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Abstract

The electronic properties of disordered systems at the Anderson metal-insulator transition
(MIT) have been the subject of intense study for several decades. Thermoelectric prop-
erties at the MIT, such as thermopower and thermal conductivity, however, have been
relatively neglected. Using the recursive Green’s function method (RGFM) we calculate
the average and the typical conductance for the case of completely coherent transport
of cubic 3D disordered systems with semi-infinite metallic leads attached at both ends.
We investigate the influence of the leads on the energy driven MIT. We find that the
numerical results are consistent with the one-parameter scaling theory, in particular, we
find that at 7" = 0 the d.c. conductivity close to the mobility edge is well described by
the power-law. Finally, we study the case of incoherent transport and compare numer-
ical results obtained from the RGFM and an approach based on the Landauer-Blittiker

formalism.
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Chapter 1

Introduction

Traditionally, condensed matter physics has focused on the investigation of perfect crys-
tals. However, real materials usually contain impurities, dislocations or other defects,
which distort the crystal. If the deviations from the perfect crystalline structure are large
enough, one speaks of disordered systems. In recent years such systems have aroused
new interest in the field of mesoscopic physics. This was driven by the observation that
transport can be completely coherent in systems of macroscopic size and therefore a

quantum mechanical description is inevitable.

The Anderson model [1] is widely used to investigate the phenomenon of locali-
sation in disordered materials and transport properties in mesoscopic devices in general.
Especially the occurrence of a quantum phase transition driven by disorder from an in-
sulating phase, where all states are localised, to a metallic phase with extended states,
has lead to extensive analytical and numerical investigations of the critical properties
of this metal-insulator transition (MIT) [2,3]. But while electronic properties of disor-
dered systems at the MIT have been the subject of intense study for several decades,
thermoelectric properties, such as thermopower and thermal conductivity, however, have
not been investigated to the same extent. Usually, the calculation of these properties

aims at either the deeply insulating or deeply metallic regime. The investigation of the



behaviour close to the MIT on the other hand relies on certain assumptions such as the

one-parameter scaling hypothesis [4, 5].

This scaling theory plays a crucial role in understanding the MIT [6]. It is based
on an ansatz interpolating between metallic and insulating regimes [7]. So far, scaling
has been demonstrated to an astonishing degree of accuracy by numerical studies of the
Anderson model [8]. However, most studies focused on scaling of the localisation length
and the conductance at the disorder-driven MIT in the vicinity of the band centre [8-10].
In order to calculate the temperature behaviour of the thermoelectric properties one
moreover needs the explicit energy dependence of the d.c. conductivity close to the energy
transition [5]. Assuming a power-law form for the d.c. conductivity, as it is expected
from the one-parameter scaling theory, Villagonzalo et al. [5] have used the Chester-
Thellung-Kubo-Greenwood formalism to calculate the temperature dependence of the
thermoelectric properties numerically. They showed that all thermoelectric quantities

follow single-parameter scaling laws, but found an unphysical dynamic exponent [11].

In this thesis we will investigate whether the assumptions made in previous studies
can be recovered in numerical calculations, and in particular if the energy dependence
of the d.c. conductivity follows a power-law. Therefore we will use the recursive Green’s
function method [12,13] to calculate the conductance of a disordered system for fixed
disorder strength at 7" = 0. Applying the finite size scaling analysis we will compute the

critical exponent and the mobility edge at the energy transition.

Finally, in order to study how deviations from the one-parameter scaling theory
can be caused by physical processes we will focus on incoherent transport. Therefore,
we will show how dephasing processes can be modelled within an approach based on the
Landauer-Biittiker formalism [14,15]. At last, we will compare numerical results for the
conductance obtained from this approach to calculations using the Kubo formula for the

same setup.



Chapter 2

Thermoelectric Transport

Properties

Transport properties describe the ability of a material to transport energy, entropy, heat
or electric charge. Two familiar examples are the electric and the thermal conductivity
in case of electric charge and heat transport, respectively. If both transport types are
present, new effects can be observed. And as a result thermoelectric transport properties,
such as thermopower and the Peltier coefficient have been defined. The investigation of
transport properties is not only important for the understanding of the physics behind
these transport processes, but is also relevant for technological applications especially in

modern microelectronics.

In this Chapter the two most important thermoelectric effects for this work, the
Seebeck and the Peltier effect, will be explained and the respective transport properties
will be introduced. By using kinetic transport theory all transport quantities will be
expressed in terms of the kinetic coefficients. Finally with the Chester-Thellung-Kubo-
Greenwood (CTKG) formalism, a method of calculating these coefficients and thus all

thermoelectric properties will be given.



2.1 Thermoelectric Effects in Solids

Intimately connected with transport mechanisms and properties is the question of the
type of carriers involved. While charge is almost solely carried by electrons or holes, heat
can also be transported by phonons, magnons or other quasi-particles. Although the latter
can constitute a significant contribution to the behaviour of transport properties, such as
the phonon-drag to thermopower, we assume in the following that the temperature is low
enough to neglect these effects. Experimentally, respective measurements are therefore

usually done below 1K [16].

2.1.1 Electric and Thermal Conductivity

If there are mobile charge carriers available, the presence of an external electric field £
will result in an electric current through the sample. For a sufficiently small electric field
£ the electric current density j. is directly proportional to the field, which is subsumed

in Ohm'’s law,
Je(r) =0&(r) . (2.1)

The tensor o is the electric d.c. conductivity, which describes the response, i.e. the flow
of carriers, to the external field. It therefore reflects the ability of the material to conduct
electric current. In the case of an isotropic material, e.g. with a simple-cubic symmetry,
and in absence of a magnetic field the conductivity tensor becomes proportional to the

unit tensor (0);; = 00;;.

In a similar way a constant temperature gradient VT leads to a "thermal flow" of
carriers and thus to a thermal current density j,. If the gradient is small, Fourier's law
relates j, to VT [17],

Jg=—rVT, (2.2)

where k is the thermal conductivity, which characterises the ability to conduct heat. The

change of heat d@ in some small fixed region of the solid, where the temperature can



be assumed to be constant, is just T times the change of entropy S, dQQ = T'dS. Hence

the thermal current density is related to the entropy current density in the following way,
Jg="Tijs - (2.3)

Notice that this is no longer valid if one goes beyond the linear theory [17].

2.1.2 Law of Wiedemann-Franz and Lorenz Number

In the case of an electric and a thermal current, the phenomenological law of Wiedemann
and Franz states that for metals the quotient of x and o is directly proportional to the

temperature 1. The proportionality constant is the so-called Lorenz number

62/{

- __ 2.4
k% oT’ (24)

Lo

where ¢ is the electron charge and kp is Boltzmann's constant. For metals, it takes the

universal value 72/3 [17,18].

2.1.3 Seebeck, Peltier and Thomson Effect

Now, if the circuit is open (jo = 0), the heat current density j, will eventually lead to an
accumulation of electrons at the cold end and a depletion at the hot end of the conductor.
Consequently, this sets up a thermoelectric field £, which opposes the thermal flow of
the electrons (see Fig. 2.2). This so-called Seebeck effect was discovered in 1821 by

the physicist Thomas Johann Seebeck. For small VT one obtains for the field,
E=SVT, (2.5)

which defines the thermopower (or Seebeck coefficient) S. In general the thermopower
is due to two different effects: the diffusion of the electrons and the so-called "phonon-
drag" [19]. Notice that in some cases there may also be a "magnon-drag" [19]. The
phonon-drag rests upon a momentum transfer from the phonons to the electrons as a

result of collisions. In metals the diffusive S is found to be proportional to —7" [17], where



the sign is determined by the charge of the thermal conductors, which are electrons in the
case of metals. In semiconductors the diffusive thermopower shows a different behaviour.
Here S diverges for T — 0 with 1/7. The sign of S indicates whether the current is

carried predominantly by holes or electrons [19].

Metal A

(a) Seebeck effect (b) Peltier effect

Figure 2.1: (a) The Seebeck effect. The difference of the temperatures in the two metals
yields a difference in the thermopower and hence a voltage can be measured. To obtain
the thermopower of one metal only, the other metal has to be superconducting [17]. (b)
The Peltier effect. Driving a current in a bimetallic circuit leads to a thermal current.

The Peltier effect is the counterpart of the Seebeck effect. If an electric current
is driven trough a bimetallic circuit at a uniform temperature, there will be a release
of heat at one of the junctions and absorption at the other one (see Fig. 2.1). This
can be understood from the fact, that in an electric circuit at constant temperature an
electric current is accompanied by a thermal current j,, which is directly proportional to

the electric current j. [17],
Jg = je . (2.6)

The material specific constant II is called Peltier coefficient, which is connected to the

thermopower S by the relation

=TS, (2.7)

which was first deduced by Lord Kelvin and can be rigorously derived using the kinetic

coefficients (cf. Section 2.2). The Combination of Equations (2.6) and (2.7) and using



the relation of the thermal current density j, to the entropy current density js (2.3) gives
Jg =Tjs = je = TSje = Jjs = Sje - (2.8)

Thus, the thermopower is just the entropy per unit charge transported by the electric

flow of carriers.

There is yet another thermoelectric effect, namely the Thomson effect. Here the
change of heating is related to presence of a electric current and a fixed temperature
gradient in a homogeneous conductor. The change rate is completely determined by the

values of o, k and S for a given temperature gradient and electric current density [17],

dg 1., di,_., ,.dS ,
i - _T= e

2.1.4 Applications and Figure of Merit

The technological importance of the Peltier effect lies in the possibility to use it for
"thermoelectric cooling". The sample to be cooled is placed at one of the junctions
and a large heat bath is placed at the other junction. Then a current is driven in the
circuit in such a way that the heat from the sample is absorbed and transferred into
the heat bath. Such thermoelectric cooling systems are used for example to cool heat
sensitive electronic components such as computer chips and to stabilise the operating
temperature of some CCD detectors in digital cameras [20]. The Seebeck effect also has
a broad range of applications. For example thermocouples, which are basically junctions
of two dissimilar metals, are widely used for temperature sensing. But there are also
thermo-generators, which use heat sources to generate sufficient electric current to drive

electronic devices. Such systems have been used for instance in space probes [20].

The efficiency of a thermoelectric device depends obviously on the thermoelectric
properties o, x and S. To achieve high voltages the material must have a large ther-

mopower S. In order to reduce thermal noise it has to have a high electric conductivity



o and a low thermal conductivity « to decrease thermal losses. To quantify the efficiency
of a thermoelectric material usually the dimensionless figure of merit Z'T is used, which

is defined as follows [21],
TS%c €2 52

IT = —— = - —. 2.9
K k‘%LO ( )

The quantity Z is known as the figure of merit. A higher value of ZT yields a better

performance as a thermoelectric material.

2.2 Thermoelectric Properties and Kinetic Coefficients

In summary, thermoelectric properties describe the response of a system to the presence
of an external electric field £ and a temperature gradient V7T. Dependences of the
resulting electric and thermal currents on the electric field and the temperature gradient

up to linear order are [22]

. 1 vT

Je = m (‘6’ L]_lg — L12_T > 5 (210)
1 vT

jg = — — — | . 2.11

Ja =1 <\6!L215 Ln— > (2.11)

This defines the quantities L;; (i,7 = 1,2) which are called kinetic coefficients. Now, all
thermoelectric properties can be expressed in terms of the L;;. Using Ohm's law (2.1)

in Equation (2.10) for 7" = const., one obtains immediately
g = L11 . (212)

Upon combining Fourier’s law (2.2) and Equation (2.11) under the condition of zero

electric current, the thermal conductivity in terms of the kinetic coefficients becomes

_ LooLi1 — Lo1 Lo

2.13
|€|2TL11 ( )
Similarly, using the same condition, Equation (2.10) yields for the thermopower,
Lyo
= . 2.14
\e]TLll ( )

8



hot «—VT cold
®® j—> g
@@ «— - E :@

® -0°®

Figure 2.2: If VT' # 0, the heat current density j, will eventually lead to an accumulation
of electrons at the cold end and a depletion at the hot end of the conductor. The resulting
current density —j, is opposed to this process.

From the definition of the Lorenz number (2.4) it follows that

e* K LyLiy — Lot Lys

Lo=2 %
T kZoT (kgT'L11)?

(2.15)

Additionally, in the absence of a magnetic field, the Onsager relation states that Lo =
Lys [22].
Moreover, by setting 7" = const. in Equations (2.10) and (2.11) one can calculate

the Peltier coefficient with the definition (2.6),

Lo
=< _TS. 2.1
le[L11 5 (2.16)

This result proves the Kelvin relation (2.7).

2.3 Chester-Thellung-Kubo-Greenwood Formalism

From Section 2.2 it is obvious, that the kinetic coefficients L;; are the key to calculating
thermoelectric transport properties. One can for example compute the coefficients L;; in
the context of the relaxation-time approximation [17], which is, however, rather unsatis-
fying since the explicit form of the relaxation-time 7(E,T) is often unknown. Therefore

a microscopic approach would be preferred.

A well-established formalism is due to Kubo [23] and Greenwood [24] who derived

an expression for the d.c. conductivity within linear response theory. Their results can be



summarised in the following way,

o(T, Ep) = 7 o(E) {—W} dE (2.17)

— 00

where (T is the chemical potential and f(FE, u, T) is the Fermi function

1
JEpT) = — | (2.18)
exp (ﬁ) +1
For the energy dependence of the conductivity o(F) they obtained
. 2
o(E)=2r (<m| Je|n>( S(E — E))S(E — Ep) - (2.19)

Here j. is the electric current operator, and |n) and E,, are the eigenstates and eigenen-
ergies, respectively, of the Hamiltonian under consideration. Additionally Kubo, Yokota
and Nakajiama [25] showed that the kinetic coefficients L;; for systems in thermal equi-

librium are the current-current correlation functions [26]
Lij o< (§idg) (6,5 =1,2), (2.20)

with ji = je and jo = j, denoting the electric current and thermal current density,
respectively. Assuming elastic scattering of independent electrons by static impurities or
by lattice vibrations one can obtain the kinetic coefficients from Equation (2.20) by the

Chester-Thellung-Kubo-Greenwood formulation [18,23,24], which yields the expression

Ly(T) = (1) [ A - pr) -2 | 2LELT g 5 gy,
oF

(2.21)
where A(FE) contains all the system-specific features and 1(7") is the chemical potential.
Since we know from Equation (2.12) that L;; = o we can identify A(E) = L1;(T =0)

with the energy dependent d.c. conductivity o(E).

10



Chapter 3

Disordered and Mesoscopic

Systems

Traditionally, condensed matter physics has been focused on the investigation of per-
fect crystals. However, real materials usually contain impurities, dislocations or other
defects, which distort the crystal. If the deviations from the perfect crystalline structure
are large enough, one may also speak of disordered systems. One of the most striking
features of such systems is the occurrence of localised wave functions and therefore the
possibility of a vanishing conductivity for T — 0 without an energy gap as in band-like
insulators. Since the pioneering work of P.W. Anderson in 1958 [1], where he explained
this behaviour, the Anderson model has become a paradigm for disordered systems and
attracted a lot of interest. Furthermore, it is often used in numerical calculations of

transport properties and we will use it as a starting point for our calculations as well.

The observation that for sufficiently low temperatures the transport in small, but macro-
scopic devices or samples is completely coherent and therefore these systems may show
quantum effects such as localisation, has lead to the definition of mesoscopic systems

(from Greek mesos = middle). Moreover, the experimental and technological progress

11



makes it possible to fabricate and manipulate these devices with increasing precision.

In this Chapter we will present a brief introduction to the vast field of mesoscopic systems.
Especially the role of characteristic length scales for electronic transport will be pointed
out. Finally, the Anderson model of localisation will be explained and the consequences

of the one-parameter scaling theory will be discussed.

3.1 Mesoscopic Systems

In solid state physics one is usually faced with systems of macroscopic size, which exhibit
classical behaviour such as Ohm’s law for the conductance and can usually be treated
with classical theories. On the other hand, there are devices of microscopic size, which
consist of only a few atoms or molecules. Such systems are governed by the laws of
quantum mechanics. Here the wave-like nature of the electrons plays an important role
and is responsible for many interesting phenomena such as discrete spectra and interfer-
ence patterns. Consequently, the question arises at which size the classical description
breaks down and quantum phenomena become prominent. It turns out that a system
shows classical behaviour if its dimensions are much larger than each of the follow-
ing characteristic length scales, (1) the de Broglie wave length (< kinetic energy), (2)
the mean free path (< momentum-relaxation), and (3) the phase-relaxation length (<
phase-relaxation). Notice that this length scale is intimately connected with the wave-
like nature of the electrons, namely the phase of the wave-function. This unexpected
size dependence has lead to the definition of the so-called mesoscopic systems, which
are systems of macroscopic size but whose properties show quantum effects, i.e. they
are systems between the microscopic and macroscopic regime. In order to realise such a
behaviour, one of the characteristic lengths has to become large compared to the others.
This will be discussed in the next Section. In a sense mesoscopic systems are "really

like a large molecule" [27], but also show new and interesting phenomena like universal

12



conductance fluctuations (UCF) and localisation, which will be discussed in Chapter 3.2.
Additionally these systems are usually coupled to much larger systems, which also results

in significant new behaviour (cf. Chapter 7).

3.1.1 Characteristic Length Scales

The de Broglie wave length ) is connected with the kinetic energy of a particle and is

defined as

A=, (3.1)

where k is the wave number. For a free electron k = \/2m.E with E being the (kinetic)

energy and m. is the mass of the electron.

The mean free path ¢ on the other hand is related to the change of the momen-
tum of an electron moving through the sample [28]. This change is caused by collisions
with impurities, phonons, other electrons or defects in general, which are inevitable in
any real system. The time before the initial momentum of the electron is destroyed is
the so-called momentum-relaxation time 1,,,. The distance which an electron can travel

during the time 7,,, and hence the mean free path is given by
L= vyrp, . (3.2)

Here v, = hki/m is the typical velocity. Because the transport at low temperatures is
dominated by electrons close to Fermi surface, v; is often replaced by the Fermi velocity
vp. Comparing the mean free path ¢ with the characteristic dimension L of the sample
one can distinguish between diffusive and ballistic transport, characterised by | < L and
I > L, respectively [28]. In the former case the electron motion consist of a series of
short trajectories in random directions, whereas in the latter case the momentum does
not change while the electron is moving through the system. Additionally one might also

define a quasi-ballistic transport regime, if for example in 2D | < L, and [ > L,,.
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The third characteristic length scale is the phase-relaxation length (g, which is
a consequence of the quantum mechanical description of the electrons and their coupling
to the environment [27]. One can also define a phase-relaxation time 7g, which is just
the time before the initial phase of the wave function is changed. It turns out that for
static impurities

T — 00,

because in this case the phase-relationship between different paths is fixed by the impurity
distribution [28]. Contrary to this dynamic scatterers, like phonons, or impurities with
an internal degree of freedom, do not lead to static interference [28] and therefore 74 is
finite. It turns out that 7¢ < oo holds in general for systems with a broken time reversal

symmetry [29].

For the definition of the phase-relaxation length /4 one has to distinguish between
ballistic and diffusive regime. If 7¢ < 75,,, the momentum does not change during the
time 74 and therefore {3 may be defined as {4 = vy79. For 7o > 7,,, on the other
hand, the motion becomes non-ballistic and the distance travelled by the electron during
the time 74 is given by the root mean square distance of a random movement [28]. This

leads to the following expression [28]

ly = \/Dra . (3.3)

Here the constant D denotes the diffusion coefficient.

The phase-relaxation time 7g turns out to be strongly temperature dependent

and in many cases on can write [27]
T < TP (p>0). (3.4)

The exponent p and the constant of proportionality are determined by the respective
scattering process. For electron-electron scattering for example p = 2 and for electron-

phonon interaction p = 3 under some limitations [29]. Consequently, at low temperatures
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electron-electron interactions are more important for dephasing than electron-phonon

scattering.

3.1.2 Weak Localisation

The fact that the electronic transport in mesoscopic systems might be coherent over the
whole sample makes it necessary to use a full quantum mechanical description, which is
provided for example by the Kubo-Greenwood formula (2.19). For analytical calculations
it is convenient to rewrite Equation (2.19) in terms of advanced and retarded Green's
functions G~ and GT, respectively. In the limit k¢ > 1, i.e. in the case of the Fermi
wave length \p = 27/kp being much smaller than the mean free path /¢, the d.c.
conductivity at 7' = 0 including a factor of two for the spin degree of freedom is then

given by [29] , ,
() = 2 (3] 3 kil K1) (35)

) ek,
Here m is the electron mass and  is the Volume of the system under consideration.
The quantity ii(k|GT (E)|k’) can be interpreted as the probability amplitude A(k’ — k)
that an electron with Energy E is scattered from state k' to k [29]. Assuming isotropy
the conductivity may therefore be written as
e2 (h\* 1

o(B) = — (E) 9 %k K Ak — K)|?, (3.6)
and is consequently an average of k-k’ over all scattering processes with initial momentum
k and final momentum k’. Such a process may consist of several individual scattering

events with probability amplitudes A;. The total probability |A(k — k')|? is thus

>4

The values of the individual amplitudes A; are determined by the actual impurity configu-

2

Ak — K2 = =Y AA;. (3.7)
ij

ration, and therefore terms with i # j are cancelled out on taking the average (|4|?). As

a first approximation only terms with ¢ = j will survive. This basically gives the classical
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limit, (|A]?) ~ [(A)|?

, since all the interference terms AZ-A;T are missing. One can show

that in this case Equation (3.5) gives the semiclassical Boltzmann-Drude formula [29]

ne27'

= 3.8
OBD = (3.8)

where n is the electron density and 7 being the lifetime of a momentum state!. The
latter may be given by a parallel combination of the phase relaxation time 74 and the

momentum-relaxation time 7, [28],

1 1 1
S — (3.9)
T Td Tm

The terms with i = j are, however, not the only contribution to (|A|?). If the sequence
of scattering events {j} is exactly the time reverse of those in {i}, the finial momentum
will be —k instead of k. Hence, such a reversed sequence describes a backscattering
process with a momentum transfer of 2kr. The product k - k’ will be negative and
therefore reduces the d.c. conductivity compared to the value ogp. If one considers the

probability of being scattered back into the state k, one finds [28]
Ak — k)|? = |[A(k — K) + Ar(K — k)|?, (3.10)

where Ap is the amplitude of the time reversed process. In absence of a magnetic field

A = Ap [28] and hence

|A(k — k)|? = 4|A(k — k')|? (3.11)
instead of

|A2 + |Ag|? = 2|A(k — K')|? (3.12)

in the classical case. The "quantum probability" for exact backscattering is therefore
enhanced compared to the classical probability, which leads to a quantum correction to
the conductivity. This is the so-called weak localisation correction. It can be shown that

for d = 3 and {g > L the first order correction leads to [7]

o(L) = o — he—; (% - %) , (3.13)

Yt turns out that for isotropic scatterers this is identical to the collision time. For anisotropic
scatterers, however, one has to include correction terms to the conductivity [28].
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where L is the typical size of the system. Notice that in the case £ < £y < L, i.e. when
phase breaking processes dominate and the phase-relaxation length is the relevant length
scale, one gets [7]

2 2
e 1 es 1 .

o(T) = oo + ﬁ—ecb(T) =00+ W3 A ) (3.14)

where Equations (3.3) and (3.4) were used. The conductivity will therefore decrease with

decreasing temperature, which is not expected for metals [7, 27].

3.1.3 Conductivity and Conductance

A further consequence of the quantum mechanical formulation, in particular of the wave-
like nature of the electrons, is the fact that the local character of Ohm’s law (2.1) is no

longer valid. Instead one has to use a generalisation [29], which has the form

Je(r) = /d3r’a(r,r’)5(r') , (3.15)

and is nonlocal on a scale of order {g [29]. A further complication arises because the local
electric field £(r) in Equation (3.15) depends on the precise position of the impurities in

the sample and might therefore show strong spatial fluctuations.

In experiments, however, o(r,r’) is not directly accessible and usually the global
conductance g, which is a property of the whole sample, is measured. Such experiments
are often performed in a multiprobe geometry, where the sample is connected to several
perfect metallic leads guiding the electrons to the scattering region [27]. This is also the

setup we will use for our calculations of transport properties (cf. Section 4).

Assuming such a multiprobe geometry one can establish a connection between
the conductance and the nonlocal conductivity, which also solves the problem of the
strongly fluctuating electric field. For B = 0 and because of current conservation the

nonlocal conductivity obeys [29]
Vo(r,r') =V'o(r,')=0. (3.16)
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The local electric field £(r) can be obtained from the electrostatic potential V' (r) in the

sample via

E(r)=-VV(r). (3.17)

If the sample is surrounded by an insulator, no current can flow out at the insulating
boundaries and the normal component of o(r,r’) must vanish. Partial integration of

Equation (3.15) leads to

Je(r) = — / dS'o(r,x" )V ('), (3.18)

leads
where the integration is restricted to the surface of the leads. Hence the current density
depends only on the potential in the leads and not on the precise field in the sample.
Therefore, V(r) can be replaced by any potential V/(r) having the same asymptotic
values in the leads as the original potential [29]. A convenient choice for V/ would be
for example a locally linear function, which results in a constant electric field.
If there are n = 1,..., Ny, leads with respective potentials V,, attached to the

sample the integral in Equation (3.18) becomes

Np
Je(r) =— ZVn/dS'J(r,r') . (3.19)
n=1

Sn

Integration over the cross section of lead m finally gives the current
NL NL
Im==>_Va / ds / dS'o(r,r') = grnVn (3.20)
n=1 S S, n=1

in terms of the potentials V,, and the conductance coefficients g..n,. Local current

conservation, Vj. = 0, implies [29]
> In=0 YW, = > gm=0. (3.21)
m m
For the usual case of a 2-probe geometry one gets the familiar expression
1
I=g(Vo-V) = EAV . (3.22)
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One can also obtain the macroscopic conductivity o for a system of size M%~! x L

I jwd—l Md—l

The conductance coefficients g,,,, can be related to quantum mechanical transmission
probabilities [28]. Such a relation is given by the Landauer-Biittiker formalism, which

will be discussed in Section 4.1.

3.2 Anderson Model of Localisation

3.2.1 Anderson Metal-Insulator Transition

The Anderson model [1,2] is widely used to investigate the phenomenon of localisation in
disordered materials. It is based upon a tight binding Hamiltonian in site representation

M= ali)il+ > ti i)l (3.24)

i i#]

where |i) is a localized state at site ¢ and t;; are the hopping parameter, which are
usually restricted to nearest neighbours. The on-site potentials ; are random numbers,
chosen according to some distribution P(e) with zero mean and variance s2. In what
follows we take P(e) to be a box distribution over the interval [-W/2, W/2|, where W

determines the strength of the disorder in the system. Other distributions have also been

considered [2, 3, 30].

For strong enough disorder, W > W, (0), all states are exponentially localized
and the respective wave function ¥(r) is proportional to exp(—|r — ro|/£). Thus, ¥
is confined to a region of some finite size, which may be described by the so-called
localisation length £. In this language extended states are characterised by £ — oc.
The localisation length is an additional characteristic length scale. Comparing £ with
the size L of the system one can distinguish between strong and weak localisation, for
¢ < Land L < &, respectively. Notice that for finite phase-relaxation length the effective

system size is determined by /g.
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It turns out that the value of the critical disorder strength . depends on the
distribution function P(e) and the dimension d of the system. In absence of a magnetic
field and for d < 3 all states are localized 2, i.e. W, = 0 [6,7]. For systems with d = 3 the
value of W, additionally depends on the Fermi energy E and the curve W, (E) separates
localized states, W > W, (FE), form extended states, W < W,(E), in the phase diagram.
If instead of E the disorder strength is fixed, there will be a critical Energy E.(W) and
states with |E| < E. are extended and those with |E| > E. localized. The separation of
localized and extended states is illustrated in Fig. 3.1, which shows a schematic density
of states of a 3D Anderson model. In addition to the band edges of an ordered system,

the mobility edges +|E.| are shown. Since for 7' = 0 localized states cannot carry any

o(E)~IE-E |’

. i \
. /
/ i \
! i \
! \
! \
/
/ Y
/
/

density of states [arb. units]
conductivity [arb. units]

/ | \
-E Energy [t] E

C C

Figure 3.1: Typical density of states of a 3D Anderson model. The states in the coloured
regions are localized and extended otherwise. The mobility edges are indicated at +FE..
Also shown is the power-law behaviour of o(E) according to Equation (3.28).

electric current, the system shows insulating behaviour, i.e. the electric conductivity o
vanishes for |E| > E, or W > W,. Otherwise the system is metallic. Therefore, the
transition at the critical point is called a disorder driven metal-insulator transition (MIT)

or Anderson MIT.

2Strictly speaking, this is only true if  belongs to the Gaussian Orthogonal Ensemble [31].
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3.2.2 One-parameter Scaling Theory

In general, it is extremely complicated to obtain analytical results of transport properties
for the Anderson model of localisation. For example, only in the case of d = 1 rigorous
proofs of strong localisation for all energies and disorder strengths have been given [32].
Moreover, the explicit energy and disorder dependence of the localisation length has been
derived [33,34]. For the 2D and 3D case no such general proofs exist. Only recently a
perturbative analytical calculation of the localisation length in 2D has been given [35].
Therefore, numerical computations are very important for the investigation of MIT [2,3].
The one-parameter scaling theory, on the other hand, is based on an extrapolation
between the metallic and the insulating regime in the Anderson model [6,7]. The key-
point is the definition of the so-called [-function as the logarithmic derivative of the

dimensionless conductance g,
_dlng

p= dinL’

(3.25)

for a d-dimensional hypercube of size L. The basic assumption of the one-parameter
scaling theory is that 3 depends only on g and not explicitly on the system size, disorder
strength or Fermi energy. Deep in the metallic regime g behaves according to Ohm’s law
(3.23) and hence

g(L) x L% = B9 —d—2, (3.26)

while in the insulating regime
g(L) xexp(—L/§) = [(g9) — Ing+ const. . (3.27)

Notice that this implies the following behaviour for ¢ in the thermodynamic limit L —
00!

metallic: ¢ — o0, insulating: g — 0 .

Assuming a smooth monotonically increasing function 3(g) one obtains the following
picture [7], which is schematically shown in Fig. 3.2. Only for 3 > 0 the conductance

increases with increasing system size. Therefore, 5 > 0 indicates metallic behaviour,
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while for 3 < 0 the conductance decreases with increasing L, which denotes insulating
behaviour. For d = 1, [ is always negative and hence all states are localized in the
thermodynamic limit. On the other hand for d = 3 the function 8 has a zero, which
corresponds to the MIT. At this point g becomes independent of the system size (cf.
Section 4.4). In the marginal case d = 2 the one-parameter scaling theory cannot decide

if all states are eventually localized in the thermodynamic limit. For the interesting case

A B(g)
1 +

MIT
AN -

d=3

d=1

Figure 3.2: The [-function 3(g) vs Ing (schematic). The zero of 5(g) indicates the
MIT.

of the MIT for d = 3 it was found that the behaviour of o is given by a power law at
the critical point [2],

14
O‘o‘l—EEC‘ |f?|<EC

o(E) = (3.28)

0, |E| > E.

with v being the universal critical exponent of the phase transition and oy is a constant.

The value of v has been computed numerically from various methods [2] and was also
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derived from experiments [36]. The results range from 1 to 1.6, depending on the

distribution P(e) used and the computational method [3] used.

Moreover, Wegner [37] was able to show that for non-interacting electrons the

d.c. conductivity o obeys a general scaling form close to the MIT,
o(e,w) = b4 o(bVe, bPw) . (3.29)

Here ¢ denotes the dimensionless distance from the critical point, w is an external pa-
rameter such as the frequency or the temperature, b is a scaling parameter and z is
the dynamical exponent. For non-interacting electrons z = d [38]. Assuming a finite

, one obtains from Equation (3.29)

conductivity for w = 0 and ¢ > 0, where ¢ = ‘1 — EEL
o(e,0) o e”@2),

With d = 3 this gives Equation (3.28).
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Chapter 4

Computation of Coherent
Transport Properties in

Mesoscopic Systems

The calculation of transport properties always was a central point of condensed matter
physics. For the investigation of localisation in disordered systems, coherent transport
is of most interest. For this case there are two frequently used approaches to calculate
the conductance or conductivity of mesoscopic systems. One approach was proposed by
Landauer [39,40] and further developed amongst others by Biittiker. The second one is
based on the Kubo linear response formalism, which connects nonequilibrium processes
to fluctuations in equilibrium. Today it is well established that both methods are equiv-

alent in case of coherent transport.

In this chapter we will introduce the recursive Green's function method (RGFM)
for the case of completely coherent transport, which finally yields recursion formula for
the density of states and the conductance. We will also show how to incorporate semi-

infinite leads in the RGFM. At last, finite size scaling (FSS) analysis will be explained.
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4.1 Elastic Scattering: Landauer-Biittiker Approach and

Kubo Formula

In the derivation of the Kubo formula the current is treated as a response of the system
to an (external) electric field, which should be sufficiently small to ensure staying in the
linear response regime [26,29]. The obtained d.c. conductivity o is connected to the
energy absorption from the field [27]. However, an isolated finite system, which has a
discrete spectrum, cannot absorb energy from this electro-magnetic field [27] and o is
zero. In order to obtain a finite o the system must be coupled to a large heat bath,
which leads eventually to a finite width of the energy levels (cf. Section 7.1). Because a
detailed microscopic description is difficult to obtain usually the level broadening is mod-
elled by introducing a small imaginary part 7 to the energy. A finite d.c. conductivity is

then obtained for v being larger than the inter-level spacing [27].

For Landauer this way of "circumventing" the problems caused by the finiteness
of the system was not satisfying. He considered a model where the sample (disordered
region) is connected through ideal wires (leads) to some electron reservoirs with different
chemical potentials [39-41]. This setup results in a current being driven through the
sample by the potential drop, which very much resembles the experimental situation.
Moreover, in this point of view the transport becomes a scattering problem: the incoming
electrons are elastically scattered by the random impurities in the sample (at least for
fg > L). Landauer found that the conductance can be obtained from the probability
of the electrons travelling through the sample. This transmission probability T' can in
turn be calculated by solving the Schrédinger equation. At first, however, there were
two versions of the Landauer formula, which caused some discussions about which one

to use [27]. Later the situation was clarified as it turned out that one of the formulze,
_ e? _ e2 T
TN T i1

referred to the conductance of the sample itself, as it would be measured in a four-

g (4.1)
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terminal measurement (including spin degeneracy). The other formula,

e? e?

= go=—T 42

92 9=t (4.2)

gives the conductance of a two-terminal measurement, which includes a finite contact

resistance due to the leads [27]. The different ways of measuring the conductance are
illustrated in Fig. 4.1.

Over the years there have been many generalisations of the Landauer approach [27],

Figure 4.1: lllustration of the difference between 2- and 4-terminal conductance. In
a 2-terminal measurement go is calculated from the current I and the voltage U =
(ur — pr)/e. In a four-terminal arrangement the potential difference is reduced to
11 — 1o due to the contact resistance.

for example to the multichannel case for leads with a finite width, inclusion of inelastic
processes (cf. Section 7) and the quantum Hall effect. There have also been various
attempts of deriving the Landauer formula from microscopic approaches and in particular
it was proven that the (multichannel) Landauer formula can bee derived from the Kubo

linear response formalism provided that the leads are taken into account [42].

4.2 Recursive Green’s Function Method

An approach to calculate the d.c. conductivity only given the Anderson tight-binding

Hamiltonian (3.24) is the recursive Green’s function method [12, 13], which yields a
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recursion scheme for the d.c. conductivity tensor starting from the Kubo-Greenwood for-
mula. Moreover, this method allows to compute the density of states and the localization

length.

4.2.1 Recursion Formulation

A general tight-binding Hamiltonian can be written as
=" Hyli){jl, (4.3)
ij

where |i) are localized wave-functions at points on an arbitrary dimensional lattice and

H is hermitian. The single particle Green’s function G (z) is defined by the relation [43]
(zF* —H)GF =1, (4.4)

where z = E + 1y is called complex energy and the sign of the small imaginary part ~
distinguishes between advanced and retarded Green’s functions, G~ (E —10) and G (E+
10), respectively [43]. Equivalently, G* can be represented in the basis of the functions

{li)}. Using Equation (4.3) and (4.4) one obtains
(ziéi- - HZJ)G?; = 57;]' s (45)

where Gf; is the matrix element (i|GT|5). Notice that for a hermitian Hamiltonian the
advanced Green’s function is the hermitian conjugate of the retarded Green's function,
ie. Gy = (G;)*.

If H contains only nearest-neighbour hopping, like in the Anderson model of
localisation, Equation (4.5) can be simplified using a block matrix notation. This is
equivalent to consider the system as being built up of slices or strips for 3D or 2D,
respectively, along one lattice direction. In what follows all quantities written in bold

capitals are matrices acting in the subspace of such a slice or strip!. The LHS of

'For 2D and 3D these are matrices of size M x M and M? x M?, respectively, where M is the
lateral size (cf. Fig. 4.2).
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Equation (4.5) is then given as

0 0
0 -H;1 (FI-Hy) —Hi 0 y
0 ~Hit;  (FI-Hip1) —Hipipe 0
0 0
+
Gi_y;
+
G |- (4.6)
+
Gty
From the last equation one can easily see that Equation (4.5) is equivalent to
(Z:tI — HZZ)G?; — Hiz’—ngt_lj — HZ‘Z'+1G7:;5_1]- = 152] . (47)

Using the hermiticity of 4 we define the hopping matrix t; = H; ;11 (and hence tZT =
H; ;1) connecting the ith and the (i+1)st slice. Now, we consider adding an additional
slice to a system consisting of IV slices. The Hamiltonian of this larger system can be

written as follows [13]
HNFTD S Hy 4 (ty + tj\z) +Hyyinvgr (4,5 < N). (4.8)

The first and the last terms describe the uncoupled N-slice and the 1-slice system.

N+1)

Using t as an "interaction" the Green's function G of the coupled system can be

calculated via Dyson’s equation [13,43],

G = e 4+ eWenG (i < N). (4.9)
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In particular

Gg\]fv—i-—’—lg\)/—i—l = [ZiI —Hyypint1 — t;fVG%V]\)/tN] - (4.10a)
G =al + eV enG (N thG (< N) (4.10b)
GE]]:/{ii) = Gz(‘JJ\\PtNGS\JIVJr—E\)/H (i <N) (4.10¢)
G%Vfl? = G%ﬁﬁ%ﬁ?ﬁ@ (J<N). (4.10d)

With Equation (4.10) the Green's function can be obtained iteratively. Additionally, there

Hl\' tN N+1 HN+1

S 7

M‘/} //

M

A
v

N

Figure 4.2: Scheme of the recursive Green’s function method for a 3D system. The new
Green's function GV*1) can be calculated from the old Hamiltonian Hy, the new slice
Hamiltonian Hy 11 and the coupling t .

are two kinds of boundary conditions which must be considered: across each slice and at
the beginning and the end of the stack. The first kind doesn’t present any difficulty and
usually fixed or periodic boundary conditions are employed. The second kind of boundary

conditions is connected to some subtleties which are addressed in Section 4.3.

4.2.2 Density of States and D.C. Conductivity

Knowing the Green's function of a system one can calculate all properties related to
G*. Moreover, using Equation 4.10 it is possible to determine them within a recursion

scheme. The density of states, for example, in terms of the Green’s function is given
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by [43]

N
1 . 1 .
=—— =—— A 4.11
p(E) 7TQIm Trg N Im .:E 1 Tr G (4.11)

In Section 3.1.2 it was already mentioned that the d.c. conductivity can be expressed in
terms of Green's functions. The expression for o in Equation (3.5) can be written in a
more convenient way,

2¢%h

= gz 1T [pIm G pImG™] . (4.12)

Using the relation p = “3*[H, x| one can rewrite Equation (4.12) in position representa-

tion
e24 ol N
2 2
o= hNM2 Z G\ %Gy x — iy Z Xy, (4.13)
where x; is the position of the ith slice.

Starting from these relations and using (4.10) one can derive recursion formulae
to calculate the properties for the (N + 1)-slice system. The results are expressed in

terms of the following auxiliary matrices

Ry = GEN : (4.14a)

By =yt Z G\ V229G —al6i)2i G | (4.14b)
r N

Ch=th > GE&N)@G;&N)] ty = (CH)T (4.14¢)
Li=1
[ N N

Cy =th DGy VaGly )] ty = (Cy) (4.14d)
Li=1
N

Fy =t [Z ciMav )] t . (4.14¢)
=1

The derivation can be simplified assuming the new slice to be at x4 = 0. This leads,

however, to corrections for the matrices By and Cﬁ because the origin of x; has to
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be shifted to the position of the current slice in each iteration step. The substitution

x; — x; — 1 leads to the following corrections,

1
v =By +1C} +1Cy + 5th(RN ~R)tw, (4.15a)

1
Cf=0C: - zitjv(RN ~R)tw . (4.15b)

Here we used the identity

N
_ 1 _ 1
7Y GiGiy =15(Gxy — Gyy) =15(Ry —R}y) = ~ImRy . (4.16)
i=1
The derivation of the recursion relations is given in Appendix B, it yields the following

expressions

S;N—H) = sE,N) +Tr {Ryy1(Fx + 1)}, (4.17a)
sV = sV 4 Tr {Re (BnRiv41) + CYRL,  CxRyt1} (4.17b)
Ryii = [ziI CHyiivil — tijNtN} - (4.17¢)
Bri1 = th Raet By +2CFRY x| Ruvortaa (4.17d)
Chr = th Ry CHRE, tya (4.17e)
CRZ-H = t;r\f-qul;{}r\u-lCJ_\/RNHJCN-H ) (4-17f)
Fyi = tijRNH(FN +DRyy1tN1 - (4.17g)

The density of states and the d.c. conductivity are then given as follows,

1
N gy L (v
pTE) TNTOME (4.18)
N+1) () = € 4 vy (4.19)
o BACESIE Sy . :

It is also possible to calculate the localisation length £(E), which is connected to the

. +
matrix G1N+1,
1

1
gy = lim Jim o ITr GH(B)]? . (4.20)
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The recursion relation for ¢ NtV (E) is

1 _ I (vt
cND(E) T N+1€ (421a)
sV = s e m e GRTNT| - (4.21b)

4.3 Semi-infinite Leads

Although the imaginary part v of the complex energy z can be interpreted as an inverse
lifetime (see Section 7), one would rather like to set v = 0. This is only valid after taking
the thermodynamic limit, i.e. for an infinite system [13]. This procedure eventually leads
to a description of elastic scattering. In order to make the system effectively infinite, one
attaches semi-infinite, metallic leads to both ends of the system. It was shown [44] that
in this case the formalism given above using the Kubo-Greenwood formula is equivalent
to the Landauer-Biittiker formulation. Here we will show how the leads can be incor-
porated into the recursion scheme given above. We will also review expressions for the
Green'’s function of purely 1D leads and leads with a finite cross section. The influence

of the leads on transport properties will be discussed in Section 5.2.

Notice that because of attaching the leads to the disordered region the recursion
scheme eventually gives the transport properties of the system plus leads, i.e. in the
sense of a two-terminal measurement. The d.c. conductivity obtained from Equation
(4.19) for a system with leads is therefore strictly speaking not the conductivity of
the disordered region. It should rather be understood as the two-terminal conductance

multiplied by L>~% [44].

4.3.1 Self-Energy due to the Leads

The effects of the leads can be described in an elegant way using the notation of self-

energies. It can be shown [28] that the Green's function of a finite system connected to

32



Ny, leads is given by

(Boy — H ~5) G =05 (4.22)
where HZQ]- is the Hamilton matrix of the isolated system, which is for example a disordered
system described by the Anderson Hamiltonian (3.24). The matrix ZZ‘.';. is called the

self-energy due to the interaction of the system with the leads. If different leads are

independent their effects are additive, i.e.
Np Np
=) "2F =) tGot', (4.23)
i=1 i=1

where Gg is the Green’s function of a semi-infinite metallic wire. In a two terminal
configuration, where the leads are just coupled to the first and the last slice, the self-

energy due to the leads effects only the Green’s functions of these two slices. Therefore,
GL=[F1-H; -%*]"" (i=1,N). (4.24)

The most important effect of the self-energy is that it already provides a small
imaginary term in Equation (4.22), which makes the somewhat artificial choice of v
unnecessary. Physically, this is connected to the fact that elastic scattering processes
cannot lead to an equilibration of the electrons, which is necessary to obtain a steady
state current. In Equation (4.5) this was taken into account by choosing a finite .
However, in the case of completely coherent transport one usually assumes all inelastic
processes to occur in some electron reservoirs connected to the sample by the leads [29].
The imaginary part of 31 determines the "escape rate" at which electrons can get out
of the sample through the leads and eventually reach the reservoirs [28]. Therefore, it
already determines the rate of electrons being inelastically scattered and an additional

imaginary term is unnecessary.

4.3.2 1D Semi-infinite Leads

It remains to derive an expression for the self-energy of a semi-infinite lead. Starting

point is the expansion of the Green’s function in terms of a complete set of eigenfunctions
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Pa(r) = (r|o) [43],
(r|G*r) = G (r,x'; E) ZE E +u5 (6 >0), (4.25)

where
H0¢a(r) = anba(f) . (4'26)

For a purely 1D wire of length L. = (N —1)a, which consists of N sites, the eigenfunctions

are known to be

or(r) = \/% [exp(tkz) — exp(—ikz)] , (4.27a)
Ej = 2tcos(ka) . (4.27b)

Upon taking the limit N — oo (while keeping L fixed), the wave vectors k& form a
continuum and the sum in Equation (4.25) can be replaced by an integral. The Green's

function along the edge of the wire is then [28]
1
GP(LLE) = — [ £ (62 - D" | (4.28)

where x = (E +10 + 2t)/2t and the sign is chosen such that |y & (x? — 1)1/?| < 1.

4.3.3 Semi-infinite Leads with finite Cross Section

For a wire with a finite cross section of size M x M or a finite width M the eigenfunctions

are separable, e.g. in the former case
=0t G (429)
Consequently, the eigenenergy E in 3D is just a sum of the respective eigenvalues,
E =FE,+ Eg+ E, = 2t[cos(kqa) + cos(kga) + cos(k,a)] . (4.30)

Depending on the boundary conditions across each slice, kg and k£, take discrete values

only. Therefore, k,, will also be discrete for a fixed energy. The number of possible values
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for k, determines the number of propagating channels at a given energy. This eventually
leads to the conductance quantisation in a two terminal measurement, because each
channel has a conductance of e?/h and the total conductance is a sum of all the channel
contributions [28]. Substituting these eigenfunctions in Equation (4.25) and performing

the summation involving ¢% we are left with two additional summations,
Go(a,d'sE) =Y Y ohlay) el (4)¢(a:)¢ (¢)GP (1L, L E — By — E,). (4.31)
B v

Here q and q’ denote the position of sites along the edge of the wire, i.e. in the slice
connected to the sample. The eigenfunctions go%, ¢ and the respective eigenenergies
Es, E, can be obtained analytically for hard wall and periodic boundary conditions.
Thus, the sum can be easily evaluated to obtain the Green’s function of the wire, which
is then used as initial value for Ry in Equations (4.17). Additionally, another lead has
to be attached at the end of the stack. For this purpose the lead is treated as a slice

with the Hamiltonian Hy1n11 = Gyl

4.4 Finite-Size Scaling

A problem one is always faced with when using numerical methods investigating phase
transitions, is the fact that for finite systems there can be no singularities induced by
a transition and the divergences are always rounded off [45]. Fortunately, the phase
transition can still be studied using finite-size scaling. Here we briefly review the main
results taking the dimensionless conductance g of a cubic sample of size L x L x L as
an example. Notice that the same ideas can also be applied to the reduced localisation

length £/L.

Near the MIT one expects the following one-parameter scaling law for the dimen-

sionless conductance [37, 45]
L 1/v -
g(Leb) = F | 5 x(7", o)™ )
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where b is the scale factor in the renormalisation group, Y is a relevant scaling variable, ¢
is a irrelevant scaling variable, v > 0 is the critical exponent and y > 0 is the irrelevant
scaling exponent. The irrelevant scaling variable allows us to take account of corrections
to scaling due to the finite size of the sample. The parameter ¢ = |E — E.|/E. measures
the distance from the the mobility edge E.. The choice? b = L leads to the standard
scaling form

g(Lye) = F(LY"x(), L™¢(c)) (4.32)

with F' being related to F. For FE close to E. we expand F' as a Taylor series up to order

ny and obtain a series of functions F,. Each function F}, is then expanded up to order

nR,
ni
g(L,g) =Y "L E,(xL'"), (4.33a)
n=0
nR
Fpu(xLY) =" apmx™L™" . (4.33b)
m=0

Additionally x and ¢ are expanded in terms of the small parameter ¢ up to order mp

and mj, respectively. This procedure gives
mR mi
x(e) = Z bne™,  ¢(e) = Z cne™ . (4.34)
n=1 n=0

From Equation (4.32) and (4.33) on can see that finite system size results in a systematic
shift of g with L, where the direction of the shift depends on the boundary conditions [45].
Consequently, the curves g(L,€) do not intersect at the critical point € = 0 for different

system sizes. The term Fj on the other hand shows the expected behaviour.

Using a least square fit of the numerical data to Equations (4.33) and (4.34)
allows to extract the critical parameters v and E.. With the fitting procedure one can also
obtain the finite-size corrections and subtract them from the data to show the anticipated

scaling behaviour. This kind of finite-size scaling analysis has been successfully applied to

2The apparent choice of b is strictly speaking connected to the iteration of the Renormalisation
Group [45].
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numerical calculations of the localisation length and the conductance within the Anderson

model [3,9].
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Chapter 5

Coherent Transport near the

MIT at 1T'=0

The zero temperature limit is usually employed in theoretical investigations of the An-
derson MIT. In most cases the one-parameter scaling theory is then used to obtain the
critical parameters. There are some discussions whether this scaling theory is generally
applicable [9,10]. So far, one-parameter scaling has been demonstrated to an astonishing
degree by numerical studies of the Anderson model [8]. However, most studies focused
on scaling of the localisation length and the conductance at the disorder-driven MIT in

the vicinity of the band centre [8-10].

Here we will also present calculations of the conductance and the density of
states close to £ = 0 which are in accordance with the known results. We will also show
results for a disorder transition outside the band centre and investigate the influence of

the metallic leads. At last we focus on the energy transition for fixed disorder strength.
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5.1 Disorder Transition at £ =0.5¢

In order to test our numerics and to have some reference point for our investigations of the
influence of the leads we follow Ref. [9] and therefore fix E = 0.5¢ in the vicinity of the
band centre. We also impose hard wall boundary conditions in the transverse direction.
For each combination of disorder strength 1/ and system size L we generate an ensemble
of 10000 samples. The systems under investigation are cubes of size L x L x L and
L =4,6,8,10,12 and 14. For each sample we calculate the density of states p(F, L)
and the dimensionless two-terminal conductance g, using the RGFM explained in Section
4.2. To get the dimensionless conductance g, of the disordered region only, we have to

subtract the contact resistance due to the leads. This gives

1
—==-=. (5.1)

Here N = N(E) is the number of propagating channels at the Fermi energy E [46].
Finally we compute the average DOS (p(E, L)), the average conductance (g4+(E, L))
and the typical conductance (Ing4(F, L)).

The results for the different conductance averages are shown in Fig. 5.1 and 5.2
together with respective fits to the standard scaling form Equation (4.32). The expansion
parameters and the results for the critical exponent and the critical disorder are given in

Table 5.1. In Fig. 5.3 we show the same data as in Fig. 5.1 and 5.2 after the corrections

average Whin/t Whax/t nmr n1 mg v W/t Yy

(94) 15.0 18.0 2 0 2  155+£0.11 16.47£0.06 -
(In gq) 15.0 18.0 3 1 1 155+£018 16.8+0.3 08=£1.0

Table 5.1: Best fit estimates of the critical exponent and the critical disorder for both
averages of g4 using Eq. (4.32). The system sizes used were L = 8,10,12,14 and
L =4,6,8,10,12,14 for (g) and (Ing), respectively. For each combination of disorder
strength T and system size L we generate an ensemble of 10000 samples.

to scaling have been subtracted indicating that the data points for different system sizes

fall on a common curve with two branches as it is expected from the one-parameter
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Figure 5.1: Average dimensionless conductance vs disorder strength for £ = 0.5¢. Sys-
tem sizes are given in the legend. Error bars obtained from ensemble average. Also
shown are fits to Eq. (4.32) for L = 8,10, 12 and 14.

scaling theory. The results for the conductance averages and also the critical values are

in good agreement with Ref. [9] and transfer-matrix calculations [8, 9].

5.1.1 Disorder Dependence of the Density of States

The RGFM enables us to compute the DOS of the disordered system. Fig. 5.4 shows the
average DOS for different system sizes. The DOS should be independent of L. However,
one can see that there are still some fluctuations present. These can be reduced by
using larger system sizes and increasing the number of samples. The reduction of the
DOS with increasing disorder strength can be understood from a simple argument. The
DOS is defined as the number of states AN in an energy interval AFE divided by AE.
If the density of states p. is constant for all energies its value is given by p. = N/B,

where B is the bandwidth. In the Anderson model with a box distribution for the on-site
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Figure 5.2: Typical dimensionless conductance vs disorder strength for £ = 0.5¢. System
sizes are given in the legend. Error bars obtained from ensemble average. The solid lines
are fits to Eq. (4.32).

energies the bandwidth increases linear with the disorder strength W and the respective
band edge is called Lifshitz band edge. Although the DOS in the Anderson model is not
constant, one can assume that for energies in the vicinity of the band centre the exact

shape of the tails is not important. Therefore, we have

N

V)= g

(5.2)

which shows a decrease of the DOS with W because the total number of states is fixed
for a given system size. The parameter « allows for deviations due to the numerical
generation of the random on-site energies. These deviations occur, because it is highly

unlikely to obtain exactly the values +£W/2 from such a random number generator.
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Figure 5.3: Same data as in Figs. 5.1 and 5.2 after corrections to scaling are subtracted
and plotted vs L/{ to show single-parameter scaling. Different colours indicate the
system sizes given in the legend.

5.2 Influence of the Metallic Leads

As mentioned in the introduction most numerical studies of the conductance have been
focused on the disorder transition in the vicinity of the band centre. However, the one-
parameter scaling theory should be valid for any energy inside the band. Therefore we
set £ = —5.0¢ and calculate the conductance averages as before. The results for the
typical conductance are shown in Fig. 5.5a. Surprisingly, there is no evidence of scaling
behaviour. The order of magnitude is also much smaller than in the case of £ = 0.5¢,

although one expects the critical conductance to be universal.

The origin of this reduction can be understood from Fig. 5.6, which shows the
density of states of a disordered and a clean system such as in the metallic leads. As
MacKinnon already pointed out in his paper on the RGFM [13], a difference between the
DOS in the leads and in the disordered region may lead to false results for the transport
properties. Put to an extreme, if there are no states available at a certain energy in the
leads, e.g. for |E| > 6t, there will be no transport regardless of the DOS and the con-
ductance in the disordered system at that energy. The DOS of the latter system becomes

always broadened by the disorder. Therefore it is not possible to investigate transport
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Figure 5.4: Density of states vs disorder strength for E = 0.5¢ and L = 4,6,8,10,12, 14.
Error bars obtained from ensemble average. The dashed line shows a fit to Eq. (5.2) for
L = 6 to illustrate the reduction of p with increasing disorder strength.

properties at energies outside the ordered band using the standard System+Leads setup.
Additionally, for energies 3¢ < |E| < 6¢ the DOS of the clean system is smaller than the
disorder broadened DQOS. The transport properties, that crucially depend on the DOS,
are consequently reduced. The problems can be overcome by shifting the energy of the
disordered region while keeping the Fermi energy in the leads in the lead-band centre (or
vice versa). This is equivalent to applying a gate voltage to the disordered region and
sweeping it — a technique similar to MOSFET experiments. The results for the typical
conductance using this method are shown in Fig. 5.5. One can see some indication of
scaling behaviour and also the order of magnitude is found to be comparable to the
E = 0.5t case. Another possibility of avoiding the DOS mismatch is choosing a larger

hopping parameter in the leads [47], which results in a larger bandwidth.
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Figure 5.5: System size dependence of the typical conductance for fixed energy E =
—5.0t. The legend next to the plots shows the system sizes involved. The left plot
was calculated using the metallic leads "as they are", i.e. the band centre of the leads
coincides with the band centre in the disordered region. In the right plot the band centre
of the leads was "shifted" to the respective Fermi energy.

5.3 Energy Transition

Knowing the difficulties involving the metallic leads and using the "shifting technique"
we set the disorder strength to W = 12t and impose hard wall boundary conditions in
the transverse direction [9]. Analogous to the disorder transition case we generate for
each combination of Fermi energy and system size an ensemble of 10000 samples (except
for L = 19 and L = 21, where 4000 and 2000 were generated) and examine the size-

dependence of the average and the typical conductance, (g4) and (In g4), respectively.

5.3.1 Energy Dependence of the Density of States

Before looking at the scaling behaviour of the conductance we have to make sure that the
"shifting technique" indeed gives the right DOS outside the ordered band. Additionally,

we have to check the average DOS for being independent of the system-size.

In Fig. 5.7 we show the DOS obtained from RGFM calculations and from diago-
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Figure 5.6: Density of states of a clean system (full black line) and a disordered system
with W = 12 and L = 21, obtained from diagonalising Eq. (3.24). The dashed lines
indicate the band edges of the ordered system.

nalising the Anderson Hamiltonian. In the latter case we generated 30 configurations and
diagonalised the respective Hamiltonians using LAPACK. The DOS is obtained from a
normalised histogram of all eigenvalues. In all cases W = 12¢ and L = 21. The RGFM
calculations agree very well with diagonalisation results, although there are - at least for
the number of configurations used - still bumps present which are relics of the finiteness
of the sample. Also shown is a smoothed DOS obtained from the diagonalisation data
using a Bezier spline. We calculated the average DOS for different system sizes, which
is shown in Fig. 5.8. One can see that for large energies the DOS is system size inde-
pendent. Close to the band edge there are still fluctuations present because deep in the
tails only a few states exist and therefore many samples are necessary to obtain a smooth

DOS.
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Figure 5.7: Density of states vs energy for W = 12t obtained from the RGFM and
also from diagonalising the Anderson Hamiltonian. The system size in both cases was
L =21.

5.3.2 Scaling Behaviour of the Conductance

The size-dependence of the average and the typical conductance is shown in Fig. 5.9.
We find that for £/t < —8.2 the typical conductance is proportional to the system size
L and the constant of proportionality is negative. This corresponds to an exponential
decay of the conductance with increasing L and is characteristic for insulating behaviour
(cf. Section 3.2.2). Moreover, it follows from Equation (3.27) that the constant of
proportionality is the localisation length £&. We find that £ diverges at some energy,

which indicates a phase transition. The energy dependence of ¢ is shown in Fig. 5.10.

For E/t being larger than —8.05, (g4) is proportional to L. This indicates the
metallic regime and the slope of (g4) vs L is related to the d.c. conductivity. =~ We
fit the data in the respective regimes to the standard scaling form (4.32). The results

for the critical exponent and the mobility edge are given in Table 5.2. The obtained

46



0.06

I
n .« L=9 - E
- L=11 s * -
005 | I TZI13 r
L |- L=15 : 1
L=17 H
004 | - L=19 . -
L=21 .
L ¥ R
~ 5 =
= 0.03 i |
Q ¥
0.02}- ir .
E
L ! 3 i
0.01F I s
L l T X = N
O«iiw' * \ \ \ \
-9 -8.5 -8 7.5 -7 -6.5 -6

E/t

Figure 5.8: Density of states vs energy for different system sizes and W = 12¢ calculated
with the RGFM.

average Fnin/t FEmpax/t nr  mp v E./t
(94) —8.2 —74 3 2 1.60 & 0.18 —8.14 £ 0.02
(In g4) —8.8 —7.85 3 2 1.58 £0.06 —8.185 £ 0.012

Table 5.2: Best fit estimates of the critical exponent and the mobility edge for
both averages of g4 using Eq. (4.32). The system sizes used were in both cases
L=11,13,15,17,19, 21.

values for both types of averages, (g4) and (In g4), are consistent. The average value of
v =1.59 £ 0.18 is in accordance with results for conductance scaling at £/t = 0.5 and

transfer-matrix calculations [8,9].

5.3.3 Calculation of the D.C. Conductivity

In order to calculate the temperature dependence of the thermoelectric properties using

the CTKG formalism, we need to obtain the d.c. conductivity from (g4(E, L)). From
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Equation (3.23) one expects the macroscopic conductivity to be the ratio of (g4(FE, L))
and L. There are, however, several complications. First, as it was shown in Section 3.1.2
the mechanism of weak localisation gives rise to corrections to the classical behaviour
for g > 1. Second, it is a priori not known if Equation (3.23) still holds in the criti-

cal regime. And third, the expansion (4.33) does not yield a behaviour of the form g o .

In order to check our data for consistence with the anticipated power-law form
for the conductivity o(E) in the critical regime, we assume the following scaling law for

the conductance,

(94) = fF(X"L) , (5.3)
which results from setting! b = xy " in Equation (4.4). The scaling function f is related
to the general scaling form F. Due to the large error bars of (g4) at the MIT, we neglect
the irrelevant scaling parameter. However, using only system sizes L > 11 the corrections
to scaling are expected to be small. Then we expand f as a Taylor series up to order ny
and x in terms of the small parameter ¢ = (E. — F)/E. up to order mg. This procedure
gives

F(X'L) = Z am (X"L)™ and x(e) = Z bre™ . (5.4)
m=0 n=1

The best fit to our data is determined by minimising the x? statistic. Using ng = 3 and
mp = 2 we obtain for the critical values, v = 1.58+0.18 and E./t = —8.12£0.03. These
values are consistent with our previous fits. The m = 1 term a1 x” in f corresponds to
the conductivity close to the MIT. To estimate the quality of this procedure we calculate
the conductivity from the slope of a linear fit to (g4) throughout the metallic regime,
and also from the ratio (g4)/L. The resulting conductivities are shown in Fig. 5.11. The
power-law form is in good agreement with the conductivity obtained from the linear fit
to (g4) = oL + const. for E < —T7t. In this range it is also consistent with the ratio
of (g4) and L for the largest system computed (L = 21). Deviations occur for energies

close to the MIT and for E > —7t. In the critical regime one can argue that for finite

1cf. footnote on page 36
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systems the conductance will always be larger than zero in the insulating regime because
the localisation length becomes eventually larger than the system size. The difference

between the ratio (4¢)/L and o from the linear fit is probably due to weak localisation.

However, this should be investigated further.
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Figure 5.9: System size dependence of the 4-point conductance averages (g4) and (In g4)
for W = 12t and Fermi energies are given in the legend. Error bars obtained from
ensemble average. The dashed lines indicate the fit results to Eq. (5.3) and a linear
function to (g) and (In g4), respectively.
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Figure 5.11: Conductivity o vs energy computed from (g4)/L (OJ), a linear fit with
(94) = oL + const. (e) and a scaling according to Eq. (5.3) (solid line). The dashed
line indicates E./t = —8.12. Error bars of (g4)/L represent the error-of-mean obtained
from an ensemble average.
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Chapter 6

Coherent Thermoelectric

Transport near the MIT at T # 0

Knowing the explicit form of the d.c. conductivity, one can calculate the temperature
dependence of o and other thermoelectric quantities within the the CTKG formalism as it
was shown in Section 2.3. Using the anticipated power-law (3.28) for the d.c. conductivity
in the thermodynamic limit and assuming a smooth density of states it is possible to
derive expressions for the thermoelectric quantities at low and high temperatures from
perturbative methods [5]. Villagonzalo et al. [5] have used the CTKG formalism and
the assumptions made above to calculate the temperature dependence of o, S, x and
Lo numerically for a range of T'=0,...,120K. They were also able to show that all
thermoelectric quantities follow single-parameter scaling laws, but yielding an unphysical
dynamical exponent [4,11]. Here we will give a brief summary of the main results of
these expansions and using the same numerical method we will show the dependence of
the thermoelectric transport properties on a dimensionless temperature parameter, which
allows us to compare the results independently from the unit of energy. This is important
for treating thermoelectric transport in amorphous alloys and in doped semiconductors on

an equal footing. In the former case ¢ &~ 1eV, whereas for the latter materials t ~ 1meV.
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6.1 Low- and High Temperature Expansions

For T' = 0 the derivative of the Fermi function (—0f/OF) becomes a Dirac-delta function
at F = Ey and the kinetic coefficients are solely determined by their values at the Fermi
energy. Upon partial integration the integral in Equation (2.21) can be written in the

general form [17]

[e.e]

/dE H(E) f(B,u,T), (6.1)

—o0
where f is the Fermi function and H (F) is non-singular and not rapidly varying. For low
temperatures the integral will be mainly determined by the form of H(E) near the Fermi
energy Er and H(FE) can be replaced by its Taylor expansion about £ = Ep. From
this procedure, which is known as the Sommerfeld expansion [17], one can obtain the
first non-zero temperature corrections. In order to get results independent of the actual
energy unit, e.g. independent of the hopping parameter in the the Anderson model

(3.24), we define a dimensionless energy ¢ and temperature ©, such that
E=c¢t and kgT = Ot , (6.2)

where t is the unit of energy. In the metallic regime the Sommerfeld expansion for low

, leads to

temperatures, i.e. © < |e. —¢ep

o(er,0) = o(er) + %2 2 deLE(;) e (6.3)
-y T Y
wecor- 3 P 4]} e

Additionally, from Equations (3.28) and (6.4) one can deduce
S(er, ©) = —%% | (6.7)
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This linear temperature dependence of S in the metallic regime is known as Mott’s law.

On the other hand at high temperatures and close to the MIT, that is |e. —
wu(T)| < ©, one can expand the Fermi function. This finally yields [48]

ogrO”

| v

o(er, ©) = (6.8)

[L, -1, ;fF] |

lec
where I} = In 2, I, = (1 — 217")T'(v)¢(v) with T'(v) and ((v) the usual Gamma and

Riemann zeta functions. Using the same procedure for the thermopower one gets

S(er,©) = M8 [

le]

v+ 11,41 EC—EF] (6.9)

v I, C)

Thus the thermopower at the MIT is basically a constant, whose value is fixed by the

critical exponent.

The high temperature expansions for x and L( eventually lead to the following

expressions,

k? oot ®V+1 Ec — €
k(eR, ©) = % T {(V +2) [Iy+2 — v+l 5 F]
Ec—E 2
R O O G
v I, —(v—1I,4 S ’ |

Lo(er, 0) = L2 T2 = Wi Dhvin#g®
VA e R DY A

2
v+ 1 Iy+1 — I/Lj—ecéaF
v I, — (v — 1), =gE

(6.11)

At the MIT the high temperature expansions for o, S, and L correspond to exact

calculations fixing 1(©) = & at finite © and then taking the limit © — 0 [4].

6.2 Numerical Calculations

In Section 5.3.3 it was shown that the numerical results for the conductivity near the

MIT are consistent with the power-law form given by Equation (3.28). We have also
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seen that the DOS exhibits a smooth dependence on the energy. For the pure power-
law case Villagonzalo et al. [5] have used the CTKG formalism to numerically compute
the kinetic coefficients and thus the thermoelectric properties for the whole temperature
range. They found good agreement of the numerical data and the expansions in the
respective low and high temperature regimes. From Fig. 5.11 one expects qualitatively
the same behaviour using the conductivity obtained from the conductance calculations.
There are two complications, first, the conductance shows large fluctuations close to the
MIT, which makes it difficult to evaluate the integral in Equation (2.21). And second, if
the numerical results are interpolated using for example cubic splines, the temperature
behaviour of the thermoelectric properties in the limit 7" — 0 will not be determined by
the critical exponent v but by the order of the interpolation polynomial, e.g. v ~ 3 in

case of a cubic spline.

The first problem might be overcome by calculating more samples, which is,
however, computationally expensive and therefore out of the scope of this work. Con-
sequently, we restrict our discussion of the influence of deviations from the power-law
behaviour to the high-temperature regime. In this case we can use the obtained power-
law (cf. 5.3.3) for energies close to the MIT (E/t < —7.8). Otherwise we interpolate o

obtained from the numerical data using a polynomial of order 3.

6.2.1 Thermoelectric Properties Near the Anderson MIT Assuming a

Power-law Form for o(E)

At first we calculate the temperature behaviour of the thermoelectric properties assuming
a pure power-law form for the d.c. conductivity. We use W = 12t and the following

values for the critical exponent and the mobility edge,

r=16 and E.=-7.8t.



Chemical Potential

In order to evaluate the integral in Equation (2.21) the explicit temperature dependence
of the chemical potential 1 is needed. It can be determined self-consistently from the fol-
lowing considerations. The number density for non-interacting system can be calculated
from the density of states p(E) using

[e.e]

n(11,©) = / o) f (2,11, ©) 1 de . (6.12)

—00
This allows us to compute n(er) for 4(© = 0) = e via

EF

n(ep) = / p(e) tde . (6.13)

—00
Since the number density should be the same for any ©, the temperature dependence of

i can be obtained from the condition |n(ep,0) — n(u, ©)| = 0.

For the calculations in this section the density of states p(¢) was obtained from
diagonalising the Anderson Hamiltonian (3.24) for a 3D cubic system of size L = 21
(cf. Section 5.3.1). The obtained DOS was then smoothed by fitting the data to a
Bezier-spline. The resulting temperature behaviour of 1 is shown in Fig. 6.1 for several
Fermi energies. The temperature behaviour is similar for insulating, critical and metallic
regimes. Furthermore, the difference from EFx is small in the considered temperature
range. Therefore, the temperature dependence of y is not expected to have a significant

influence on the behaviour of the thermoelectric properties.

Temperature Dependence of Thermoelectric Properties

Knowing the explicit temperature dependence of i it is straightforward to evaluate Equa-
tion (2.21) and to calculate the thermoelectric properties. The results for o, S, k and
Ly are shown together with the respective expansions in Figures 6.2-6.5. We see that

the expansions are in good agreement with the numerical calculations for Er close to

56



+ -0.01 ,
0.6 | = -0.05 —
| |« -0.001 LI
¢ 0.0 L]
0.5 | - 0.001 ' —
- - 0.01 '
> [ | 00l 1 7
T 041 ' —
= L ' i
3 '
03 . _
m ]

<
to
\
-
\

o
=
\

.
.
\

P I S SO AR R
0 0.002 0.004 0.006 0.008 0.01 0.012 0.014
k, T/t

Figure 6.1: The temperature dependence of the chemical potential for several Fermi
energies. The distance from the mobility edge Fr — E. is given in the legend.

E.. The explicit temperature behaviour for all thermoelectric properties is discussed in

detail in Ref. [48].

6.2.2 Thermoelectric Properties in the High Temperature Limit

The deviation of o from the power-law form for energies with Er — E. > 0.3t does not
significantly influence the high temperature behaviour of the thermoelectric properties.
This is demonstrated in Fig. 6.6. We show the results for the thermopower together
with the low- and high-temperature expansions (6.4) and (6.9), respectively. Deviations
from the pure power-law result accumulate above kpT'/t ~ 0.5. At this temperature
the integrand in Equation (2.21) has already a significant contribution from the pure
numerical data. Nevertheless, the deviations of S from the expansions are small even
for higher temperatures. This indicates a certain robustness of the results using a pure

power-law.
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Figure 6.2: The temperature dependence of the d.c. conductivity. Blue symbols indicate
metallic, black symbols critical and red symbols insulating behaviour. The distance from
the mobility edge Er — E. is given in the legend. Full lines are obtained from a high-
temperature expansion (6.8). The dashed lines indicate o(T") using the Sommerfeld
expansion (6.3).
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Figure 6.3: The temperature dependence of the thermopower. Blue symbols indicate
metallic, black symbols critical and red symbols insulating behaviour. The distance from
the mobility edge Ex — E. is given in the legend. Full lines are obtained from a high-
temperature expansion (6.9). The dashed lines indicate S(T') using the Sommerfeld
expansion (6.4).
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Figure 6.4: The temperature dependence of the thermal conductivity. Blue symbols
indicate metallic, black symbols critical and red symbols insulating behaviour. The dis-
tance from the mobility edge Er — E. is given in the legend. Full lines are obtained
from a high-temperature expansion (6.10). The dashed lines indicate x(7") using the
Sommerfeld expansion (6.5).
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Figure 6.5: The temperature dependence of the Lorenz number. Blue symbols indicate
metallic, black symbols critical and red symbols insulating behaviour. The distance from
the mobility edge Fr — E. is given in the legend. Full lines are obtained from a high-
temperature expansion (6.11). The dashed lines indicate L((7T') using the Sommerfeld
expansion (6.6).
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Figure 6.6: Thermopower S vs a dimensionless temperature parameter kg7'/t. Blue sym-
bols indicate metallic, black symbols critical and red symbols insulating behaviour. The
distance from E. is given in the legend. Full lines are obtained from a high-temperature
expansion (6.9). The dashed lines indicate S using the Sommerfeld expansion (6.4). In
both cases average values of v and E. from Table 5.2 were used.
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Chapter 7

Incoherent Transport

It was shown in Section 3.1.1 that completely phase-coherent transport is only possible
if the phase-relaxation length /g is larger than the system size L. Otherwise, if (g < L
the physics is governed by the interplay of localisation and dephasing. In this chapter
we show how inelastic scattering can be introduced to the Landauer-Biittiker formalism,
which allows to study incoherent transport. We also investigate if the same approach
can be used to understand if the parameter ~ in the Kubo formalism can be related to

inelastic scattering.

7.1 Dissipation and Coupling to an Environment

A complete microscopic description of inelastic scattering is in general complicated to
obtain, because scattering processes like electron-electron and electron-phonon interac-
tions have to be considered explicitly. A different and rather general description is based
on coupling the system to a reservoir with other degrees of freedom [29]. If one thinks
of the system as being coupled to the reservoir through some leads, then the coupling
can be characterised by a self-energy 3 (cf. Section 4.3), which is in general not her-

mitian [28]. The eigenvalues of the effective Hamiltonian Heg = H + X7 are therefore
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complex,

g =€tq— Do — (z/%a) ) (7.1)

Here ¢, is the eigenvalue of the Hamiltonian H, A, and 7, are induced by the self-energy.

The time dependence of the eigenstate associated with ¢, is then given by
U, x exp [—u(eq — Da)t/h] exp [—Yat/h] . (7.2)

The average time (or lifetime) an electron remains in the state ¥, is connected to the
imaginary part of the eigenenergy -, which in turn is just the rate at which electrons can
escape from the system [28]. In this sense the coupling of the system to an environment
leads to dissipation, but notice that the nature of the dissipation mechanism does not
enter these general considerations at all, so this has to be included separately, e.g. through

a proper modelling of the reservoirs.

7.2 Incoherent Transport in 1D Chains

Starting with the setup given by Landauer, Biittiker [14] found that any additional lead
coupled to the sample and connected to an electron reservoir can describe an inelastic
scatterer. In his proposal the electron reservoir will absorb any injected electron and
immediately emit a new electron with a random phase. This process yields a well defined

phase-relaxation length.

7.2.1 Landauer-Biittiker Formalism

D’'Amato and Pastawski [15] incorporated inelastic scattering into the Landauer formalism
using the proposal of Biittiker. In their model, which is shown in Fig. 7.1, they chose
the on-site energies E; in the additional leads to coincide with the Fermi energy of the
system and the hopping parameter for hopping from the sites into the leads to be ~v. In
this case attaching the leads is equivalent to adding an imaginary potential —uy to each

on-site energy [15]. Additionally, a condition of current conservation has to be satisfied
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in order to guarantee that no extra electrons are destroyed or created in the electron
reservoirs [14,15]. An inelastic scattering time 7;,, can then be related to the "escape

rate" -y such that 7;,, = i/(27) [15,28]. Following Ref. [15] the current I; through lead

DISORDERED CHAIN CHANNEL(N#1)
| ittt = +
RESERVOIR CHANNELO O Iy 2 N : (N+1) RESERVOIR
1

HLF——O0—O0— e — A — O D— e R

i e o S —d

@

CHANNEL 1 @) CHANNEL N

2

RESERVOIR
Figure 7.1: lllustration of the model proposed by D’Amato et al. [15].

i is given in terms of the (local) chemical potentials 1; and the transmission probability

T; j from lead j to 4,
N+1

I = Z(Nj —wi)Tij - (7.3)

Jj=0
If there is no net current flowing at each lead to the reservoirs the current through the

sample is given by

N+1 N
I =Y (uj = nr)Tr; = (ur — pr)TrL + Y (15 — 1r)Tr; - (7.4)
=0 =1

The chemical potentials 1; are fixed by the condition of no net current, which can be

derived from Equation (7.3) [15],

N

(1= Rii)(pi — pr) — Z(ﬂj—ui)Tij—(uL—MR)TiLZO Vi=1,2,...,N . (7.5)
j=1

i)

—
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The reflection coefficients R;; are given by current conservation,
N+1
zwlzm. (7.6)
(J#Z)

This leads to an expression for determining p;

i — UR = Z /’LL_,“R) Vi:1727"’7N7 (77)
(1752)
with
1-Riy; ,i=]
Wi, = . (7.8)

The transmission probabilities can be related to the retarded Green’s function G (E),
Trr =vi|Gh %,
Tip =290, |G, Thi=270.|G, P,
Tj =4 |IGH? Vi=1,2,...,N, (7.9)
where v, = 0E(k)/0k = 2tsin(ka) is proportional to the Fermi energy vp = vza/h. In

analogy to the Landauer formula (4.2), the two-terminal conductance can be expressed

in terms of the transmission probabilities,

_2 2 g +§:T WL (7.10)
g2 = hgz— h RL ]le . .

This implies that the effective transmission probability consists of the probability of
coherent tunnelling and of probabilities including phase randomisations at the lateral
reservoirs. Finally, the four-terminal conductance can be obtained from Equation (4.1),

2¢? 2e? gy
4= 75794 = 7~ 1—g

(7.11)

For an ordered chain an expression for the 4-terminal conductance g4 in terms of the

inelastic scattering length * Li,, = av, /7 can be calculated analytically up to corrections

'As it is at this stage not known if this length is equal to the phase-relaxation length f&, we will
denote the inelastic scattering length with Liy.
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of order a/ L, [15],

2e2 2L, 2% aw,
= — = ———. 7.12
g4 h L h L~y ( )

This is the Drude formula for ballistic transport (¢ > L) and Li, < L.

It is a priori not clear whether the choice of a site independent ~ is physically
plausible as the hopping rate of particles scattered into the reservoir should depend on
the available and the free states both at one site and in the reservoir. This has been
taken into account in Refs. [49,50], where the reservoirs were heat baths of independent

harmonic oscillators and a site specific scattering time 7; was calculated.

7.2.2 Kubo Formalism and RGFM

In Section 7.1 it was shown that the imaginary part of the complex energy ~ plays the
role of an inverse lifetime due to inelastic scattering. The expression (4.12) for the Kubo
conductance, however, was derived assuming coherent transport only. In this case the
wave function extends over the whole sample and the current density is constant. There-
fore, one can spatially average the non-local conductivity o(r,r’) to get the macroscopic
conductivity o, which relates the spatially averaged current to the spatially averaged
field [29].

In the following we consider a 1D chain consisting of V + 1 sites and a length
L = Na with a being the lattice spacing. Explicitly including the self-energy of the

additional leads we have in terms of the position operator (cf. Appendix A)

o= —ZQ—LSTr {X(Im ZH) G x(ImZ*) G+ + %x [(ImZ") G~ — (ImZ") G*] x}
(7.13)
with Z1t = (E +1y)1 — 3. The self-energy > T due to the leads at both ends is given
by [15]

E v
2t = (g~ ) (nal+ 1MW) (7.14)
whereas the self-energy due to the additional leads gives just the imaginary part of the

65



complex energy [15]. The trace in (7.13) can be evaluated in a position basis to yield

624 N+1
0=-7r > (@i —2)? (v —Im 1) Gy (v -~ Im S5 G p (7.15)

1,j=0

(i<9)

Using (7.9) one can rewrite the last equation in terms of transmission probabilities

2 N
e
o="77 i%_:l(izi — ;) Ty + (w1 — 21)* Tri
<%<j>
N
+Z i—2)’Tip+ Y (zvi —;vi)2TR,} . (7.16)
i=1
Assuming a constant electric field £ over the whole sample,
U _ s
g2 HLTHR KW (7.17)
L IN+1 — 21 T; — .rj
one can substitute (z; — x;) by
Xr; — ﬂj‘j = Hi ; 'uj . (7.18)

In order to get the current through the sample, we have to multiply Equation (7.16) with

the electric field £ and after making the substitution (7.18) we obtain

) N
e
=08 =47 -21($j — ) (i — pj) Tji + (N1 — 1) (pr — pr) TRL

Z7j:

(z‘<j)
N

+Z —xo)(pr — i) Ti L +Z N1 — xi) (i — /’LR)TRZ'} :

=1

(7.19)

Here, I;; = (pi — ;) T is the current flowing from the reservoir at site 7 to the one
at site j. The factor (z; — ;) = (j — ¢)a is proportional to the number of "planes"
between site 7 and j. The expression for I can therefore be interpreted as an average
over all currents flowing in the sample. Notice that in the case of a completely coherent
transport, when the current is flowing from the left to the right reservoir only (v = 0),

Equation (7.19) yields the same current as the Landauer formula.
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7.2.3 Results for an Ordered Chain

To further investigate the differences between the "incoherent" Landauer-Biittiker formal-
ism and the RGFM we numerically calculate as a start the 2- and 4-terminal conductance
of a small (L = 30) one-dimensional system without any disorder. We also compute the
length dependence of g4 for different values of ~. In Fig. 7.2 the energy dependence of
the 2-terminal conductance is shown for v = 0.001,0.01 and 0.5. The RGFM results
are seen to be larger for all energies in the band and all values of 7. The 4-terminal
conductance calculated by Equation (7.11) is shown in Fig. 7.3. Here, the RGFM data

is also larger than the Landauer-Biittiker data.

\ \
1 _
0.8~ 7

=
S _
N& —y=0.01
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04 | J —
02 _

I \ \ \ |

0 -2 -1 0 1 2

E/t

Figure 7.2: Two-terminal conductance gs vs energy computed from the Landauer-
Biittiker formalism (filled symbols) and the RGFM (open symbols). The values of ~
used are indicated in the legend.

From Equation (7.12) one expects that the dimensionless 4-terminal conductance

g4 is proportional to 1/~ with the constant of proportionality being v, /L. In Fig. 7.4
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Figure 7.3: Four-terminal conductance g4 vs energy obtained from Eq. (7.11). Filled
symbols indicate Landauer-Biittiker calculations and open symbols denote RGFM results.
The values of v used are shown in the legend.

we show g4 vs 1/7 calculated from both methods at £ = 0. One can see that the
Landauer-Biittiker results show the expected linear behaviour with the right slope, which
is 2/L for the band centre. The RGFM results also show a linear dependence on 1/~

but with a slope larger than v, /L.

Also the length dependence of g4 calculated with the RGFM shows deviations
from Equation (7.12) as it can be seen in Fig. 7.5. Especially for small systems the RGFM
data show a strong system size dependence, whereas the Landauer-Biittiker results are
constant for all L. Notice that for larger v the Landauer-Biittiker calculation also yields
a deviation from Equation (7.12), because then a/L;, is not a small parameter and

corrections to the first order result (7.12) have to be included.

The comparison of the RGFM and the Landauer-Biittiker method in the case of

incoherent transport showed that both methods are not yielding the same results. From
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Figure 7.4: Four-terminal conductance g4 vs 1/ at E = 0 and L = 30. Blue squares
indicate Landauer-Bittiker data and red circles denote RGFM results. The full line
represents Eq. (7.12) with v, (E = 0) = 2.

our analysis it is, however, difficult to identify the origin of the differences and to see
how they have to be interpreted. The modified Landauer-Biittiker formalism provides
a clear physical picture in terms of additional electron reservoirs coupled to heat baths.
In contrast, in the Kubo formalism it is hard to justify the ad hoc introduction of the
additional leads, because this eventually leads to an additional electric field, which is not

accounted for in the formalism.
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Chapter 8

Summary and Outlook

This thesis deals with thermoelectric transport in disordered systems. In particular, we
investigated whether the scaling assumptions made in previous studies [5, 11] can be
supported by numerical calculations. Therefore, we computed electronic properties at
T = 0, namely the conductance and the density of states, of 3D disordered systems
within the Anderson model of localisation. These properties were obtained from the
recursive Green’s function method in which semi-infinite metallic leads at both ends of
the system were taken into account. In order to study the influence of dephasing on the
electronic properties, we compared results for the conductance of a 1D clean system in
the case of incoherent transport using the recursive Green's function method with an

approach based on the Landauer-Bittiker formalism.

The basic definitions of the thermoelectric transport properties, electric and ther-
mal conductivity, thermopower and Lorenz number, were given in Chapter 2. It was
shown how they can be expressed in terms of the kinetic coefficients, which in turn can
be obtained from the Chester-Thellung-Kubo-Greenwood formalism knowing the explicit
energy dependence of the d.c. conductivity at 7 = 0. Additionally, some technological

applications utilising thermoelectric effects were mentioned.
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In Chapter 3 we gave an introduction to the key concepts of mesoscopic physics.
We introduced the Anderson model of localisation, which is the basis for our investigations
of disordered systems. We explained the occurrence of the Anderson metal-insulator
transition in 3D systems using the one-parameter scaling theory and discussed some

consequences of this hypothesis.

The recursive Green's function method which we used to calculate the conduc-
tance of disordered systems was introduced in Chapter 4. We gave the basic recursion
formulae for computing the conductance, the density of states and the localisation length.
We showed how semi-infinite leads can be incorporated into the formalism using the con-

cept of self-energy. Finally, we explained the idea of finite size scaling.

In Chapter 5 we demonstrated how the difference in the density of states between
the disordered region and the metallic leads has a significant influence on the results for
the electronic properties at energies outside the band centre. This poses a big problem for
the investigation of the energy transition. We showed that by shifting the energy levels in
the disordered region the mismatch can be reduced. In this case the average conductance
and the typical conductance were found to be consistent with the one-parameter scaling
theory at the energy transition. Using finite size scaling analysis of the system size
and energy dependence of both conductance averages we obtained an average critical
exponent v = 1.59 £ 0.18, which is in accordance with results for conductance scaling
at E/t = 0.5 and transfer-matrix calculations [8,9]. However, a thorough investigation
of the influence of the leads is still lacking. It would also be interesting to see if these

effects can be related to studies of 1D multichannel systems with impurities [51].

We calculated the d.c. conductivity from the system size dependence of the aver-
age conductance and found it consistent with a power-law form at the MIT. This strongly
supports previous analytical and numerical calculations of thermoelectric properties re-

viewed in Chapter 6.
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Finally, in Chapter 7 we investigated the case of incoherent transport. Therefore,
we used an approach based on the Landauer-Biittiker formalism with additional electron
reservoirs coupled to the system. We compared numerical results of the conductance
of a 1D clean wire to calculations obtained from the Kubo formula for the same setup.
It turned out that both methods are not equivalent. Whether they describe completely
different physical situations or refer to different regimes of the same process is still to
be shown. Further investigation of this question would not only be valuable for the cal-
culation of incoherent transport, but also for a deeper understanding of the relationship

between the Landauer-Biittiker formalism and the Kubo formula.

In summary, we found that the one-parameter scaling theory at the energy transi-
tion can be supported by numerical calculations. Our results are therefore promising with
regard to a fully numerical calculation of thermoelectric properties of disordered systems

without making further assumptions.
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Appendix A

Kubo-Conductivity in Position

Basis

Some definitions and useful relations:

(*1-H-2F) g5 = (72 -H)G* =1 (A1)
This leads to

HGY = Z*G* -1 and G*H=GTZT -1 (A.2)
ImG" = -ImZ* grg— = %(m -G7) (A3)
The d.c. conductivity in the linear response regime is given by the Kubo formula (4.12)
o= :z—iZTr [pImG" pImG™] (A.4)

2 [p(0" -G (G 0]
:—%Tr PG PG +pG PG —pG PGt —pGTpG] (A.5)

Using p = %[H, z] yields

2
TrpGtpg* = —%Tr {  eHG*rHGF + HaG HaG* — HeG*aHG* — sHGTHaGE)

2
_ _%Tr { oHG*aHG* + 2G*HaG*H — 260G HGFH}  (A6)
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2(ZFGF — 1)a(Z5GF — 1) + (6T ZF — 1)z(GFZF - 1)
— 22GF2(ZF(GFZF - 1) - H)}

2 ZFEGFLZEGE — 272G + 22 — 222FGE
+2GEZFaGFZF — 2GF 7 x4 2? — 2?GFZF
— 2GFrZEGEZE + 22GF 2T + 2:1:Qia:H}

22 — 22 7EGT — 22GT 7T + 2$QiajH} (A.7)

I { (MG — HaG ) (wHGT — HaGh))

—Tr { aHG aHG' + HaG HaG" — 2HG HaG" — HaG vHG ™"}

—Tr { «HG 2HG" +2G HzG'H — 2GTaHG H — 2G aHG H}

(A.8)

o { (ZG - D276 — 1) (G2 — Da(GTZT - 1)

—2G 2(ZYGTZ —1)—H) —2GT2(Z7 (G Z —1)-H)}

—Tr { 2Z G xZYGt —axZ G x4+ a2 — 227Gt

212G 7 aGTZT —xG 7w + 2% — 222Gt ZT
—2G 2 ZYGTZT 4+ 2G 22T + 2G aH

—2G 2Z G Z" +aGtaZ” +aGTaH}

—Tr { (xZ-G 2ZTGT —2GT2Z G Z7)

+(xG~Z 2GTZT —aG 2ZTGTZT)
27 G x—2?ZTGt —2G Zx —22GT 7zt

+2G 2Z " +2G sH+2G 2 Z ™ + G xH + 2952}
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= —ﬁTr { 22 G x(ZT - Z7)G +2G (27 - ZT )G ZT
27 G - 2?72 Gt — G 7w — 222Gtz
+2G 27T +2G aH+ 2G 27 +2G T H + 2m2}
2
- —%Tr { 2(Z~ - ZHG w(Zt — Z27)GF

27 G x—2*ZYGt — G 7w — 22¢t 2zt

+2G 22" +2G aH +2G 2 Z” + 2GTrH + 227} (A.9)

Tr {pGTpG* +pG pG~ — pG pG* — pGTpG~}
2
m

h2
2
_ —%Tr {—8x(Im2")G x(Im Z")Gt + dix [ImZ )G+ — (Im ZH)G ] x}

Tr {-2x(Z2~ —Z")G x(Z* —Z7)G" +2x(Z~ —Z7)G x+ 2x(Z" - Z7)G"x}

(A.10)
This finally gives
8¢’ - et o He- Hat
o= =T {X(Imz Gx(ImZ)GT + 2x [(ImZH)g™ — (ImZ+)G+] x} (A.11)
Transformation of ZT to position basis yields
(ImZ 1)y = 76 — SP6;  with 2 = %165 + Sroix (A.12)
Now we evaluate the trace by considering states in the disordered region,
Tr {z(ImZ")G x(ImZ")G"}
N+1
= > (ilala)(l(ImZ)[B)(BIG | (ulx|v) (v | (Tm ZF)[1) GG ]i)
i,5,0,3,pu,0v=0
N+1
= Z xi(lmZ+)iﬁgﬁ_uxu(1mz+)ujng
7:7-]"1[5,7/’1’:()
N41
= Z l‘i(’}/ — 2(2))“0;1‘](’}/ — 2(2))ij;_i (A.13)
i,j=0
(i<d)
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Tr {%m(lm Z+)G_x}

N+1 ) N+1 )
= D Filsla)el(ImZ BB ) Gleli) = ) jrily — )G
i,,0,3=0 =0

(A.14)

The conductivity in position basis is consequently given by

ge2 [N N+1
7T ThL Y wily = E®)uGhi(y - £);6 - Y wi(y - £#)uGE G

§,j=0 i=0
(A.15)
The last expression can be recast into a spatially invariant form,
462 N+1
o=57 ) (@i—z)(v - £2)uGy (v —£);,G
i,j=0
4e? {~ () - 52(2)
22— 2 -
=<7 {(xZ —xj)%y GUG;FZ- + (2 — )%, Gz-jzjj G;;-
i,j=0
w2 2) e
—(332‘ - 3Uj)2'7GijE§'j)G;;’ - (;EZ - mj)2zz(i)Gij’yG;_i}
4e? = 2, 2— 2 - +
L Z (zi —xj)™y Gz‘jGji + (o — TN+1) Z)LG1J\/+121'%CTVN+11
ij=1
(i<5)

M-

)

N
(@5 — 2811 VG 1 ZRG 1 — Y (1 = xj)22LG1ﬂG;FO}
1 J=1

(A.16)
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Appendix
Recursion Formulae

B.1 Density of States

The density of states is defined as

1 1
M(E) = +MN) L N)
p ) (E) N — 5 m { g Tr G } 5lms), (B.1)

Adding an additional slice results in the following expression,

N+1
i=1

+(N) +(N +(N+1 + +(N+1
—ImZ{ G+ G OGN+ eI,

N
—Im ZTr G+ I Tr GO, + T Y el G N a M enG i N

_l’_
i=1 i=1
= s + Im Tr {Ggﬂglﬂ I+t] ZG NGy ]}
= s+ T {G{0LY, [I+FN]} . (B.2)

In the last equation we have used the auxiliary matrix

FN—thZ[G;Z Lt (B.3)
=1
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The recursion relation for this quantity is
= (N+1) ¢ +(N+1)
Lt H(N+1) ~H(N+1
Fyii=tyy, E : |:GN+12 Ginvi1 |ty

i=1
i +(N+1) ~+(N+1) +(N+1) ~+(N+1)
=ty Z |:GN+12 Gy GN+1N+1GN+1N+1] tN 1
_ ot +(N+1) ¢t +( ) ~+(N) +(N+1) +(N+1) +(N+1)
=ty Z [GN—HN—HtNG Gy tNGyLiva T Grani Gyrivg |ty

H(N+1 H(N+1
= t;rV—HGN(-i-lN—&)-l [Fy +1] GN(-i-lN—&)-ltN'H (B.4)

B.2 D.C. Conductivity

2 N
N € 2 +(N) (N) g +(N) —(N)\ _2

o) = hNM2 { ZG 1_252((;11 -Gy )Xi}

e?4 N

= hNM2sg ) (B.5)

( l\f +(N+l N 1) ’YNH (N-+1) (N 1)
N+1) 2 +1) +(N+1) + 2

Tr G j Xi— Z G 11 )Xi

N+1
=Tr {’yz Z {G;;(N) + G ( 't Ggﬂ—&lllﬂ GHN)} Xj X
657+ G G b6l
N
115 Z [ A A e R N chl
(N N+1 —(NV
_Gii( - G;. o )tNGN(-HN-)Q—ltT GN(i )] 33?}
For notational convenience we introduce the following auxiliary matrix

N1 N
G:FJSI t G—"]\_f(-‘r-l—"]_V-)i-lt;[VG—i_( ) (B.6)
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To simplify the derivation we consider the new slice to be at zy11 = 0 and take account
for this afterwards. Substituting for a - then gives

N+1

sgN“) =Tr Z [GHN xJGj_i(N)x1 G+(N) Xjay; X; +a JGj_i(N)xi

N
samana] -k [z (61— Gif) a2+ (af —a) o + .. N] }

= Tr Z[GHN : )Xl—l-G Ny Xjay; Xl—l—a JGj_i(l\I)Xi

N
sy - w; [Z (61 - Gi) 2+ (af - o) ] }

+(N), N+1
- 22 [G ) )tNGN-(i-lN-&)-ltJlr\IG My

N +(N+1 +N —(N
+G+( )tNGN(_i_lNi_ltT G ( ) G]z( )xl

+G N >tNG]+V(+N1+N”+1tT G+(N)m]G] Wevey NGl

-y Z [GHN ¢ GE(JFAQJJF\}LH G+(N) GZJS/N)t GN(JFJ\QJJF\}LH G]:/(Z'N):| 3312}

= s((jN) + Tr < Re fytlT\I Z (27G§j(N)XjGj_i(N)XiG;f\I(N)

—0 GR G s ) en GO |+t [ZG >] ty x

N
—(N+1 —(N) .+ +(N+1
(GN(-HN—&)—1> ’Ytjv [Z GN(Z' )xiGu\(f )] GN(—HN-',)-I}
i=1

+(N+1 N+1) e e H (N
= s+ Tr {Re <BNGNS-1N—£1> + C+GNSF1N421CNGNSF1NJZ1} (B.7)

In the last Equation we introduced the following matrices,

N
By =th | Y G296, N —i15)2,G Y |ty (B.8)
ij

80



N
cl =t [Z G]J(,EN)xiG;éN)] ty = (CH)T, (B.9)

i=1
al N N
Cy =tk [Z Gy uiGy 1 ty = (Cy)t. (B.10)
i=1
The recursion relations for these can be found as follows
N+1

+ +( N+1 —(N+1)
Cryi = N+1 [Z GN+12 Gini1 | v+

N-‘rl

+(N+1) +(N N+1
ZGN+1N+ltT Gy ( : 'G N )tNGN(JrlNJ)rl] tN 1
+ ( . ) TN+1

N+1 (N+1)
Cryr = t}r\H—lGS\f—i-l]\)f-i-lC—i_ GrhiNt1tN+ (B.11)

_ N+1 +(N+1
Cyp = tN+1GN(+1N—i)-IC GN(+1N4)r1tN+1 (B.12)

By = ’YtN+1

N+1
3 6 (5 ) G v

= 'VtN+1 {Z GJJ\rfﬁ;rvlﬂtT GJJ\FI(J]'V)% [27 (G]._Z.(N) G; ](\,N)tNGN(ﬁJ;\}llt;VG )
6] G VG NR L e

= ’ytN+1GJ—i\_/(—i-]\i—]‘rV1+1tT {Z Gy xj (27G;i(N) - ZI(SU) xiGZ\gN)
LG 6 G G G} G

N
N N ~(N
= t;[V-i-lG-iJ\_f(—i-l—’];fl-i)-l {BN + 297ty [E :G—"]\_f(z )xiGil\(f )] tnx

i=1
+(N+1) i
(GN-HN-H) ty

N
Ze;va%ezw] }Gmmlm
=1

+(N+1) (N+1) +(N+1)
= t}[V—i-lGN—i-lN—i-l [BN +2C Gy v Cr ] GrLintibN+1 (B.13)
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