.2)

(where this is an ordinary, not a matrix, product).

Definition (A.1.3) The directed graph of A € M,, denoted by I'(A), is the
directed graph on |T(A)| = n nodes Py,..., P, such that there is a directed arc in
T'(A) from P; to P; iff a;; # 0.

Definition (A.1.4) A directed path ~ in a graph I' is a sequence of arcs F;, /5,
P,P,,...inT. The ordered list of nodes in the directed path v is F;, Py, ... .

Definition (A.1.5) A directed graph T' is strongly connected if between every pair
of distinct nodes P;, P; in T there is a directed path of finite length that begins at
P; and ends at P;.

Theorem (A.1.68) Let A € M,. Then A has property SC iff I'(A) is strongly
connected.

Proof (A.1.7) A has property SC & given any distinct pair¢,j € {1,...,n} there
exists a sequence {ki,...,kn} such that @i, agk, - ak,_,; # 0 & there exists a
directed path v between i and j of finite length < I'(A) is strongly connected. [§

Theorem (A.1.8) Let A€ M,. Let P;, P; be given nodes of I'(A). There exists
a directed path of length m in T'(A) from P; to P; iff (|A|™);; # 0.

89
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Figure A.l: The indicator matrix I(A) € M, with property SC
and its corresponding strongly connected graph I'(A}. Note the cycle
PAWPG—*}PD%PBWP(;'—-%PA.

Proof by Induction (A.1.9)
o : For m = 1 the theorem is clearly true. Now, let m = 2, then

(1A% = D AlxlAlky
k

= Z [aik”akj[ >0 (Allﬁ)

k

iff at least one kg exists such that lag,| - ler,;| # 0. This is equivalent to the
existence of a path of length 2.
— : In general,

n

(A )y = ) (Il Al
k

%

S (1A Yiea] (A.1.11)

k

fl

iff at least for one kg, (|A|™)ix, * |@rok] # 0, and this is equivalent to a path of
length mo + 1. ]

Corollary (A.1.12) Let A € M,. Then A has property SCiff (1 + ]A[)*™" > 0
or, equivalently, if (8 + I{A))*"! > 0.

Proof (A.1.13)

(1 +1A)" =1 +(n_1)|A|+(”‘2’1 )|A|2+...+(§:;)|A|"“1>o
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iff for each pair (7, 7) of nodes with i # j at least one of the terms |A[, |A%,.. ., |A[*1
has a positive (i,7) entry. By the above theorem A.1.8, this is equivalent to the
existence of a directed path in I'(A) from P; to P; which in turn is equivalent to
I'(A) being strongly connected and A having property SC. |

Theorem (A.1.14) Let A € M,(R*). The A has property SC iff A is irreducible.

Proof (A.1.15) We shall actually prove that A is reducible iff A™ has at least
one 0 entry. Assume first that A is reducible. Let

. B C
PTAP=A= ( 0 D ) (A.1.16)

where B € M,, D € M., C € M,,—, and 0 € M., is a zero matrix as in
definition 2.3.1. Now, A™ has the same 0 € M, ., matrix in the lower left corner
for all m < co. Therefore there is never a path between nodes P; and P; as long
as i € N[n —r,n], j € N[1,7] or vice versa. Since a permutation only relabels the
nodes, the argument holds for A™, too. Thus by theorem A.1.8, A does not have
property SC.

Conversely, suppose that A is not strongly connected. Then there is a pair
(@, b) such that {A™)a # 0 and no directed path from P, to P, exists. Let

N, = {P;: P, = B, or there is a directed path from F; to B}

and Ny = I'(A) — Ny. Then since P, € Ny, N2 # {P1,...,P,}. By construction,
there cannot be a path from a node in N; to some node in N1 since then this node
would already belong to Ni. Relabeling the nodes such that N} = {P,.. P}

and N, = {Pry1,..., P,} we notice that then we can write

~ B C

A=PTAP = ( 6 D ) (A.1.17)
Thus A is reducible. |

Definition (A.1.18) A matrix A = [a;;] € M, is said to be bipartite, if for all
n > 2 there is a permutation matrix P € M, and some integer r, 1 <r <n -1
such that

C 0

where D € My —r,C € My, and 0 the remaining zero matrices. This is equiva-
lent to saying that the vertices a;; can be divided into two disjoint sets C', D such
tha,ta,-jxOViEC,jEDorjED,iGC’.

PTAP = ( 0 D) (A.1.19)
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Figure A.2: The indicator matrix of a bipartite A € Mg and its graph I'(A).

Lemma (A.1.20) Let A € M, be bipartite. Then, if C,D are given as in
definition A.1.18, we have rankA < 2min(|T'(C), |T{(D)}).

Proof (A.1.21) Since A is bipartite, we write is as

A:(g§)=(88>+(gg)=0’+13’ (A.1.22)

By the properties of the rank, we have that for any 4 € M, rankA < |['(A)|. Now
w.l.o.g. assume that [I'(C)] < |I'(D)|. Then

rankA rank(C’ + D)
rank(C") + rank(D")
IT(C) + IT(D)]

21 (C)]

IAIA A

A.2 Ergodicity and Ergodicity

In section 3.4 we define the concept of an ergodic operator A in a real Hilbert space.
But the term “ergodic” is usually used in a different context: Ergodic Theory as
it appears in the literature [RS1 80, CFS 82], attempts to answer the question of
whether “time mean equals phase-space mean”. Explicitly, let T be the phase space
of a classical mechanical system and let a constant energy surface in I" be denoted
by Qg. Let Ty : T' — T be a translation in time, that is Tz is the state at time ¢
originating from the state Ty z in I. Given an observable f(-} and a state w € {1g,
we then want to insure that

lim l
T-1-+oo T

T
/ f(Tyw)dt (A.2.1)
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exists, is independent of w, and is equal to
W = [ rew)ditw) (A22)
B

where /i is a probability measure on {15. This statement can be made in the case
where T; obeys the following definition, i.e.

Definition (A.2.3) [RS1 80] T; is called ergodic if the constant functions are the
only functions in L*(Qg, dug) for which f o Ty = f (as L? functions) for all £.

The equivalence of the two concepts is then shown by the next theorem. The
cone in L2(M, ) is the set of a.e. nonnegative functions, as introduced on page 3.4.2.

Theorem (A.2.4) Let (M, i) be a probability measure space, i.e. p(M) = 1. Let
T : M — M be a measure preserving map, i.e. g{T71F) = u(F)VY F C M. Let

(Af)(=) = f(T=)
Then
(a) A is unitary,
(b) A is positivity preserving,
(¢} A is never positivity improving,

(d) A ergodic in the sense of definition 3.4.8 is equivalent to T' ergodic in the
sense of definition A.2.3.

Proof (A.2.5)
to (a) Let f > 0. Then

(Af, Ag)(z) = LI F(T2)g(T)dp(z)

= | f2)g(e)dn(T"z)
M

since T' is measure preserving. Therefore A4 is unitary.

to (b) (Af)(z) = f(Tz)= f(y) = 0 and thus A is positivity preserving.



94

to (¢) (Af)(z) = f(Tz) = 0 but never > 0 for all z € M since f € L*(M, ).

to (d) The assertion is an application of the Perron-Frobenius theorem 3.4.12.
By the definition of A, we know that the constant functions are invariant,
and since A is unitary, we have (Af)(z) = f(T'z) = 1. f(z) for f constant.
Assuming that A is ergodic as in definition 3.4.8, the Perron-Frobenius the-
orem states that the eigenspace is one-dimensional. The constant functions
already lie in the eigenspace; they are the only functions that do so, since
otherwise the eigenspace cannot be one-dimensional. The converse follows
immediately by the same arguments, if we note that the Perron-Frobenius

theory can be proved in the other direction; see [F 72] for details.

A.3 An Operator Identity

The following lemma is needed in section 6.

Lemma (A.3.1) Given two operators A, B on a Hilbert space H, the following

formula holds for all n € N,
n—1
AB" = B'[A,B]B"" + B"A.
k=0

Proof by Induction (A.3.3)
o : Suppose ng = 1. Then we have

0
AB' = Y B*A,B]B**+ B'A
k=0
[A, B+ BA
= AR

as expected.
<3 : Then by induction we have for n =ng + 1

AB" = AB™B
ng—1
= (Z B[A, BIB™™' ¢ B"‘“A) B

k==
ng—1

= Y BY[A,B]B™* + B AB

k=0

(A.3.2)
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ng—1

= Y B*A,B]B"* + B™[A, B+ B™"' A
k=0
o

= Y BMA,BIB® ™ + Bt A

k()
n—1

= > BYA,B|B"'* 4 B"A
k=0

completing the induction. |

A.4 Some Transformations

A crucial problem in the application of the perturbation resuits presented in chap-
ter 4 is the existence of the minus sign in the Hamiltonian (4.1.1),

H=~H,-V

as discussed on page 43. Here we will construct some unitary operators that will
enable us to perform transformations' on H = Ho + V such that we are left with
a Hamiltonian of the form H = UHU™! = Ho - V.

As in chapter 3, let ¢l , ¢z, denote creation and annihilation operators for
fermions satisfying the anticommutation relations

{cw,cl,,,} = bsybory {CoosCyr} = {clmc;f} =0

where the subscripts 2,y denote the location of the fermions in a given lattice A of
arbitrary dimension d and o, T as usual denote the spin indices T and |. Then let

Uy = eXP(iTNas ),

where ngy = ¢l czo is the number operator. Consequently by Lie’s series expansion,

UpoCaollny = eXp(iFNge)Cor XP(—17Nzs)

= Cpy eXP(—17Nye)

- { ~Cor Mg = 1 (AL1)

Cpe  Tgo = 0

1A general discussion of canonical transformations on a linear chain can be found in [S 75j.
The transformations (b) and {c) presented there are effectively identical to the BCT and to the
Jordan-Wigner transformation used here.
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where the last relation is assumed to be applied to some given state. Most of the
operators we will be dealing with are either of the hopping type

ety (A.4.2)

or of the spin-exchange type
clacwgr:;wcyo (A.4.3)

A.4.1 BCT Transformation

We assume that the lattice A is bipartite, i.e. there exist disjoint sets Ay, Ap of
the sites of A such that A = A4 U Ap. Then we define

Upcr = exp | i Z P r (A.4.4)

z€A 4

o=1,)

where the subscript stands for Bipartite Canonical Transformation. The net effect
of this transformation is a sign change in the creation and annihilation operators
on the A sublattice, whereas the operators in the B sublattices remain invariant.

_ —Cpe Hx€Ag

The hopping operator ¢! c,, changes its sign only if z € A4 and y € A, and vice
versa. The spin exchange operator c},acw_ac*_acya remains invariant for all possible
¢,y locations, as does the number operator 7.

A.4.2 Jordan-Wigner Transformation

The previous transformation may be applied to more than one dimension. How-
ever, there exists an extremely useful transformation-the Jordan-Wigner transfor-
mation [JW 28]-applicable to one dimension only. The Jordan-Wigner transforma-
tion enables us to tackle the basic problem of fermionic systems, i.e. the ordering
of the Fermi operators. Any change in this ordering may result in a change of the
overall sign of the state. It should be clear that this is extremely important in
the context of Perron-Frobenius theory, where we explicitly require the positivity
preserving quality of operators.

The Jordan-Wigner transformation now provides us with a tool that changes
the fermionic character of ¢z, ¢!, to a more bosonic one. Since the new operators
commute at different lattice sites and spin values, their ordering becomes less
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important. Again, the transformation is built on equation A.4.1, but now a ‘local’
transformation matrix is used. The transformation rules are given by

z—1
byy = Cy|e€Xp (innm)

z=1
iAl z—1
byt = cgrexp |w an‘l—%an,T (A.4.6)
2= 2=l

The bt are given by the Hermitian conjugates of these defining relations. It can
be verified that the so-called paulions b;, obey the commutation relations [B 88]

[buo, byr] = 0 (A4.7)
b, b] =0 (A49)

In addition, paulions are hard-core particles, that is, they anticommute at equal
sites such that
[boey b1 = Buybor(D — 267, b1 (A.4.9)

We note that the additional exponential factors in the transformation for b, assure
the compatibility of the above relations for operators of different spins.

Assuming nearest-neighbor hopping in the one-dimensional chain A, it is easy
to see that the hopping operator remains invariant, i.e.

z z-1
bt b, = exp(—irm ns e, coexp(in y  n,)
+ +
z=1 EE
= exp(—ixng)ch 16
1

= Cpyq eXp(—iTng)Cs

= ci“ [E — iRy + (—i7ng)® .. ] Cu

= ol e (A.4.10)
where we have dropped the spin index o for convenience. The last equality comes

from the relation ng,¢,e = 0. For z # y the spin exchange operator can be
rewritten as a product of two hopping terms, i.e.

t t — t t
cxac.qg_gcy_acl‘cr —— _CEOCygc T c;;;.,,.,d

= _bi'abyabgt——o‘bw"—d
= —bl by bl b (A.4.11)

y—o Yo

We therefore may change the sign of the spin exchange operator if the corresponding
transition matrix is bipartite.
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A.4.3 Hole-Particle Transformation

We now consider another transformation, the hole-particle transformation, which
is defined as

cpp = dy (A.4.12)

+dl, iz e g
Cpp = o A4.13
' { ~dl, ifz€Ap ( )
Thus, instead of dealing with spin up particles, we are now dealing with spin up
holes; hence the name. The hopping operator structure remains invariant under the
transformation, i.e. ¢}, ¢,o = di d,. for a bipartite lattice. The number operators
for the spin down particles remain the same, but the number operators for the spin
; e ol —_ t 1 _ gt st
up particles change, not = €pq¢a1 = dopdyy = 1 — dypdey. This yields

N=ni+n =f—f;+1=5+1 (A.4.14)

and

A

B =np—n=1-f+A=1-N (A.4.15)
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@
Notation
Abbreviations
w.l.o.g. without loss of generality
w.r.t. with respect to
Symbols
@ empty set
N set of natural numbers
Z set of integers
R real numbers
Rt real numbers greater than zero
[a, D] closed interval from a to b, ¢ < b
la, b open interval from a to b, a < b
C complex numbers
Nfm, n] {meNm+1eN,...,neN}
R {(multi)index set
S[m, n] {(me¥,m+1€S,...,neF}
M., . (F) m X n matrices over the field F
AT transpose of matrix A
A* Hermitian adjoint of A
{A| absolute value matrix [|a;;|]
I'(A) directed graph of A
5 directed path in I
B nodes in v
I(A) indicator matrix of A
o(A) spectrum of A
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Location

Al3
Al4
Al4

2.1.3



KO
oK
K*
(K1, K2)

Yaly

sup(, y)
inf(z,y)
e

PSD

y
("')
Ao B
14

A

A
H(z)
H(A)
P

S(A)?, Sa(A)
S(S+1),M

C:cg H C.’L‘U

b;:r’ bﬂw

spectral radius of A
reduced block form of A
diagonal n X n matrix
permutation matrix

Banach space

Hilbert space

scalar product in W

cone symbol

interior of K

boundary of K

dual cone of K

cone of positivity preserving operators
partial ordering

partial ordering induced by K

supremum induced by K

infimum

“ice-cream-cone”

the cone of positive semidefinite matrices

space of n X n Hermitian matrices
scalar product in V

Hadamard product of A and B
modulus of W, |W| = 4/(W?)

lattice

number of sites in A

Hilbert space at site

Hilbert space of the whole A

projection operator

spin operators on A

eigenvalues of spin operators

Fermi creation and annihilation operators
Pauli operators

Fermi operators after hole-particle transformation
number operator at site ¢ and of spin &
number of pure states

number of electrons

number of spinless fermions n = N/2

set of all pure states, a a single pure state

2.1.3
2.3.1

3.1.2

3.3.8
3.1.25
3.1.6

3.1.6
3.3.1
3.3.1
fig. 3.1

3.6.5
3.6.5
3.6.5

3.1.1
3.1.1

p- 5.1
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commutator
anticommutator

start-of-induction
induction argument

end-of-proof symbol
proof is found in the cited literature
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