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Abstract

We study the disorder-induced Anderson localisation of a d-dimensional solid, com-

puting the localisation lengths using the Transfer-Matrix Method (TMM) and aim-

ing to develop an efficient parallel implementation to run on Graphics Processing

Units (GPUs). In the TMM, a quasi one-dimensional bar of length L >> M is

split into slices of size Md−1. The Schrödinger equation is reformulated into a

2M ×2M transfer matrix Tn, which is recursively applied at each slice to propagate

the wavevectors through the solid. NVidia’s programming architecture for GPUs,

CUDA, is used to develop the GPU implementation of the TMM, the CUDA-TMM.

Two schemes are developed, the Multi-Parameter Scheme (MPS) and the Single-

Parameter Scheme (SPS). In this thesis, various advantages and limitations of both

schemes as well as using CUDA in general are discussed.
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Chapter 1

Introduction

1.1 Anderson Localisation and the Metal-Insulator Tran-
sition

Anderson localisation is the absence of diffusion of waves in a disordered medium
[1]. It applies to any sort of wave where disorder can occur, such as electromagnetic
[2, 3, 4], water [5], sound [6, 7] and quantum waves [8]. It was first suggested in the
context of electrons in disordered semi-conductors [9], as a possible mechanism for
the metal-insulator transition (MIT). The absence of electron transport for these
systems is due to the failure of the energies of neighbouring sites (atoms) to match
sufficiently [1]. The disorder in semi-conductors can take many forms such as random
impurities, vacant atoms, and abnormal lattice spacings [8]. In disordered semi-

140 145 150 155 160
x

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

ψ
(x

)

Localised
Extended

Figure 1.1: Plot of wavevector amplitude against position (lattice site). Blue: ex-
ponentially localised electron eigenstate in the insulating phase. Red: extended
electron state corresponding to the metallic phase.

conductors, transport of electrons occurs via quantum-mechanical jumps from site
to site [1]. At low temperature T and when the disorder of a metal increases to a
certain amount, a phase transition occurs which causes the electrons to exponentially

1



localise. This means that the wavefunction for an electron at a particular site in the
disordered system will decay exponentially away from that site. This is caused by
the electron wavefunction interfering with itself due to disorder scattering [1], such
that electrons are no longer spread out across the system like the extended states of
a metal, and thus the system becomes insulating. The ‘localisation length’ describes
the characteristic decay length for the electron wavefunction [8]

ψ(r) = f(r)e
−r
λ ,

where λ is the localisation length, and r is the distance of the electron from a
particular site. This localisation effect prevents the diffusion of electrons at T = 0
(i.e. the system is an insulator). This is known as the disorder-induced MIT [8, 10,
11].

1.2 Conductance and the One-Parameter Scaling The-
ory

The disorder-induced MIT has been approached by Abrahams et al in 1979 using
‘one-parameter scaling theory’ [9]. In this study, the MIT was found to exist in
three-dimensional systems with no electron-electron interactions, no magnetic field
and no spin-orbit coupling. The theoretical approach that explains this is called the
‘scaling hypothesis of localization’. Essentially the scaling hypothesis states that
there is only one relevant scaling variable which describes the critical behaviour
of the conductivity or localisation length at the MIT [8]. In the localised regime,
conductivity becomes vanishingly small and is no longer a useful quantity to describe
electron transport in finite systems [8, 12]. Instead of looking at the conductivity,
one starts by investigating the conductance of an Ld sized metallic cube [13, 8]

G = σLd−2 = g
e2

~
,

where σ = conductivity, d = dimensionality, e = electron charge, ~ = Planck’s
constant and g = dimensionless conductance. For metals, this means that

g ∝ Ld−2.

For insulators, i.e. when the disorder is strong and the wavefunction is exponentially
localised, the conductance decays with system size [13]

g ∝ e−L/λ.

To see how the conductance behaves as the size changes, one then defines the loga-
rithmic derivative [13, 8]

β =
d log g

d logL
.

2



and looks at how this behaves asymptotically to determine the onset of the metallic
and insulating phases for different dimensions d [8]. For large conductance, one has

β =
d

d logL
(d− 2) logL = d− 2,

and for small conductance

β =
d(−Lλ )

1
LdL

= −L
λ

= log g.

The β curves plotted in figure 1.2 show that β is always negative for d ≤ 2 which

ln(g)

-1

1

β

d = 3
d = 2
d = 1

Figure 1.2: Schematic of the β curves showing the conductance of disordered systems
for dimensionality d = 1, 2, 3. In the 1D and 2D cases, β < 0. For a 3D system,
there is a critical conductance at β = 0 where the MIT occurs.

implies that an increase in the system size L will drive it to an insulator [13].
Therefore for 1D and 2D systems, there are no extended states and hence these
systems are insulators. For d = 3, β is negative for small g and positive for large
g, showing that there is a MIT at the critical conductance gc where β = 0, so an
increase of L will either drive the system to a metallic or insulating phase [13]. Thus
the main result of the one-parameter scaling theory is that an MIT can only exist
in three dimensions. The behaviour of the conductance for different signs of β is
summarised below:

• β < 0 conductance decreases with system size (insulator)

• β > 0 conductance increases with system size (metallic)

3



• β = 0 conductance independent of system size (MIT).

The scaling hypothesis implies a continuous second-order quantum phase transition
[10, 13]. Near the critical energy Ec, the conductivity and localisation length scale
as

λ(E) ∝ (Ec − E)−ν , E ≤ Ec (metallic phase),

σ(E) ∝ (E − Ec)s, E ≥ Ec (insulating phase),

where s = (d− 2)ν is known as Wegner’s Scaling Law [11].
The scaling hypothesis has been verified numerically by Mackinnon and

Kramer using a recursive method to calculate the localisation lengths [14], where
they show that only localised states are found in 2D and that there exists an MIT
in 3D systems.

1.3 Numerical Approaches to Anderson Localisation

Randomness in the Anderson model of localisation makes analytical treatment dif-
ficult, thus many numerical methods have been applied [8]. As d = 2 is the lower
critical dimension of Anderson localisation, the 2D problem is in a sense close to 3D.
States are only slightly localised for weak disorder, so a small magnetic-field or spin-
orbit coupling can lead to extended states and thus an MIT [8]. Near the MIT, large
systems are required due to divergence of the localisation lengths, so computing
time and memory increase dramatically. This problem therefore requires specially
adapted algorithms. One can diagonalise the Hamiltonian and obtain eigenvectors
which give the localisation lengths. One way of doing this is to use the Cullum-
Willoughby Implementation (CWI) of the Lanczos algorithm [15, 16]. The method
we use is the Transfer-Matrix Method (TMM), which considers the system as a
quasi-1D bar of length L and width M such that L >> M . The reason why this
approach is advantageous is discussed fully in Chapter 2.

1.4 Finite-Size Scaling Theory

After computing the localisation lengths for a quasi-1D system, one can extrapolate
to a fully 2D/3D system using Finite-Size Scaling (FSS). This is motivated by one-
parameter scaling theory, developed in 1979 by Abrahams et al [9]. As described
earlier in section 1.2, it states that only one characteristic dimensionless quantity
is needed to describe the critical behaviour of the system. In other words, close to
the MIT at temperature T = 0, the conductance only depends on the dimensionless
conductance g and the scaled factor b [17], like so

g(bL) = f(b, g(L)).

The idea of FSS is to scale the reduced localisation length λ(M)/M for different
disorder parameters onto a scaling curve

4



λ(M)

M
= f

(
ζ

M

)
,

where ζ is a scaling parameter which is a function of the disorder [8]. By obtaining
highly accurate data and using the FSS technique, one can effectively extrapolate
the localisation length to infinitely sized systems (i.e in the thermodynamic limit).

1.5 Discretisation of the Single-Electron Disordered Sys-
tem

To find the localisation lengths numerically, it makes sense to work with a lattice
model of the disordered quantum system [18]. First one takes the dimensionless
Schrödinger equation in continuous form

Hψ(r) = V (r)ψ(r) +∇2ψ(r),

where ψ is the wavefunction of the electron, r is the position, V is the potential
energy and H is the Hamiltonian operator representing the total energy of the
electron. By discretising (1.5), one can derive the Hamiltonian in lattice form [8,
19],

H =
∑
i

Vi|i〉〈i| −
∑
ij

tij |i〉〈j|,

where i and j denote lattice sites, Vi is the potential energy at site i which is random
and uniformly distributed in the range [−W

2 ,
W
2 ], where W is the strength of the

disorder. The tij are the transition rates for the electron to go from one site to
another, and represent the kinetic energy part of the Hamiltonian. In this model,
we have nearest-neighbour hopping so that tij = 1 for adjacent sites and tij = 0
otherwise.

1.6 Construction of the Hamiltonian in the Anderson
model

Starting with the 1D Hamiltonian, in figure 1.3 one can logically see how to construct
the higher-dimensional analogues, by treating each diagonal disorder element as a
Hamiltonian of the lower-dimensional system. For this example we have system size

of M = 4. The 1D Hamiltonian, H
(1)
i , replaces the diagonal disorder in the 2D

analogue, where the subscript i represents the 1D row. The unit transition rates are
replaced with 4×4 identity matrices, 14. The same analogy is used to construct the
3D Hamiltonian, but this time each element is a 42×42 matrix and the Hamiltonian
subscripts represent different 2D planes.

The number of lattice points in the 3D Anderson model grows as N = L3,
where L is the short linear dimension of the system. This means that the Hamil-
tonian has a size of L3 × L3 = L6. For a system of linear size 100, the Anderson

5



1 2 3 4

1 V1 1 0 1
2 1 V2 1 0
3 0 1 V3 1
4 1 0 1 V4

1 2 3 4

1 H
(1)
1 14 0 14

2 14 H
(1)
2 14 0

3 0 14 H
(1)
3 14

4 14 0 14 H
(1)
4

1 2 3 4

1 H
(2)
1 116 0 116

2 116 H
(2)
2 116 0

3 0 116 H
(2)
3 116

4 116 0 116 H
(2)
4

Figure 1.3: Construction of the Anderson Hamiltonian from 1D to 3D, with width
M = 4 and periodic boundary conditions. The elements on the diagrams corre-
sponding to the ones on the tables are highlighted in red. In 1D, the hopping of the
electron between sites is represented by off-diagonal unit transitions. The potential
energies at each site are denoted by the diagonal elements Vi. In 2D/3D, the in-
teractions between rows/planes are represented by 14 and 116, which are 4× 4 and

42 × 42 identity matrices respectively. The 0 are zero matrices. H
(d)
i represents the

Hamiltonian for the ith d-dimensional element.

matrix has size 1006 = 1012. If one byte is used to store each element of the matrix
on a computer, then one terabyte would be required. This is already larger than
most modern hard-drives. Instead of attempting to solve the Hamiltonian, iterative
methods such as TMM (Transfer-Matrix Method) are generally used, followed by
FSS (Finite-Size Scaling). This is because in the TMM, one simulates a quasi-1D
bar, using much smaller matrices than would be required for the extended system.
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Chapter 2

Transfer-Matrix Method

The TMM is a numerical technique which is used for computing the localisation
lengths of a disordered system. In the TMM, a quasi one-dimensional bar of length
L >> M is split into slices of size Md−1. The Schrödinger equation is recursively
applied such that the wave function at the (n + 1)th slice, ψn+1, is computed from
the (n− 1)th and nth slices, ψn−1 and ψn. Reformulating the Schrödinger equation
into a transfer matrix Tn and repeating multiplications of these matrices at each
slice gives the ‘global transfer matrix’, Γn, which maps the wave functions from
one side of the bar to the other. The minimum eigenvalue computed from this
matrix gives the localisation length. To obtain the minimum eigenvalue and prevent
numerical instabilities resulting from the exponential increase in the eigenvalues,
the eigenvectors must be re-orthonormalised after every few matrix multiplications.
This takes a considerable amount of time, making it crucial to efficiently parallelise
the TMM code. As the disorder decreases in fully extended 2D and 3D systems, the
localisation lengths become very large. One of the advantages of the TMM is that in
simulating a quasi-1D system, the problem is close to that of a true 1D system (i.e.
the localisation lengths are small compared to L) and the matrices used are only the
size of the bar cross-section, much smaller than the full Anderson Hamiltonian of
an extended 2D or 3D system. In this thesis, two types of boundary conditions for
the TMM are explored. For hardwall boundary conditions (HBC), the wavefunction
vanishes at the long edges of the quasi-1D bar. For periodic boundary conditions
(PBC), instead of the wavefunction vanishing at one of the long edges, the value
of the wavefunction amplitude at the opposite long edge is taken as the adjacent
wavefunction amplitude.

2.1 The Transfer-Matrix Method: 1D

In 1D, the single particle Schrödinger equation in the lattice model is

ψn+1 = (E − Vi)ψn − ψn−1.
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In the TMM we re-arrange this equation into matrix form like so(
ψn+1

ψn

)
=

(
E − Vn −1

1 0

)(
ψn
ψn−1

)
= Tn

(
ψn
ψn−1

)
.

The transfer matrices Tn transfer the wavevector amplitudes between sites (n, n−1)
and (n+ 1, n). By multiplying these transfer matrices together, one can evolve the
wavevectors from one end of a chain of sites to the other, as visualised in figure 2.1.(

ψL+1

ψL

)
= TL . . .T2T1

(
ψ1

ψ0

)
= ΓL

(
ψ1

ψ0

)
.

Due to the symplecticity of the transfer matrices, Oseledec’s theorem [20] states

that the eigenvalues of Γ = (Γ†LΓL)1/2L converge toward e±γ as L→∞, where γ is
known as a Lyapunov exponent [18]. The localisation length is then determined by
the inverse of the Lyapunov exponent

λ =
1

γ
.

Figure 2.1: Propagation of the 1D TMM along a chain of sites.

The perturbative expansion of the localisation length for a weakly disordered
1D system is [8],

λ(E) =
24(4t2 − E2)

W 2
,

where transition rates are t = 1 for the Anderson model. This means that one
should obtain λ(0) = 96V 2/W 2 except in actuality one obtains λ(0) = 105V 2/W 2.
This is due to an anomaly in the band centre caused by a breakdown of second-order
perturbation theory [21]. This discrepancy can be seen later in figure 6.1, where the
numerical results of localisation length have been plotted against energy for constant
disorder W = 1. The localisation lengths against disorder for constant energy E = 0
have also been plotted in figure 6.2. Anomalies in the localisation length are seen
for disorders with low and high orders of magnitude (W ∼ 0.01 and W ∼ 10).

2.2 The Transfer-Matrix Method: 2D and Greater

For the 2D TMM, we consider a quasi-1D strip consisting of M chains of L sites,
where L >> M . Using FSS [9], one can then extrapolate this quasi-1D strip to a
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fully 2D system. The Schrödinger equation for a single particle in 2D is

ψn+1,m = (E − Vn,m)ψn,m − ψn,m+1 − ψn,m−1 − ψn−1,m,

where chain number m = 1, . . . ,M and slice number n = 1, . . . , L. This equation
can written in vector vector form,

Ψn+1 = (E1−Hn)Ψn −Ψn−1.

Analogous to the 1D TMM, this can be rearranged into matrix form(
Ψn+1

Ψn

)
=

(
E1−Hn −1

1 0

)(
Ψn

Ψn−1

)
= Tn

(
Ψn

Ψn−1

)
,

where Ψn is an M ×M matrix. The Hamiltonian for a width = M system with
PBC is

Hn =


Vn1 1 0 0 1
1 Vn2 1 0 0
0 1 Vn3 1 0

0 0 1
. . . 1

1 0 0 1 VnM

 .

As in the 1D case, one takes a product of a large number transfer-matrices to obtain
the localisation length.

In 2D, the eigenvalues of Γ = (Γ†LΓL)1/2L converge to e±γm , where γm are
the Lyapunov exponents (one for each m). The localisation length is defined as the
longest decay length given by the minimum Lyapunov exponent

λ =
1

γmin
,

since this is the length within which the wave function must eventually decay.
According to Römer and Schulz-Baldes [22], a good approximation for the

localisation length of a 2D (quasi-1D) system with PBC is given by

λ ≈ 96M

W 2
M2
e

∑
l,k

2− δk,l
sin ηl sin ηk

−1

,

where ηl = rotation phase, M = system width (number of channels), Me = number
of elliptic channels and the sum runs over elliptic channels only. The channels (the
1D chains in the quasi-1D bar) are elliptic when |µl| < 2, where

µl = eiηl + e−iηl = −2 cos
2πl

M
− E,

are the eigenvalues of ∆M , the discrete laplacian, for channels l = 0, . . . ,M − 1 [22].
The theoretical values together with the numerical results for the 2D localisation
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length have been plotted against energy in section 6.2.1.

2.2.1 Numerical Instabilities of the Transfer-Matrix Method

The problem with the TMM is that it is numerically unstable. As L → ∞, ΓL
will converge towards the largest eigenvalue times its eigenvector if Ψ1 and Ψ0 are
arbitrary. However, to compute the localisation length one must find the minimum
eigenvalue. The problem is that the ratio of the smallest eigenvalue to the largest
eigenvalue of ΓL becomes comparable to machine accuracy after few matrix multi-
plications, meaning that the smallest eigenvalue gets lost very soon. This is because
each matrix multiplication will amplify the largest eigenvalue. One can find all
the eigenvalues if the orthogonality of the wavevectors is maintained, and prevent
numerical instability by normalising the wavevectors. This can be achieved by start-
ing with Ψ1 = 1 (identity matrix), Ψ0 = 0 and re-orthonormalising the wavevectors
after every few matrix multiplications [18]. This is done using the Gram-Schmidt
process (described in section 2.2.2). As the matrices are repeatedly multiplied along
each step, the eigenvectors move around in the M×M -dimensional symplectic space
and they eventually converge towards the eigenvectors with the correct Lyapunov
exponents, provided that orthonormality is retained [18].

2.2.2 Gram-Schmidt Re-orthonormalisation

The Gram-Schmidt procedure is an algorithm designed to orthonormalise a set of
vectors [23]. Using the algorithm in figure 2.2a, each of the M columns vectors of
(Ψn+1,Ψn)T , vi, is orthonormalised with respect to all the previous columns. Each
vector is first normalised, and then the overlap between that vector and the previous
vectors is subtracted. This process is repeated for all vectors until they become
orthogonal to each other (and normalised). A visualisation of the Gram-Schmidt
procedure is shown in figure 2.2b.

(a)

for i = 1→M do
for j = 1→ i− 1 do
vj ← vj − v∗i vjvi

end for
vi ← vi

‖vi‖
end for

(b)

Figure 2.2: Classical Gram-Schmidt procedure. (a) shows the pseudo-code of the
procedure [23], where vi is the ith column vector out of the M column vectors of
(Ψn+1,Ψn)T . (b) is a visual demonstration of the procedure implemented in the
TMM.

By using this algorithm, the first column v1 converges towards the eigenvector

10



with the largest eγm (where m = 1, . . . ,M), the 2nd column converges toward the
eigenvector with the second largest eγm , and so on, the last column converging
towards the eigenvector with the eigenvalue closest to unity, eγmin .

1st column → eigenvector with largest eigenvalue eγmax

2nd column → eigenvector with 2nd largest eigenvalue eγpre-max

...

M th column → eigenvector with smallest eigenvalue eγmin

Localisation length, λ =
1

γmin
.

The idea of the TMM is to perform North transfer-matrix multiplications, followed
by re-orthonormalisation. As shown later in table 6.1, the Gram-Schmidt procedure
dominates computations for large M , thus North should be as large as possible. This
can be adjusted during calculation by comparing the norm of vi leading the λmin

before and after the renormalisation [24]. If the change in norm is greater than a
specific number (defined by machine precision) then North is decreased by 1. If the
change in norm is less than a specific number then it is increased. By following this
procedure, North converges fast to a number roughly in the range of 5-30 [24]. After
that it only fluctuates slightly. For the computations performed for this thesis, North

has mainly been kept fixed at 10.

2.2.3 Modified Gram-Schmidt

The Gram-Schmidt procedure described above is known as the Classical Gram-
Schmidt algorithm. It turns out to be numerically unstable due to the sensitivity of
rounding errors on a computer [23]. A more stable version called the ‘Modified Gram-
Schmidt Procedure’ [23] is detailed in figure 2.3. Both algorithms are equivalent.

for i = 1→ n do
vi ← vi

‖vi‖
for j = i+ 1→ n do
vj ← vj − v∗i vjvi

end for
end for

Figure 2.3: Pseudo-code of the Modified Gram-Schmidt procedure.

However, since the Modified Gram-Schmidt procedure is more numerically stable
than the Classical Gram-Schmidt, this is the one chosen for the CUDA-TMM.
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2.3 Implementation of the Transfer-Matrix Method

The main program of the TMM is described in pseudo-code in figure 2.4. Nmax sets
the maximum number of iterations (matrix-multiplications) for the algorithm.

For the TMM subroutine, the actual Hamiltonian matrix is not stored in
memory but encoded into the algorithm itself. The algorithm doesn’t directly mul-
tiply matrices together. It calculates the bare minimum needed to effectively carry
out a matrix multiplication by avoiding computing and multiplying with zeroes.
The wavefunction matrix Ψ is divided into 2 arrays, ΨA and ΨB. This is so that
the wavefunction at both the present and the past slices can be processed without
having to swap arrays. The matrix multiplication subroutine is split into 2 steps so
that at first Ψn ← Tn−1Ψn−1 then Ψn+1 ← TnΨn.

The error of the Lyapunov exponent, σ, is computed so that if it is less than
a specified number, σε, the program stops (the localisation length has converged).

for Width = Width0 → Width1 do
for Iter1 = 1 → Nmax/North (stride 2) do

for Iter2 = 1 → North do
ΨB ← TnΨA

ΨA ← Tn+1ΨB

end for
Re-orthonormalise columns of ΨA and ΨB

Compute Lyapunov exponents γi
if σ < σε then

Exit Iter1 loop
end if

end for
Write data

end for

Figure 2.4: Pseudo-code of the main program.

The TMM was initially coded in Mathematica. This turned out to be far too
slow for practical purposes. So we used FORTRAN instead, but came across many
problems trying to compute the localisation lengths due to numerical instabilities.
The localisation lengths are computed from the eigenvalues like so

λ =
1

γ
=

1

log(eΓ)
,

where eΓ is any particular eigenvalue of the global transfer-matrix ΓL. Initially we
kept track of the eigenvalues, but after a few hundred transfer-matrix multiplications
they grew far too large/small and numerically overflowed/underflowed. So the trick
was to keep track of the logarithms of the eigenvalues, instead of the eigenvalues
themselves. After each renormalisation, the Lyapunov exponents γi were stored in
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memory so that the final localisation length could be acquired by summing together
all the stored gammas,

eLγ = e∆γ1+∆γ2+...+∆γM .

This method was implemented in the TMM code written by Rudolf Römer [24]. The
M th normalisation constants of the Gram-Schmidt procedure have to be multiplied
together to determine the overall normalisation of the M th eigenvector, thus yielding
the eigenvalue closest to unity and smallest Lyapunov exponent, which gives the
localisation length. In practise, the logarithms are summed together as it is more
efficient than performing multiplications.

In 3D, the critical disorder at which the MIT occurs is approximately Wc =
16.5 [24]. The TMM code was verified by running various disorders in both HBC
and PBC, yielding critical disorders around that region (from about W = 15.25 to
W = 16.5). The results are in section 6.3.
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Chapter 3

Parallelisation of the
Transfer-Matrix Method

3.1 Parallel Computing in General

The TMM requires highly accurate data in order for the FSS technique to faithfully
represent macroscopic systems. The ever increasing need for more accurate data
comes with orders of magnitude more computation. One could satisfy this need by
simply creating faster processors. However, processors are already approaching their
fundamental limit to clock speed. A promising approach is to use massively parallel
computing, where one increases the number of processors working together on a
problem instead of trying to build more powerful processors. The computational
task has to be split into parts which can be done simultaneously. The subtasks on
different processors might take different amounts of time, but further steps require
their results, so some processors may have to wait. The subtasks usually have to
exchange data. This introduces an overhead for organisation, such as starting a job
on all the processors, transferring input and output to the nodes, etc. The idea is to
optimise the algorithm in such a way that it can be split up into equal subtasks to
be carried out on multiple processors with minimal communication between them.

3.2 Synchronisation and Race Conditions

There are times when threads (processors) will need to stop and wait for other
threads to catch up, especially when they need to communicate with each other. A
‘barrier’ would need to be coded in the algorithm so that any thread that enounters
it will stop until all other threads have encountered it.

Another problem that can occur in parallelisation is a race condition between
different threads. A race condition occurs when more than one thread tries to update
the same memory location. For example, say that two threads have the instruction
to increment the value stored in memory location x by one. The desired net result
is x← x+ 2. While the first thread updates the value of x, the second thread may
still see the old value of x before being updated by the first thread. The net result
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could either be x ← x + 1 or x ← x + 2, depending on the order and times the
threads read/write to x. This problem can be solved if the threads can operate on
the memory ‘atomically’, meaning that only one thread can operate on x at a time.

3.3 Parallelisation of the Transfer-Matrix Method

As visualised in figure 3.1, there are two simple parallelisation schemes one could
adopt for the TMM: The Distributed Element Scheme (DES) and the Distributed
Vector Scheme (DVS) [24]. In the DES, different elements of each column vector
of Ψ are stored on different processors. During the matrix multiplication part of
the TMM, adjacent processors need to communicate with each other due to site
hopping in the direction perpendicular to the TMM propagation, which significantly
decreases the speedup gained from running multiple processors. However, the re-
orthonormalisation process can be done quite quickly as each dot-product needed
for the Gram-Schmidt procedure can be calculated locally.

In the DVS, each column vector is stored on a different processor. No commu-
nication is required for the matrix multiplication part, so the speedup is proportional
to the number of processors used. On the other hand, the re-orthonormalisation re-
quires each vector to be sent to every other vector on separate processors, incurring
a communication overhead.

A direct comparison of both methods has shown that the DVS scheme is
faster [24]. An implementation of the TMM using the DVS scheme carried out on

Figure 3.1: DES and DVS schemes.

a GCPP parallel computer by Römer [24] shows that while there is a net reduction
of computing time for large system sizes, it doesn’t scale well past 8 processors. A
better parallel implementation of the TMM is desired, one such that the speedup
scales close to linearly for the number of processors used.
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3.3.1 Parallelised Transfer-Matrix Multiplication

In the TMM, the wavefunction at the future slice Ψn+1 is given by

Ψn+1 ← VΨn −ΨL −ΨR −Ψn−1,

where ΨL and ΨR are the adjacent wavefunctions to the left and right of Ψn in the
present slice. During the matrix multiplication procedure, each component of Ψ only
requires three components from the previous step in the multiplication process, as
shown in figure 3.2. For example, to calculate Ψn(i), one would need only Ψn−1(i),
Ψn−1(i − 1) and Ψn−1(i + 1) (in other words, itself and adjacent wavefunctions in
the previous step). The separate column vectors j are independent of each other in
this procedure, so if using the DVS scheme all calculations can take place in local
memory.
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Figure 3.2: Diagram showing the dependencies of the components of Ψ throughout
the transfer-matrix multiplication procedure. Since each column vector j of Ψ is
independent, we simply denote Ψ(j, i) as Ψ(i) for clarity. The subscript denotes the
step (or slice) along the TMM procedure (n − 1 is past, n is present and n + 1 is
future). Each horizontal row represents a slice in the quasi-1D bar of the TMM (the
matrix multiplication propagates upwards).

3.3.2 Parallelised Gram-Schmidt Algorithm

Figure 3.3 shows a partially parallelised implementation of the Gram-Schmidt method
on the column vectors of (Ψn+1,Ψn)T . At the jth step in the algorithm, the jth vec-
tor is normalised. This vector is then passed to each ith vector where i > n. The
overlap between the jth and ith vector is then subtracted from the ith vector.

Due to the nature of the Gram-Schmidt algorithm, it is not obvious how to
fully parallelise, in the sense that all parallel components run independently without
waiting for each other. At the first step, all vectors are parallelised. However, after
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each subsequent normalisation, the number of vectors being processed in parallel
decreases by 1. As each vector resides on a different processor, the number of idle
processors increases by 1 at each step, so on average only half of the processors are
running in parallel at any one time.

One benefit of parallelising the Gram-Schmidt procedure is that compared
to the completely serial implementation, it is more accurate because there are more
numbers of the same magnitude being summed together [23].

Figure 3.3: Parallel implementation of the Gram-Schmidt method with M column
vectors vi.

Milde and Schneider [25] have developed a parallel implementation of the
Gram-Schmidt procedure on CUDA. However, while their method is good for or-
thonormalising very large vectors a single time, it is bad for repeatedly orthonormal-
ising small vectors millions of times, which is required for the TMM. This is because
their method makes extensive use of slow global memory and requires launching a
new kernel for each renormalisation.
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Chapter 4

NVidia GPUs and CUDA

4.1 GPUs in Scientific Computing

One method of parallelising algorithms involves using GPGPUs (General Purpose
Graphics Processing Units). GPUs are specialised processing circuits built in such a
way to accelerate the building of images in a computer. They have a large number
of processor cores, and are ideally suited for running highly parallelised code. Un-
like CPUs, GPUs have a largely parallel throughput architecture that allows many
threads (processes) to be executed simultaneously. OpenCL (Open Computing Lan-
guage) is an open-source programming framework for executing programs across
various computing architectures such as CPUs and GPUs [26]. CUDA (Compute
Unified Device Architecture) is a proprietary programming framework developed
by NVidia for use on NVidia GPUs. In the CUDA model of programming, the
GPU runs a ‘kernel’, an instance of code which each thread (processor) executes.
NVidia have developed specialised GPUs for scientific computing. These are built
with ECC (error correction codes) and have more double-precision cores than the
standard GPUs, giving them the accuracy required by numerical scientists. For this
reason, CUDA is chosen for developing a GPGPU implementation of the TMM.

4.2 The CUDA Programming Model

The CUDA programming model is based on the concept of the kernel. This is a
program of which an identical copy is executed by each thread in the GPU. Each
thread has its own local memory and its own set of variables and thread ID. The
threads are are organised into blocks, where each block has a block ID and shared
memory for inter-thread communication. Transferring data between blocks requires
reading and writing to global memory which has a much larger latency than shared
memory, and thus should generally be avoided if possible. The idea of CUDA is
to launch as many threads as possible with little communication between them,
most of the communication taking place within a block via shared memory. The
algorithm must be split up into independent parts that can run separately in order
to take advantage of the large number of cores in a GPU. Finally, all the blocks are
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organised into a single grid as shown in figure 4.1, for which there is one per kernel
launch (the latest NVidia GPUs can run more than one kernel at a time, meaning
more than one grid).

Figure 4.1: The CUDA programming model. A kernel is launched, consisting of a
grid (yellow rectangle) of blocks (pale blue squares), with each block consisting of
a group of threads (arrows). Each block of threads has its own shared memory, to
allow fast inter-thread communication within the block. Ellipses represent repeating
units.

The GPU has its processor cores organised into streaming multi-processors
(SMs). The SMs of NVidia GPUs execute threads in groups of 32 called warps.
Threads in the same warp run concurrently and it is advised to have threads in
the same warp execute the same conditional branches of code. This means no if

statements should be encountered by a warp of threads unless all the threads satisfy
the same condition. This is because having different threads running different code
will cause asynchronicity as they take different amounts to time to complete their
tasks, which in turn will cause threads to wait longer at thread barriers. Putting
a syncthreads barrier within a conditional branch is also not recommended, as
it could cause the code to crash and produce erroneous results. syncthreads is a
subroutine used to enforce synchronisation of threads within a block, and is described
in section 4.2.2.

4.2.1 Advantages

As a consequence of their large parallel throughput, GPGPUs have a couple of
advantages over CPUs:

• High performance per watt (servers using NVidia’s Tesla M2050 GPUs con-
sume 1

20th
the power of CPU based servers) [27]

• Low price to performance ratio (as above, but with 1
10th

the cost) [27]

4.2.2 Disadvantages

Not all algorithms will benefit from the usage of GPGPUs. One of the disadvantages
is that most algorithms require a logical rethink to be parallelised in a way which is
conducive to the GPU. Careful consideration will need to be made in order to take
advantage of the GPU architecture. This includes the memory hierarchy described
in section 4.3 (cache, registers, local, shared, constants and global memory), as well
as the logical structure of the kernel described in section 4.2. There are limitations
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to each type of memory that need to be considered. GPUs have a low amount
of shared-memory and cache (just 16 kB for most GPUs and up to 48 kB for the
latest range), and the global memory has high latency (400-800 clock cycles [28],
compared to on-chip shared memory which takes roughly 30 clock cycles to access,
according to micro-benchmarking tests carried out on the GPU summarised in ta-
ble 4.2), so these factors will need to be considered in the algorithm development.
The inherently parallel nature as well as the various programming peculiarities in
CUDA make it very difficult to debug. For example, it is impossible to carry out
input/output operations during the execution of the kernel. In order to print values
to standard output, data has be transferred from the local/shared memory to the
device global memory, then outside the kernel it needs to be transferred to the host
(CPU) memory. There is no error output while a kernel is being executed, so a seg-
mentation fault could occur without the user knowing. Ultimately some algorithms
just cannot be parallelised in a way to make good use of the GPU architecture, as
they are inherently serial, require a lot of inter-processor communication or are data
intensive (large memory requirement). One has to be careful from the outset of
parallelising an algorithm with CUDA, as it is often fraught with problems as well
as the fact that it might not yield any significant speedup in the end.

Race Conditions in CUDA

In parallelisation one also has to be careful of race conditions, as discussed ear-
lier in section 3.3. To solve these problems, CUDA has an in-built thread barrier
syncthreads. When this subroutine is invoked, it will cause the thread to wait until
all other threads in the same block have reached syncthreads. The problem of two
threads updating the same value at the same time can be solved by using atomic
operations. Such operations make sure that only one thread can update a value at
a time. The drawback of using thread barriers and atomic operations is that they
slow down the algorithm, since when threads are waiting at thread barriers they
are not doing any useful work, and atomic operations require the usage of global
memory which has a high latency.

4.3 CUDA Architecture

CUDA devices have a rich hierarchy of memory types, as shown in figure 4.2. The
fastest type of memory are the registers, which are attached to each core. Each
thread also has its own private local memory, which acts as a spill over for registers.
The local memory is part of the device memory, having the same high latency and
low bandwidth as global memory, so it is advisable to keep per-thread variables/ar-
rays small enough to fit into the registers. For the latest NVidia GPGPUs, this
is less of a problem since local memory accesses are cached like global memory is
[28]. The device memory consists of DRAM in the range of 1-10 GB. Each block
has its own shared memory which allows fast inter-thread communication and data
sharing within a block. In most GPU devices this is limited to 16 kB, but in the
latest NVidia GPU series ‘Fermi’, the maximum is 48 kB. Fermi devices also have a
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cache hierarchy consisting of an L1 cache per SM (streaming multi-processor) and
an L2 cache shared amongst all SMs. The L1 cache is accessible only to the threads
in that SM, while the L2 cache can be accessed by all threads in the GPU. Data
transfers from global memory to host memory (on the CPU motherboard) cannot
occur during kernel execution, so the kernel must be stopped if data is to be printed
or processed with the CPU. The capabilities of NVidia GPUs are summarised in
table 4.1.

Figure 4.2: Architecture of a CUDA device with N streaming multiprocessors (SMs)
each with M processor cores. The squares labeled ‘Reg’ are the registers. The
ellipses denote repeating units. This diagram assumes a 1-to-1 mapping of SMs to
blocks, however, each SM can run up to 8 blocks simultaneously each with their own
shared memory.
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Table 4.1: Specifications of CUDA devices with different compute capabilities [28].
The compute capability is essentially a ‘version’ of CUDA features that the GPU
supports.

4.4 A Review of GPU Resources at the Centre for Sci-
entific Computing

NVidia has a range of graphics cards, some made especially for scientific computing
purposes. The features and specifications of the different GPUs at the CSC used
to develop the CUDA-TMM are summarised in table 4.2. Most of the data for
this table is taken from running the pgaccelinfo utility from the PGI module and
from NVidia card specifications [27, 29]. The shared and global memory latencies
were calculated using GPU microbenchmarking utilities written by Wong et al [30,
31]. The global memory latency is given as a range of latencies from testing different
array sizes and strides. The peak single precision and double precision performances
take into account all operators in all cores being used simultaneously. For single
precision, this includes the multiply, addition and special function operators (these
consist of transcendental functions such as sin, cosine, reciprocal and square-root
[32]), which contribute to three operations per flop (floating point operation) and
commonly abbreviated as MUL+ADD+SF. For double precision, fused multiply-
add operations (FMA) are taken into account [32]. These are operations than can
simultaneously perform a multiplication and addition, so thus contribute to two
operations per flop. The error correction codes (ECC) reduce the DRAM device
memory by 12.5%, so this is taken into account in the table.

4.4.1 Geforce Series

The Geforce series of graphics cards are designed for gamers. These excel at accel-
erating 3D graphics and in-game physics. Most of the initial debugging and testing
of the CUDA-TMM code was carried out on a Geforce 9300 GE in a Linux desktop
workstation.

4.4.2 Tesla 10-Series

The Tesla range of NVidia GPUs are the first dedicated GPGPU devices for use in
scientific computing. The main difference between these GPUs and the standard
GPUs is that they don’t have a graphics port on them to use for display, being
entirely used for high performance computing. The Tesla 10-series GPU used for
CUDA-TMM development was a Tesla C1060.

4.4.3 Tesla 20-Series ‘Fermi’

The standard ‘Fermi’ series GPU consists of 512 CUDA cores, organised into 16 SMs
of 32 cores each (see figure 4.3). The GPUs used in the University of Warwick’s
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GPU
Tesla M2050 Tesla C1060 Geforce 9300

GE
Compute Capability 2.0 1.3 1.1
Number of Cores 448 240 8
Number of SMs 14 30 1
Single Precision Per-
formance (Peak)

1288 Gflops 933.12 Gflops 31.2 Gflops

Double Precision Per-
formance (Peak)

515.2 Gflops 77.76 Gflops None

Clock Rate 1147 MHz 1296 MHz 1300 MHz
Global Memory Size 2.62 GB (with

ECC on)
4.0 GB 255 MB

Shared Memory (per
SM)

48 kB/16 kB
configurable

16 kB

Max Threads per
Block

1024 512

L1 Cache (per SM) 16 kB/48 kB
configurable

None

L2 Cache 768 kB None
ECC Memory Yes No
Concurrent Kernels Up to 16 No
Shared Memory La-
tency (Clock Cycles)

44 38 36

Global Memory La-
tency (Clock Cycles)

No data 505-510 551-606

Table 4.2: Summary of GPU resources available at the University of Warwick’s
Centre for Scientific Computing. Single/double precision performance is measured
in flops (floating point operations per second). The micro-benchmarking tool [30,
31] to calculate global memory latency crashed for the Tesla M2050, which is why
there is no data here.
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supercomputer, Minerva, are Tesla M2050’s based on the Fermi series, though they
only have 448 cores instead of 512. Due to the demand from scientists for double
precision, the Fermi series offers much more double precision capability than pre-
vious GPUs, with 16 double precision fused multiply-add operations per SM per
clock. Tesla 20-series GPUs feature more than 500 gigaflops of double precision
peak performance and 1 teraflop of single precision peak performance [27].

A new development in the Fermi series is the L1/L2-cache hierarchy, illus-
trated in figure 4.3. The L1-cache resides on the SM chip. Each SM has 64 kB which
is configurable to either 48 kB shared memory and 16 kB L1-cache, or vice versa.
The 768 kB L2-cache is shared across the whole GPU. All global memory accesses
go through this cache, serving as a high speed global data-share. The Fermi can
also run up to 16 kernels in parallel, which is ideal for multiple users sharing a GPU
device. Another new development is that Fermi cards now have ECC (error correc-
tion codes) which are used to correct mistakes in computation caused by random
bit flips.

4.5 How to Get the Most Out of GPUs

This thesis mainly discusses how the TMM can be effectively parallelised, and
whether there would be a significant performance boost in using GPUs as opposed
to CPUs. The challenge is in working out how to rewrite the TMM algorithm to
take advantage of the high degree of parallelisation and the memory hierarchy of
NVidia GPUs.

The high performance of GPUs comes from the large number of cores and
low latency shared memory, so to get the most out of a GPU one needs to be
launching thousands of threads. Most modern CPUs run with a clock rate of ∼3
GHz whereas GPUs have a clock rate of ∼1 GHz. The floating point unit (FPU) in
a GPU also takes roughly 3 times as many clock cycles to operate as as the FPU in
CPUs. So this makes GPUs roughly ∼10 times slower than CPUs per floating point
operation. Assuming an algorithm which is compute intensive and uses negligible
memory, one would need to launch at least 10 threads in a GPU kernel to get better
performance than in a CPU. Unfortunately for the TMM, threads need to repeatedly
communicate with each other (especially during the renormalisation routine), so in
reality the number of threads required to get a performance boost over the serial
implementation is much higher.

One wants to avoid ‘divergent branching’ which is when threads in the same
warp follow different code paths. This is because it is less efficient for threads to be
running at different speeds. For example, one thread may complete a task before
the other and reach a thread barrier in which it must wait until the other threads in
the same warp have finished. The longer threads have to wait, the more computing
time is wasted.

Global memory has a very high latency (typically hundreds of clock cycles)
and must be used as infrequently as possible. If it is to be used at all then it’s
advisable to coalesce the memory accesses. This means grouping global memory
accesses together spatially and temporally so that a lot of data can be transferred in

24



Figure 4.3: Simplified diagram of the Fermi architecture, adapted from the NVidia
Fermi Compute Architecture Whitepaper [32]. The purple rectangle refers to the
‘GigaThread Scheduler’ which assigns blocks to SM thread schedulers.

25



one go, rather than fetching small portions of data regularly. One way to get around
the high latency of global memory accesses is to overlap it with computational work.
For example, if one warp of threads are fetching data from global memory, another
warp of threads can be doing computational work to hide the latency. This insures
that the GPU is always doing some computational work and not idly waiting for a
few threads to finish. If a lot of operations need to be performed on data stored in
global memory, then it makes sense to first copy the data into low latency shared
memory, perform the bulk of the computation, then copy back to global memory.

CUDA allows up to 1024 threads per block. If there are only a few threads
launched per block, one can make up for this by launching lots of blocks in parallel, in
order to maximise utilisation of the GPU. It also helps to launch threads in multiples
of 32 for best performance, since the GPU schedules groups of 32 concurrent threads
in warps.

4.6 CUDA Algorithm Development

As the serial TMM algorithm was written in FORTRAN, it was natural to carry out
code development in CUDA FORTRAN. The CUDA extension of FORTRAN was
developed by The Portland Group, this means that one has to use the proprietary
PGI FORTRAN compiler (pgf90), as opposed to the free NVidia C compiler (nvcc).
As a consequence, there is a smaller community of CUDA FORTRAN developers
than CUDA C (which makes it more difficult to find help online), and access to the
CSC (Centre for Scientific Computing) at the University of Warwick is needed to
compile the code.

4.6.1 First Naive Attempt at Developing the CUDA-TMM

The first attempt at converting the serial TMM code into CUDA format, using
the Distributed-Vector Scheme (DVS), was naive and fraught with problems. Even
running it for one dimension (M = 1) was on the order of 1000 times slower than
running on a single CPU core. One of the reasons why it was so slow was that the
wavefunctions were being stored and processed in global memory throughout the
entire kernel execution, incurring a latency of hundreds of clock cycles per memory
fetch.

4.6.2 Use of Shared Memory

The second version CUDA-TMM improved on the first by making use of the on-chip
shared memory, which only takes a few clock cycles to access. The wavefunctions
themselves were loaded from the host memory to the global device memory before
the launch of the first kernel. Then during kernel execution, the wavefunctions were
transferred from global memory to shared memory on which they were operated
on. A kernel was launched for the transfer-matrix multiplications, then when 10
of these were finished, the wavefunctions were loaded back into global memory so
that they would be saved as the kernel finished. A new kernel was then launched
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to carry out the renormalisation of the wavefunctions. This algorithm was a slight
improvement on the first one but still pretty slow (about 100 times slower than the
CPU implementation).

4.6.3 Single Kernel launch

It became apparent that the main bottleneck was in relaunching kernels multiple
times. Each kernel takes a significant amount of time to initialise, and since it takes
millions of iterations for the localisation length to converge, this was contributing
a huge amount of computing time. So in this version a single kernel was launched
with disorder or energy parameters looped inside the kernel. Global memory was
only used at the beginning and end of the kernel execution, shared memory was
used for the bulk of the kernel execution. One drawback to this method is that
syncthreads only synchronises the threads in one block. For the Tesla C1060 or
Geforce, this limits the 2D system width to M = 16 resulting in 256 threads (one
thread per element of the 16 × 16 matrix of Ψ), or 32 (1024 threads) for the Tesla
M2050 GPUs (it will become clear in section 4.7 why only powers of 2 are permitted
for the system size). This version of CUDA-TMM is significantly faster than the
first version but still a lot slower than running on the CPU due to the slow clock
rate and inter-thread communication.

4.6.4 Multi-Parameter Scheme

To negate some of the overhead from inter-thread communication, another level
of parallelism was implemented by running separate energy/disorder parameters on
each block, as shown in figure 4.4. By using a Fermi GPU, one can fit 32×32 = 1024
threads per block. In this scheme, the whole wavefunction matrix is contained
within a single block, allowing widths of up to M = 32 in 2D systems. The TMM
and renormalisation routines require synchronisation of the threads, and thus this
scheme is highly efficient as threads within a block can simply be synchronised by
calling syncthreads. There is no need to use global memory during the Gram-
Schmidt procedure in this case. Part of the speedup of this scheme comes from
‘naive parallelism’, since each block runs as an independent system. This type of
parallelism only works well for running parameters that take the same amount of
time. This scheme works better if running different energy parameters for constant
disorder, rather than running different disorders for constant energy. This is because
changing the disorder will dramatically change the amount of time taken (due to the
fact the localisation length is inversely proportional to W 2), whereas each energy
takes the same time in terms of order of magnitude. By combining real parallelism
across threads in one block with naive parallelism across blocks in one grid, one can
achieve a speedup of up to 13.5 times that of the serial TMM, as shown in figure
6.14. Ultimately this was the scheme that was used to get the computing time
results in section 6.4.2.
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Figure 4.4: Diagram of the multi-parameter scheme (MPS). In this example, the
system size is M = 4 and different energies Ek are run on each block where k =
1, . . . , N .

4.6.5 Single-Parameter Scheme

In order to simulate 2D systems with a larger width than 32, one needs to use
more than one block per wavefunction. In this scheme, as shown in figure 4.5, the
wavefunction is spread out across multiple blocks such that each column vector is
stored in one block. This means that the Transfer-Matrix multiplications can occur
independently for each column in their separate blocks. However, during the re-
orthonormalisation (the orthogonalisation part specifically) the blocks will need to
communicate and synchronise with each other as each column vector is passed to
the previous column vectors (Gram-Schmidt method), just like in the DVS scheme
[24]. The only way to do this is to use global memory, which introduces a significant
overhead to the computing time. This scheme will theoretically allow system sizes
up to 1024 (i.e. 1024 blocks of 1024 threads) on Fermi devices. This is large enough
to approach mesoscopic sized 2D physics (for example, graphene flakes). The global
memory bottleneck can be reduced by using the fast-barrier synchronisation scheme
proposed by Xiao and Feng [33].

Most CUDA forums on the internet say that one should never attempt inter-
block GPU communication, because the only way to guarantee barrier synchroni-
sation is by launching a new kernel. However, this is far too slow because a new
kernel would have to be launched millions of times. According to Xiao and Feng
[33], there is an effective way to implement an inter-block barrier. They have coded
a gpusync subroutine which when combined with threadfence (which flushes the
cache back to global memory) should act as a sufficient inter-block barrier.

The problem with this method is that it won’t work unless you can guarantee
that all blocks are active. You might get active blocks sitting in a loop waiting for an
inactive block that will never run since there are no open SMs. What works on one
device may not work on another, due to the different number of SMs. This method
worked for the Tesla C1060, but it didn’t work at all on the Tesla M2050 GPU,
probably due to blocks waiting for inactive blocks indefinitely. For that reason, it
was never implemented.

28



Figure 4.5: Diagram of the single-parameter scheme (SPS). In this example, the
system size is M = 4. Different column vectors of the wavefunction are run on each
block. This scheme is based on the Distributed Vector Scheme (DVS).

4.7 Shared Memory Reduction

During the normalisation and orthogonalisation routines of the TMM, each column
of the wavefunction has to calculate a sum of all the elements of that column in
order to compute the norm or the orthogonal overlap (in accordance to the Gram-
Schmidt method described in section 2.2.2). Parallel reduction is a common and
important method for summing together values of an array [34]. In this method, the
sum is decomposed in a recursive tree-like way. The optimal method for performing
parallel reduction in CUDA has been explained by NVidia [34] and is visualised in
figure 4.6. The original array is split in half, resulting in two sub-arrays. All the
elements in the second sub-array are added to the elements in the first sub-array.
This process is repeated with the first sub-array, and so on until after the last step in
the process, the sum of all the elements gets stored in the first element. This ‘divide
and conquer’ approach takes log2 n steps to complete for an array of n elements.
Parallel reduction in CUDA is best performed on shared memory as it is fast and so
that all the threads (within a block) can see the data. One disadvantage with this
method is that it only works efficiently for system widths of M = 2N where N is an
integer.
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Figure 4.6: Parallel reduction using sequential addressing [34]. Arrows denote which
elements of the array get summed and where the result gets stored.
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Chapter 5

The CUDA-TMM Algorithm

In this chapter I will detail the inner workings of the CUDA-TMM algorithm for
both MPS and SPS schemes. The Transfer-Matrix multiplication routine is fully
parallelised, as explained in section 3.3.1. The re-orthonormalisation is only partially
parallelised (on average M/2 threads run in parallel), as explained in section 3.3.2.

5.1 Master Kernel

The master kernel is the bulk of the code that each thread on the GPU executes.
The pseudo-code is detailed in figure 5.1. In MPS, each block of threads executes
a different energy or disorder parameter, so that each block can run independently.
In this case the only inter-thread communication occurs within the blocks, via low
latency shared memory. Before the kernel is launched, all the data is initialised in
the host memory. ΨA is set to an M ×M identity matrix (in the 2D case), where-as
most of the other arrays are set to zero. This includes ΨB, the Lyapunov exponents
γ, Lyapunov exponent errors σ and so on. At the beginning of the kernel execution,
the indices for the shared memory array are offset, which is explained in section
5.1.1. Inside the main iteration loop (Iter1) another loop carries out North matrix
multiplications. For most of the results presented in this thesis, North = 10. This is
then followed by re-orthonormalisation of the column vectors of Ψ. After that the
Lyapunov exponent (and error) is calculated by taking the logarithm of the norm.
Once the error is less than a specified accuracy σε (i.e. γmin has converged) then the
thread exits the main iteration loop. The maximum number of iterations Nmax is
set to stop the simulation for going on too long, but if σε or Nmax are set too low
then the Lyapunov exponent may never converge under Nmax iterations. After the
data is collected, the inverse of γmin is plotted to show the localisation length λ.

5.1.1 Array Index Offsets

In CUDA FORTRAN, only one shared memory array is allowed. Therefore, index
offsets must be used to refer to different parts of the array as shown in figure 5.2, so
that different objects (i.e. ΨA, ΨB, Snorm, etc.) can be referred to. This means that
the index referring to one object must be incremented by the number of elements
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offset indices for shared memory array
global memory → shared memory
for Iter1 = 1→ Nmax/North do
{Carry out North Transfer-Matrix multiplications}
for Iter2 = 1→ North (stride 2) do

ΨA ← TIter2ΨB

ΨB ← TIter2+1ΨA

end for
{Re-orthonormalise the wavevectors column by column}
for v = 1→M do

normalise ΨA/B,v

if j > v then orthogonalise ΨA/B,j with respect to ΨA/B,j−1

end for
Calculate Lyapunov exponent
{Exit loop if γ has converged}
if σ < σε then

Exit Iter1 loop
end if

end for
shared memory → global memory

Figure 5.1: Pseudo-code of the Master Kernel. Red writing refers to comments de-
scribing what the code is doing. Global memory is downloaded into shared memory
at the beginning, and at the end the shared memory is uploaded back into global
memory. Iter1 is a counter which increments each timeNorth matrix-multiplications
followed by one re-orthonormalisation have been completed. Iter2 is a counter
which increments by two in each loop (which is what ‘stride 2’ refers to). The
ΨA/B,v refers to the vth column vector of ΨA or ΨB.
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taken up by the previous object. For example, if the first element of ΨA is referred to
in the array as shared array(1) and the second element as shared array(2), then
the first and second elements of ΨB would be referred to as shared array(1 +M2)

and shared array(2 + M2) respectively, since ΨA has M2 elements. The size of
the shared memory array in bytes is one of the arguments specified at the kernel
launch, so this must be calculated before-hand as shown in section 5.8. The random
number generator (discussed in section 5.7) uses four integers per wavevector column
j, therefore 4M elements are required in the shared memory array.

Figure 5.2: Diagram showing how the shared-memory is divided up in the MPS.
Most of the array holds floating point numbers (or REALs in FORTRAN), and a
small part holds integers for the random number generator.

5.2 Difference Between MPS and SPS

In SPS, it is easy to map the different column vectors j of the wavefunction to
different blocks and the different elements i to different threads, simply by equating
j to the blockId and i to the threadId. In the MPS however, the need to contain the
entire wavefunction in one block limits the use of just the threadId to identify the
columns and rows, using the modulo and divide operations to map the threadId’s
to different j’s and i’s. In this scheme, blockId identifies the energy or disorder
parameter.

MPS:

{
i = [(threadId− 1) mod (M) + 1]
j = INT

(
threadId−1

M

)
+ 1

SPS:

{
i = threadId

j = blockId

For MPS, this results in the arrangement for an M = 4 2D system as detailed
in table 5.1.

5.3 Transfer-Matrix Multiplication Subroutine

The CUDA Transfer-Matrix Multiplication subroutine detailed in figure 5.3 is fully
parallelised. The aim of this subroutine is to calculate

ΨB ← VΨA −ΨL −ΨR −ΨB,

33



j
1 2 3 4

i

1 1 5 9 13

ThreadId
2 2 6 10 14
3 3 7 11 15
4 4 8 12 16

Table 5.1: Table showing the arrangement of threads in MPS.

where ΨB = Ψn+1(j, i), ΨA = Ψn(j, i), V = V (i) is the potential energy of the
electron, ΨL = Ψn(j, i − 1) is the ‘left wavefunction’ and ΨR = Ψn(j, i + 1) is the
‘right wavefunction’, meaning wavefunction amplitudes to the immediate left and
right of Ψn(j, i) in the present nth slice. The index i corresponds to the row of the
matrix Ψ, and j corresponds to the column. The syncthreads thread barrier is used
so that each thread in a row i can see the updated value of the random potential
V (i). The random number generator is invoked in calculating this potential in
rand(i) such that V is different for each i, and the same for each j. syncthreads

is invoked to ensure that different threads in the same jth column see the updated
value of V (i) before it is used. When calculating the left and right wavefunctions,
the subroutine checks to see whether the element lies at the one of the long edges of
the TMM quasi-1D bar. If HBC are being simulated, then the adjacent wavefunction
amplitude is zero. Otherwise if periodic, then the adjacent wavefunction amplitude
takes the value of the amplitude at the opposite edge.

5.4 Normalisation Subroutine

The CUDA Normalisation subroutine detailed in figure 5.4 is parallelised over all i.
Snorm stores the squares of the wave function amplitudes, ready to be summed with
NVidia’s parallel reduction method [34] and used in the calculation of the norm.
Since all the reduction is carried out within a warp of threads, no thread barriers
are required here. Thread barriers are placed after the initialisation of the sum
(to prepare for the parallel reduction) and before the calculation of the Lyapunov
exponents γ (so that value of Snorm is updated before being used in the calculation).

5.5 Orthogonalisation Subroutine

The CUDA Orthogonalisation subroutine is parallelised over all i, but only partially
parallelised over j. In the Master Kernel the v index is looped from 1 to M , while for
each v the orthogonalisation subroutine is run for all j > v, so that the projections
of each vector onto every previous vector can be calculated. These dot products
are stored in Sorth ready to be summed. In accordance with the Gram-Schmidt
procedure, M/2 columns are run in parallel on average (see section 3.3.2).
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{Calculate potential energy}
V (i)← E −W (rand(i)− 0.5)
syncthreads

{Calculate left wavefunction}
if i = 1 then

if hardwall then ΨL ← 0
else if periodic then ΨL ← ΨA(j,M)

else
ΨL ← ΨA(j, i− 1)

end if
{Calculate right wavefunction}
if i = M then

if hardwall then ΨR ← 0
else if periodic then ΨR ← ΨA(j, 1)

else
ΨR ← ΨA(j, i+ 1)

end if
{Calculate Ψn+1 = TnΨn}
ΨB(j, i)← V (i)ΨA(j, i)−ΨL(j, i)−ΨR(j, i)−ΨB(j, i)

Figure 5.3: Pseudo-code of the TMM subroutine. rand(i) calls the random number
generator (detailed in section 5.7) and produces a REAL with uniform probability
between 0 and 1.
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{Calculate 〈ψv | ψv〉(i)}
Snorm(v, i)← Ψ(v, i)2

syncthreads

{Carry out sum reduction 〈ψv | ψv〉 =
∑
〈ψv | ψv〉(i)}

if M ≥ 64 then Snorm(v, i)← Snorm(v, i) + Snorm(v, i+ 32)
if M ≥ 32 then Snorm(v, i)← Snorm(v, i) + Snorm(v, i+ 16)
...
if M ≥ 2 then Snorm(v, i)← Snorm(v, i) + Snorm(v, i+ 1)
{Normalise wavevectors |ψv〉 ← ψv√

〈ψv |ψv〉
}

Ψ(v, i)← Ψ(v,i)√
Snorm(v,1)

syncthreads

{Calculate gamma}
γ ← γ − log( 1

Snorm(v,1))

Figure 5.4: Pseudo-code of the normalisation subroutine. This subroutine is
parallelised over all i. The vertical dots represent steps in the parallel reduc-
tion, detailed in figure 4.6, where each step is of the form: if M ≥ 2k then
Snorm(v, i)← Snorm(v, i) + Snorm(v, i+ 2k−1), for integer k.

5.5.1 Orthogonalisation in the Multi-Parameter Scheme

Pseudo-code for the MPS version of the orthogonalisation subroutine is detailed
in figure 5.5. The dot products for different column vectors are calculated, but
because all columns reside in the same shared memory, there is only a delay of a
few clock cycles (roughly 30) in fetching the wavevectors for different j’s, a much
lower latency than when global memory is used (roughly 500 clock cycles). This
subroutine is parallelised over all i, and partially parallelised over j such that an
average of M/2 columns are run simultaneously.

5.5.2 Orthogonalisation in the Single-Parameter Scheme

The Orthogonalisation subroutine in the SPS is a bit more complicated, as it in-
volves inter-block communication. The pseudo-code is displayed in figure 5.6. Each
column j of the wavefunction is stored on a different block. In order to calculate the
projection 〈Ψv|Ψj〉 for each column, the vth block needs to upload Ψv into global
memory so that other blocks can use it. Before the other blocks can download Ψv

into register/local memory, they must wait for the upload to finish. This requires
an inter-block barrier. This is handled by the gpusync subroutine, using the fast-
barrier inter-block synchronisation method developed by Xiao and Feng [33], which
is explained in detail in section 5.6. The last block to encounter this barrier is the
vth block, so that after it has finished uploading Ψv into global memory the other
blocks can carry on. As the SPS is built to handle system sizes larger than the warp
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{Calculate dot product 〈ψv | ψj〉(i)}
Sorth(j, i) = Ψ(v, i)Ψ(j, i)
syncthreads

{Carry out sum reduction 〈ψv | ψj〉 =
∑
〈ψv | ψj〉(i)}

if M ≥ 64 then Sorth(j, i)← Sorth(j, i) + Sorth(j, i+ 32)
if M ≥ 32 then Sorth(j, i)← Sorth(j, i) + Sorth(j, i+ 16)
...
if M ≥ 2 then Sorth(j, i)← Sorth(j, i) + Sorth(j, i+ 1)
{Subtract projection: |ψj〉 ← |ψj〉 − 〈ψv | ψj〉〈ψv|}
Ψ(j, i)← Ψ(j, i)− Sorth(j, 1)Ψ(v, i)
syncthreads

Figure 5.5: Pseudo-code of the orthogonalisation subroutine in the MPS. All arrays
reside in shared memory.

size (32 threads), the sum reduction must use thread barriers between each step for
inter-warp sums.

The main bottleneck for the SPS occurs in the gpusync inter-block barrier,
due to the use of global memory and the fact that blocks have to wait for the global
memory to finish loading. Another limitation of this scheme is that one cannot
guarantee all blocks are active, meaning that during the gpusync subroutine, active
blocks may be waiting for inactive blocks. Indeed, this method works up to M = 32
on the Tesla C1060 but doesn’t work at all for the Tesla M2050.

5.6 The Inter-Block barrier, gpusync

The easiest way to communicate between different blocks in a GPU is to write the
data to global memory, relaunch the kernel and then load the data back from global
memory. Relaunching the kernel acts as a global barrier to enable communication
between blocks. However, this incurs a significant amount of time if the kernel needs
to be relaunched millions of times. When communicating between blocks on a GPU,
it is important to either minimise the communication or speedup the communication
itself, since this can take over 50% of the computation time [33].

An alternative to relaunching the kernel is to use the inter-block synchro-
nisation scheme developed by Xiao and Feng [33]. Their method is encapsulated
into a subroutine called gpusync, detailed in figure 5.7 and visualised in figure
5.8. This subroutine uses two arrays, ArrayIn and ArrayOut. In the first step,
only thread 1 (from each block) is used for synchronisation. This thread sets
ArrayIn(blockId) = goalVal and then waits for ArrayOut(blockId) to be set
to goalVal. In step 2, only block 1 is used. Each thread in block 1 checks the corre-
sponding ArrayIn(threadId) to see if it’s equal to goalVal. Once this condition is
satisfied, a syncthreads barrier is invoked and then each ArrayOut(threadId) is
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{Load Ψ from block v to global memory}
if j = v then Ψglobal(v, i)← Ψshared(v, i)
{Inter-block barrier to wait for global memory to finish loading}
sync count++

threadfence

gpusync(sync count)

{Load Ψ from global memory to local variable}
if j > v then

Ψlocal ← Ψglobal(v, i)
syncthreads

end if
{Calculate dot product 〈ψv | ψj〉(i)}
Sorth(j, i) = ΨlocalΨshared(j, i)
{Carry out sum reduction 〈ψv | ψj〉 =

∑
〈ψv | ψj〉(i) . . . }

{. . . across warps}
if M ≥ 512 then

if i ≤ 256 then Sorth(j, i)← Sorth(j, i) + Sorth(j, i+ 256)
syncthreads

end if
if M ≥ 256 then

if i ≤ 128 then Sorth(j, i)← Sorth(j, i) + Sorth(j, i+ 128)
syncthreads

end if
if M ≥ 128 then

if i ≤ 64 then Sorth(j, i)← Sorth(j, i) + Sorth(j, i+ 64)
syncthreads

end if
{. . . within warps}
if M ≥ 64 then Sorth(j, i)← Sorth(j, i) + Sorth(j, i+ 32)
if M ≥ 32 then Sorth(j, i)← Sorth(j, i) + Sorth(j, i+ 16)
...
if M ≥ 2 then Sorth(j, i)← Sorth(j, i) + Sorth(j, i+ 1)
{Subtract projection: |ψj〉 ← |ψj〉 − 〈ψv | ψj〉〈ψv|}
Ψshared(j, i)← Ψshared(j, i)− Sorth(j, 1)Ψlocal

Figure 5.6: Pseudo-code of the orthogonalisation subroutine in the SPS. The local
memory variable Ψlocal is unique to each thread. Sorth resides in shared memory.
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set to goalVal. In the third and final step, thread 1 from each block checks to see if
ArrayOut(threadId) = goalVal and once this is true, the syncthreads barrier is
reached and thus this thread has caught up with all the other threads. The reason
why goalVal is used is so that every time gpusync is called, one can save time
by simply incrementing goalVal instead of re-initialising ArrayIn and ArrayOut to
their default values. Atomic operations are used within the while-loops so that the
compiler doesn’t ‘compile out’ the otherwise empty loop.

{Step 1:}
if tid = 1 then ArrayIn(bid) ← goalVal

{Step 2:}
if bid = 1 then

while ArrayIn(tid) 6= goalVal do
perform atomic operation

end while
syncthreads

ArrayOut(tid) ← goalVal

end if
{Step 3:}
if tid = 1 then

while ArrayOut(bid) 6= goalVal do
perform atomic operation

end while
end if
syncthreads

Figure 5.7: Pseudo-code of the gpusync subroutine [33]. threadId and blockId

have been abbreviated to tid and bid. The three steps correspond to the those
visualised in figure 5.8. The atomic operation performed is d atomic(bid,tid) =

atomiccas(d atomic(bid,tid),0,1), where d atomic is a global memory array.
atomiccas is an atomic operation which compares the first argument with the second
argument, and atomically stores a new value back to the first argument location if
the arguments are equal [35].

5.6.1 Performance Increase Attributed to gpusync

Xiao and Feng have compared their GPU based synchronisation to CPU based
synchronisation. In the CPU explicit sync, the barrier is implemented by sim-
ply terminating the current kernel execution, using the implicit CUDA function
cudathreadsynchronize and then relaunching it again. According to their tests,
their GPU based synchronisation is 7.8 times faster than a CPU explicit sync. They
implemented their gpusync barrier in three existing algorithms: Bitonic Sorting Al-
gorithm, Smith-Waterman Algorithm and the Fast-Fourier Transform. The Bitonic
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Step 1:

Step 2:

Step 3:

Figure 5.8: Visualisation of the gpusync subroutine shown in figure 5.7. ArrayIn

and ArrayOut are abbreviated to Ain and Aout, goalVal to G. Question marks
denote IF statements, which when satisfied allow the thread to carry on (follow the
arrow).
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Sorting Algorithm is a parallel sorting algorithm where O(n log2 n) comparators are
used to sort an array of n values, taking O(log2 n) steps to complete on n proces-
sors [36]. The Smith-Waterman Algorithm is an algorithm used to find ‘maximum
alignment scores’ between two biological sequences (e.g. protein sequences), where
the segments of all possible lengths are compared to optimise this score [33, 37]. The
Fast-Fourier Transform is an efficient numerical method to calculate the Discrete
Fourier Transform (and inverse DFT) of a set of values, mapping values in real space
to their components in frequency space (and back) [38, 39]. Compared to using the
CPU implicit synchronisation, the performance increases they got were 39% in the
bitonic sorting algorithm, 24% for the Smith-Waterman algorithm and 8% for the
Fast-Fourier Transform [33].

5.7 Random Number Generator

For a fast and accurate TMM algorithm, one must use a pseudo-random number
generator which is fast as well as reliable. The random number generator used
in this case is adapted from a FORTRAN implementation [40] of an RNG sug-
gested by Pierre L’Ecuyer in his paper of LFSR (Linear Feedback Shift Register)
generators [41]. A new RNG based on this one has been written for the CUDA-
TMM, fully parallelised and using shared memory for speed. A call to rlfsr113

gives one random real in the open interval (0,1). Before using rlfsr113 a call to
lfsrinit(seed) must be made to initialise the generator with random integers pro-
duced with a Park/Millers minimal standard LCG (linear congruential generator).
The seed should be any positive integer. In CUDA a separate kernel is launched
before the master kernel to seed the RNG.

This random number generator is used because it’s very fast (due to the use
of bit-shift operations), portable (the same numbers are generated for any computer
architecture) and produces random numbers with high quality statistics [41].

5.8 GPU Memory Requirements

By looking at the source code in Appendix A.3, counting the number of variables/ar-
rays used and comparing against the memory specifications summarised in table 4.2,
one can work out how much global/shared/local memory is used up as a function
of system width M and number of parameters N (for the MPS scheme). Figure 5.2
also gives an indication on how much shared memory is needed in the MPS.
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5.8.1 Multi-Parameter Scheme

Global Memory

The global memory required for the MPS is,

Global memory required = (2M2 + 4M + 2)N × SIZEOF(REAL)

+ [(4M + 1)N +M ]× SIZEOF(INTEGER)

+ 2N × SIZEOF(LOGICAL).

In double precision arithmetic, integers and reals are 64-bit and thus take up 8 bytes
of memory (each byte is 8 bits). Logicals are truth flags, consisting of a single byte.
If we take the maximum size possible to simulate (due to thread number limit) in
2D, which is M = 32, then the global memory requirement is,

Max global memory required = (17424N + 256) bytes,

where N is the number of energy or disorder parameters. The total amount of
global memory in the Tesla M2050 device is 2.68 GB, which means that under global
memory limits alone, the maximum number of parameters that can be simulated
is roughly 150,000. This is greater than the maximum number of blocks that can
be launched in a grid anyway, which is 65535. Therefore, this brings the number of
parameters that can be simulated to 65535. It must be stressed that only a very
small portion of that number of blocks can be run concurrently, due to there only
being 14 SMs. Though they can’t be run concurrently, the blocks are scheduled
such that the GPU is constantly running jobs and not idly waiting.

Shared Memory

Shared memory is limited to 16 kB in a Tesla/Geforce GPU, or 48 kB in a Fermi
GPU. This high speed memory is the most important resource to consider in CUDA-
TMM, as it is much more readily used up. For MPS, the shared memory required
in bytes is,

Shared memory = (4M2 + 5M)× SIZEOF(REAL)

+ 4M × SIZEOF(INTEGER).

Using 322 threads per block in double precision, this means that the maximum
shared memory required is,

Max shared memory required = (4× 322 + 5× 32)× 8 + 4× 32× 8

= 35072 bytes

= 34.25kB.

As long as the Fermi GPU is configured to have 48 kB shared memory / 16 kB
L1-cache instead of the other way round, then this will work. The Fermi is setup
this way by default so no configuration is needed. For GPU models lower than the
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Fermi range, this exceeds the maximum shared memory limit of 16 kB. However,
only 512 threads can be run per block for pre-Fermi GPUs anyway, meaning that
the next size down, M = 16, must be used, which requires only 9.13 kB of shared
memory.

Local/Register Memory

In the first scheme there are 50 64-bit variables in use per thread (for double preci-
sion). For a block of M2 threads, this means that the total memory used by local
variables is,

Register memory = 50×M2 × 8 bytes,

which for the maximum of 322 threads, is 400 kB. This is more than 3 times the total
register memory per SM, which is 128 kB, meaning that some of the local memory
(which acts as register spill) will need to be used. This memory is quite slow as it
resides in the device memory (i.e. DRAM). The L1-cache is too small to fit the rest
of the memory, so the L2-cache will have to be used. The next size down for this
scheme, M = 16, uses a total of 100kB, which is small enough for the registers to
handle.

5.8.2 Single-Parameter Scheme

Again, looking at the code in appendix A.3 and table 4.2, one can also work out the
memory requirements for the SPS.

Global Memory

Global memory required = (2M2 + 4M)× SIZEOF(REAL)

+ (M2 + 7M)× SIZEOF(INTEGER).

Even for maximum a system size of M = 1024 and double precision, the total global
memory used is only 24 MB. Clearly this algorithm is not memory bound for global
memory.

Shared Memory

For SPS, the required shared memory is,

Shared memory required = 5M × SIZEOF(REAL) + 4M × SIZEOF(INTEGER).

The maximum required shared memory for this scheme (M = 1024, double pre-
cision) is therefore 72 kB. This exceeds the shared memory limit on current GPU
models. This leaves two options: either reduce system size by half to M = 512
or use single precision arithmetic instead of double precision, so that the shared
memory requirement is 36 kB.
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Local/Register Memory

In SPS, 41 local variables are used per thread. Therefore, the total register/local
memory required is,

Register memory required = 41×M × 8 bytes.

For a maximum of M = 1024, this yields 328 kB. If the system size is halved to
M = 512, the required memory is 164 kB, exceeding the register limit by just 36
kB. Taking an L1-cache of 16 kB would reduce this further to 20 kB. There are
probably redundancies with the number of variables used (particularly those shared
by all the threads), so with further work on the SPS version of CUDA-TMM, it
should be possible to run a 2D system size of M = 512.
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Chapter 6

Results

6.1 Plots of the Localisation Length for the 1D TMM

In figure 6.1 the localisation length has been plotted as a function of energy for a
disorder of W = 1.0. The energy band goes from -2.5 to 2.5. This energy range is
chosen due to the Gershgorin circle theorem [42] which states that the eigenvalues of
a sparse, symmetric, real matrix of dimension Nd×Nd lie in [−W/2−2d, +W/2+2d],
where d = dimension and W = disorder strength. The numerical results are in good
agreement to the 1D analytic formula from the localisation review paper [8], except
near E = 0. The anomalous fluctuations near the centre of the energy band can be
explained by the breakdown of second-order perturbation theory at E = 0 [21].

In figure 6.2, the localisation length is plotted as a function of disorder for
an energy of E = 0. Both the perturbative expansion (λ = 96/W 2) and the centre
band correction of the localisation length (λ = 105/W 2) have been plotted alongside
for comparison. The anomaly at low disorder is due to numerical instability as the
localisation length diverges. The anomaly at high disorder is due to the fact that
the theoretical localisation length is only valid for weak disorder.

6.2 Plots of the Localisation Length for the 2D TMM

6.2.1 Changing Energy for Constant Disorder

In figure 6.3a, the localisation length has been plotted against energy for a disorder
of W = 1. Both hardwall (HBC) and periodic boundary conditions (PBC) are
presented, alongside the perturbative formula for the localisation length of a 2D
system with PBC [22]. The numerical results for PBC are well correlated with the
perturbative formula, but not so well in the centre of the band. In figure 6.3b,
another simulation was carried out to see if increasing the accuracy (changing σε
from 1% to 0.1%) would allow the localisation lengths to converge closer to the
theoretical values, but it made no difference. Results were computed on the Tesla
C1060 and M2050.

The 2D localisation lengths for various system sizes have been plotted for
HBC and PBC in figures 6.4 and 6.5 respectively.
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Figure 6.1: Localisation length against energy E for disorder W = 1.0. The red
line denotes the perturbative expansion formula for the localisation length in 1D.
The black line denotes the numerical results obtained from the TMM. The error
bars show variations of 2 standard deviations from the average. These are shown
on every 10th datapoint for clarity.
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Figure 6.2: Localisation length against disorder in one dimension for energy E = 0.
The red circles denote the perturbative expansion formula for the 1D localisation
length. The blue line denotes the centre-band correction and the black line repre-
sents the numerical results from the TMM.
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Figure 6.3: Localisation length against energy for a 2D system with M = 16, energy
step ∆E = 0.01, σε = 1%, and W = 1.0. In 2D the energy band ranges from
−4−W/2 to 4 + W/2. (b) is zoomed in on the central energy region E = −0.2 to
0.2.
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Figure 6.4: Localisation length against energy for a 2D system with various system
sizes M , ∆E = 0.05, σε = 0.5%, W = 1.0, and HBC, computed on a Tesla C1060.
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Figure 6.5: Localisation length against energy for a 2D system with M = 2, 4, 8, 16,
∆E = 0.05, σε = 0.5%, W = 1.0, PBC, computed on a Tesla M2050. The numerical
results (symbols) are compared against the theoretical localisation lengths (lines).
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6.2.2 Comparing Results of the Serial-TMM against the CUDA-
TMM

The localisation length is plotted against the number of re-orthonormalisations (for
each one there are 10 TM-multiplications) in the Serial-TMM and CUDA-TMM
implementations, for hardwall (figure 6.6a) and periodic (figure 6.6b) boundary
conditions. The disparity of results between the two implementations is due to the
random numbers used by the TMM. Both serial and CUDA versions use the same
random number generator, but due to the parallelisation of transfer-matrix multi-
plication subroutine, the order at which the random numbers get used is different.
However, both implementations converge to the same localisation length (well within
the error bars of 0.5% accuracy).
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Figure 6.6: Localisation length for M = 16, E = 1, W = 1, σε = 0.5%, with (a)
HBC and (b) PBC. The black line denotes Serial-TMM runs on the CPU, and the
red line denotes CUDA-TMM runs on the GPU.

The localisation lengths for a system width of M = 8 are plotted, with HBC
in figure 6.7a and PBC in figure 6.7b. Both serial and CUDA implementations
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give roughly equal results (within symbol size) except at the outermost peaks where
the CUDA values are almost half the size of the serial values with HBC, and only a
quarter the size of the serial values with PBC. The theoretical values are included in
figure 6.7b which show that the serial implementation is more accurate. Initially it
was not quite clear why the serial implementation is more accurate than the CUDA
implementation. Another CUDA simulation was carried out with North = 2 instead
of 10, and as figure 6.8 shows, the serial values are recovered. The reason why the
CUDA-TMM needs to have a smaller number of matrix-multiplications per renorm
for the highly localised regime is uncertain, but it may have something to do with
the difference between the double precision standard of the CPU and GPU.
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Figure 6.7: Localisation length for M = 8, σε = 0.5%, ∆E = 0.05, for (a) HBC and
(b) PBC. In (b) the theoretical values are included as well (blue line). Error bars
have been omitted due to being smaller than the symbol size.
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Figure 6.8: Localisation length for M = 8, σε = 0.5%, ∆E = 0.05, for PBC, as
in figure 6.7b but zoomed in on the outermost peak. The black circles denote the
Serial-TMM results. The red crosses denote the CUDA-TMM results. The orange
pluses represent CUDA-TMM after changing North to 2 instead of 10.

6.3 Verification of the 3D Metal-Insulator Transition

To verify the ability of the TMM to find the disorder-induced MIT, the Cluster
of Workstations (CoW) was used to run the Serial-TMM code for several disorder
parameters. This is a distributed computing network of all the desktops in the
University of Warwick’s CSC (Centre for Scientific Computing). If the reduced
localisation length, λ/M , decreases for increasing M , this means that eventually
the localisation length will fit within the quasi-1D bar and the system will therefore
be insulating. If λ/M increases with M , this means that by increasing the system
size one will drive it to a metallic state. In figure 6.9, reduced localisation length
curves for different system sizes have been plotted, which demonstrate an MIT at
the point where the curves cross (in the region of W = 15 to 16.5). The results
have been grouped into odd/even system sizes and HBC/PBC. This is because
the discretisation of the wavefunction has an effect on how the wavefunction gets
sampled. This problem is demonstrated in figure 6.10. Here one looks at a single
slice of a quasi-1D system with HBC. The wavefunction of the electron for such a
system would be a sine function (so that it vanishes at each end of the slice). If we
assume the wavelength is equal to M , and M is even, then the only sites at which
the wavefunction vanishes are the first and last. If M is odd, then the site at the
centre of the slice also samples a wavefunction value of zero.

51



(a)
14 15 16 17 18 19

Disorder

0.3

0.4

0.5

0.6

λ
/Μ

M = 6

M = 8

M = 10

M = 12

(b)
14 15 16 17 18 19

Disorder

0.3

0.4

0.5

0.6

λ
/Μ

M = 5

M = 7

M = 9

M = 11

(c)
14 15 16 17 18 19

Disorder

0.4

0.5

0.6

0.7

0.8

0.9

λ
/Μ

M = 6

M = 8

M = 10

M = 12

(d)
14 15 16 17 18 19

Disorder

0.4

0.5

0.6

0.7

0.8

0.9

λ
/Μ

M = 5

M = 7

M = 9

M = 11

Figure 6.9: Plots of reduced localisation length at energy E = 0 against disorder W
for different system sizes M at the 3D disorder-induced MIT. (a) and (b) use HBC,
(c) and (d) use PBC. (a) and (c) have even system widths, (b) and (d) have odd
system widths.

Site, i

W
a
v
e
fu

n
c
ti

o
n

ψ(i)

M = 4
M = 5

Figure 6.10: Diagram of a single slice of a quasi-1D system with HBC. The circles
represents the sites of a even numbered (M = 4) system width, while the crosses
respresent those of an odd width (M = 5).
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6.4 Computation Times

6.4.1 Serial Scaling of Computing Time for the 3D TMM

To demonstrate the need to efficiently parallelise the TMM, serial computing times
for various systems sizes and disorders have been plotted in figure 6.11. The number
of iterations L needed to compute the localisation length to required accuracy scale
as M7, independent of whether the 3D system is metallic (W = 15), insulating
(W = 18) or critical (W = 16.5). By doubling the system width, the computing
time is increased 128 times.
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Figure 6.11: Serial-TMM computing time against system width M = 6, 8, 10, 12
for different disorders W . System is 3D with PBC and even widths. The critical
disorder Wc = 16.5 is plotted alongside smaller and larger disorders W = 15 and
W = 18.

6.4.2 Serial-TMM vs CUDA-TMM

The time taken to compute the 2D localisation lengths for a range of energies from
E = −4.6 to 4.6 with disorder W = 1 has been recorded for different system sizes,
boundary conditions and energy intervals in both Serial and CUDA implementations
(using the MPS for CUDA-TMM). These computing times have been summarised
in figure 6.12. For ∆E = 0.05 there are 185 separate energies, for ∆E = 0.005 there
are 1841. To obtain the ∆E = 0.005 timings for the Serial-TMM, the results for
∆E = 0.05 were taken and multiplied by 10 (due to lack of time and that fact that
there are 10 times as many parameters to simulate).

Another batch of HBC simulations was carried out for a weak disorder of
W = 0.1, where the computing times have been plotted in figure 6.13. This shows
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Figure 6.12: Computing time against system width M for multiple energies E =
−4.6 to 4.6, ∆E = 0.05, σε = 0.5 and disorder W = 1. System is 2D. (a) and (b)
are computed with ∆E = 0.05, (c) and (d) with ∆E = 0.005 so there are 10 times
as many energies. (a) and (c) have HBC while (b) and (d) have PBC. In (a) the
unoptimised Serial-TMM runs have been included (by removing the optimisation
flags when compiling the source code).
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that for M = 1 (1D TMM) even when running 185 parameters in parallel (though
not all 185 parameters can run concurrently) the Serial-TMM implementation is
faster. The disorder is 10 times less than the previous simulations, so the localisation
length is 100 times longer (because λ ∝ 1/W 2). In this case the only parallelism
at work in the CUDA-TMM is by running the separate energies in different blocks
(i.e. naive parallelism), but it’s not enough to make it faster than the Serial-TMM.
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Figure 6.13: Computing time against system width M for multiple energies E =
−4.6 to 4.6, ∆E = 0.05, σε = 5% and weak disorder W = 0.1. System is 2D with
HBC.

The speedup obtained by using the CUDA-TMM instead of the Serial-TMM
has been summarised in figure 6.14. The greatest speedup achieved is for ∆E =
0.005, σε = 0.5%, W = 1, PBC, where the CUDA-TMM is about 13.5 times faster
than the Serial-TMM. The reason for the large drop in the speedup for ∆E = 0.005
is due to the fact that the shared memory is being saturated. This is less of a problem
for ∆E = 0.05 since there are 10 times less number of blocks being launched.

6.5 Profiles for the Serial-TMM

The profiles in table 6.1 show the numbers of calls and times taken to run the
TMMult3D and Renorm subroutines for different widths and disorders in the Serial-
TMM. In this case, HBC are used, E = 0 and σε = 0.5%.
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Figure 6.14: Speedup of the CUDA-TMM over the Serial-TMM for different energy
intervals, accuracies and boundary conditions. All curves but one represent a disor-
der of W = 1, where as the dashed line represents a weak disorder W = 0.1. Open
symbols represent HBC, closed symbols represent PBC. Squares and pluses denote
∆E = 0.05 while diamonds and crosses denote ∆E = 0.005.

Width Disorder Subroutine Calls % Time Time (secs)

5

15
TMMult3D 99,550 16.97% 2.81
Renorm 9,955 22.28% 3.69

16.5
TMMult3D 80,100 18.92% 2.54
Renorm 8,010 20.02% 2.68

18
TMMult3D 64,960 16.04% 1.72
Renorm 6,496 22.00% 2.36

8

15
TMMult3D 165,320 10.68% 31.04
Renorm 16,532 38.08% 110.66

16.5
TMMult3D 122,600 11.01% 23.74
Renorm 12,260 38.08% 82.12

18
TMMult3D 97,560 10.69% 18.32
Renorm 9,756 37.86% 64.89

16

15
TMMult3D 367590 23.68% 1174.79
Renorm 36759 52.59% 2609.23

16.5
TMMult3D 240920 19.69% 771.30
Renorm 24092 53.83% 2108.87

18
TMMult3D 163710 9.51% 532.60
Renorm 16371 60.16% 3370.06

Table 6.1: Profiles of the 3D Serial-TMM for various widths and disorders.
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Chapter 7

Discussion and Conclusion

There is still much work to be done on the CUDA-TMM. For example, a 3D version
of the CUDA-TMM has not yet been developed. This would probably involve using
the SPS scheme. The largest width possible in this case would be M = 32, i.e. 322

blocks of 322 threads. The wavefunction matrix would have 1024 columns of 1024
elements each, with the same thread count as an M = 1024 2D system.

Getting the SPS scheme to work on the Tesla M2050 is itself another project
that needs undertaking. The various difficulties and problems debugging, testing
and developing CUDA-TMM have limited the time available to get the SPS work-
ing. These problems range from code debugging, unavailability of resources, lack of
coherent graphics/CUDA drivers, etc.

In CUDA FORTRAN it is impossible to have more than one shared array,
which makes the programming more complicated as one has to refer to different
objects in shared memory with index offsets (as shown earlier in figure 5.2). Also,
CUDA FORTRAN is quite new and is still under heavy development. As a conse-
quence, there is a much smaller community of developers than for CUDA C, making
many problems encountered during code development new to the CUDA FORTRAN
community.

There has been a lack of readily available GPU facilities for most of the
year. This has made it difficult to debug/test CUDA code. Although each desktop
workstation at the CSC has an NVidia graphics card, it cannot be used for more
than roughly ten seconds at a time while the GUI is engaged, as the X windows
server will time out. The Tesla C1060 is a personal GPU belonging to an academic
member of staff which is not always available to use (especially for long simulations).
Finally, the new array of Tesla M2050 cards installed on the Minerva supercomputer
were not available to use until the last few of months of writing this thesis. These
issues combined have slowed down the development of CUDA-TMM.

The act of debugging CUDA code is fraught with its own problems. Some-
times just probing the code can cause it to break. For example, if one wanted to
display the values of Ψ at various stages in the algorithm, the data would have to
be copied to multiple global memory arrays so that it can be transferred to host
memory for printing. By turning these ‘debug arrays’ on or off, the code will act
differently. This problem coupled with the highly parallelised nature of CUDA turns
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debugging into a art that must be mastered to in order to fix just a small part of
the kernel.

On top of all these problems were various system side faults that were not un-
der my control. For example, the CSC desktops use a centralised network filesystem
to ease the installation of new drivers and kernel updates to all desktops. Whenever
the graphics drivers get updated, the CUDA code will stop running as the CUDA
version is mismatched with the graphics driver version. Sometimes this problem can
be solved by rebooting the desktop, but it is not always that simple.

There are many possible ways to speed up the CUDA-TMM that haven’t
been tried yet. Some are CUDA specific, and some are algorithmic. An algorithmic
idea that hasn’t been developed involves the MPS scheme. If some parameters
are quicker to simulate than others, this will leave blocks that are finished inactive
while the other blocks are still working. Instead, one could have the finished blocks
working on new parameters. This negates the problem of running different disorders
in parallel: since different disorders have a much larger difference in the amount of
time taken to simulate, this won’t be a problem if finished blocks can restart to
work on other disorders. Another algorithmic idea is to investigate using a different
random number generator, though this might not make much difference as the one
currently being used just involves bit shifting on shared memory, so it is already
pretty fast.

A more CUDA-specific idea is to have more control over the L2-cache in the
Tesla M2050. One can negate the large latency of the global memory by exclusively
using the L2-cache instead of the DRAM. The cache is usually hardware controlled.
The only way to programme it is to use inline PTX code, assembly code for NVidia
GPUs [43]. PTX is very low-level and would therefore be very difficult to implement
as one would need to learn a new programming language and use it to code very
detailed hardware operations.

CUDA is still under heavy development and has a long way to go before
it’s a well supported production compiler and programming model. It is not ready
for this sort of problem. It is very well suited for problems which can be highly
parallelised, i.e. split into lots of independent sub-problems with little communi-
cation between them. In the TMM, communication between cores is essential for
re-orthonormalisation and requires high-latency global memory for systems larger
than M = 32 in 2D. Despite these shortcomings, a maximum speedup of 13.5 times
the serial implementation has been achieved (as shown in figure 6.14).

Using current GPGPU resources and armed with a fully debugged version
of the CUDA-TMM implementation described in this thesis, one should theoreti-
cally be able to obtain an efficient 2D TMM simulation up to M = 32 if simulating
hundreds of energy parameters simultaneously. At the current state of the CUDA-
TMM, it is possible to achieve a maximum speed-up of 13.5 times the Serial-TMM
for M = 8 and if over 1000 energy parameters are being run at once. Practically
speaking, there are only very limited cases of the TMM which can be efficiently
parallelised with CUDA. However, there is room for improvement. The future de-
velopment of GPGPUs might prove better suited to the CUDA-TMM. Features
worth looking out for in new GPGPUs that would help in the CUDA-TMM are:
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• Either faster global memory or controllable L2-cache for inter-block commu-
nication

• Built-in inter-block synchronisation

• More Streaming Multiprocessors (SMs) or a way to communicate across more
blocks than SMs
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Appendix A

Source code

Included in this Appendix are the most important source code files. Source code
for input/output subroutines, for example, was omitted for irrelevance. All code
was written in FORTRAN 90 with CUDA extensions, and compiled using the PGI
FORTRAN compiler. To compile main.f90 for example (ignoring other code to link
to), one would enter the following command:

pgf90 -Mcuda -c main.f90

A.1 main.f90

This source code contains the main program, in which subroutines from util.f90

are called for the Serial-TMM and CUDA kernels from cuda util.f90 are called
for the CUDA-TMM.

!**********************************************************************

!

! TMSEXD - Transfer matrix method for the Anderson

! model with diagonal disorder in X dimensions

!

!**********************************************************************

program tmsexd

!--------------------------------------------------------------------

! parameter and global variable definitions

!--------------------------------------------------------------------

use mynumbers

use cconstants

use iconstants

use ichannels

use ipara

use dpara

use rng

use cudafor

use my_kernels

!--------------------------------------------------------------------

! local variable definitions

!--------------------------------------------------------------------

implicit none

integer :: ierr, data_version, iwidth, isize, iwidthrl, & width0_x, &

ichannelmax, index, jndex, iter2, nofg, ig, ilayer, ivec, &

jvec, num_bytes, int_bytes, real_bytes, iters, & num_paras, &

old_num_paras, new_num_paras, bid, new_bid, old_bid, &

int_store, dummy_int, devnum

!integer(kind=4) :: iter1 !32-bit

integer(kind=8) :: iter1 !64-bit

real(kind=rkind) :: flux, flux0, flux1, dflux, flux0_x, &

diagdis, energy, r_test

logical :: kernel_finished

! timing variables

real(4), dimension(1:3,1:1) :: time, timesum

real(4) :: starttime(2), endtime(2)

real(4) :: t, t2, etime

external etime

!--------------------------------------------------------------------

! constants, date and time strings

!--------------------------------------------------------------------

call init_numbers

call date_time_str

!--------------------------------------------------------------------

! protocol feature startup

!--------------------------------------------------------------------

RStr= "$Revision: 1.1 $ "

DStr= "$Date: 2011/11/12 16:22:31 $ "

AStr= "$Author: phrkaj $ "

print*,rstr, dstr, astr

write (*,5) datestr, timestr

5 format ("(* date ", a8, "; time ", a8, " *)" )

! read hostname

call system(’hostname > hostname.txt’)

open (ichhostname, file="hostname.txt", status="old")

read (ichhostname, ’(a)’) hostname

! read project name

call system(’basename ‘pwd‘ > project.txt’)

open (ichproject, file="project.txt", status="old")

read (ichproject, ’(a)’) projectname

!print *, projectname

print *

!--------------------------------------------------------------------

! input handling

!--------------------------------------------------------------------

call input( ierr )
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!print*, "dbg: ierr=", ierr

if( ierr.ne.0 ) then

print*,"main: error in input()"

stop

endif

!--------------------------------------------------------------------

! set cuda device

!--------------------------------------------------------------------

if(icudaflag > 0 .and. idevflag >= 0) then

dummy_int = cudasetdevice(idevflag)

end if

!--------------------------------------------------------------------

! print flags and info

!--------------------------------------------------------------------

write(*,7) hostname

7 format(" hostname = ", a)

write(*,8) projectname

8 format(" project = ", a)

print*,’icudaflag = ’, icudaflag

print*,’idevflag = ’, idevflag

print*,’iswapflag = ’, iswapflag

print*,"------------------------------------------------------------"

!--------------------------------------------------------------------

! setup flux parameters

!--------------------------------------------------------------------

select case(icudaflag)

case(0)

! serial case

if (ifluxflag.eq.0) then

flux0 = diagdis0

flux1 = diagdis1

dflux = ddiagdis

energy = energy0

else

flux0 = energy0

flux1 = energy1

dflux = denergy

diagdis = diagdis0

endif

case(2)

! cuda2 case

select case(ifluxflag)

case(0)

if(diagdis1 == diagdis0) then

num_paras = 1

else

num_paras = (diagdis1 - diagdis0)/real(ddiagdis) + 1

end if

case(1)

if(energy1 == energy0) then

num_paras = 1

else

num_paras = (energy1 - energy0)/real(denergy) + 1

end if

end select

case(3)

! cuda3 case

if (ifluxflag.eq.0) then

flux0 = diagdis0

flux1 = diagdis1

dflux = ddiagdis

energy = energy0

else

flux0 = energy0

flux1 = energy1

dflux = denergy

diagdis = diagdis0

endif

case default

stop "invalid icudaflag"

end select

!--------------------------------------------------------------------

! main parameter sweep

!--------------------------------------------------------------------

width_loop: &

do iwidth= width0,width1,dwidth

! ----------------------------------------------------------------

! get time at start of the process

! ----------------------------------------------------------------

t = etime(starttime)

!-----------------------------------------------------------------

! calculate isize and num_bytes needed for shared mem allocation

!-----------------------------------------------------------------

select case(idimenflag)

case(3)

isize = iwidth*iwidth

case default

isize = iwidth

end select

if(icudaflag >= 1) then

int_bytes = 4*isize*sizeof(int(1))

real_bytes = isize*sizeof(real(1.0))

if(icudaflag == 2) then

num_bytes = (4*isize*isize + 5*isize)*sizeof(real(1.0)) &

+ 4*isize*sizeof(int(1))

else if(icudaflag == 3) then

num_bytes = 5*isize*sizeof(real(1.0)) + 4*isize*sizeof(int(1))

end if

end if

! the # lyapunov exponents is maximally .eq. to iwidth

nofg= min( nofgamma, isize )

!-----------------------------------------------------------------

! open files

!-----------------------------------------------------------------

call openoutputavg( iwidth, data_version )

print*,"data_version = ", data_version

print*,"num_bytes = ", num_bytes

if(icudaflag==2) print*,"num_paras = ", num_paras

!-----------------------------------------------------------------

! choose between serial and cuda

!-----------------------------------------------------------------

select case(icudaflag)

case(0)

!--------------------------------------------------------------

!--------------------------------------------------------------

! serial code

!--------------------------------------------------------------

!--------------------------------------------------------------

!--------------------------------------------------------------

! flux loop

!--------------------------------------------------------------

flux_loop_serial: do flux= flux0,flux1,dflux

!-----------------------------------------------------------

! allocate memory for the arrays

!-----------------------------------------------------------

num_paras = 1

call allocatearrays(isize, ierr, num_paras)

!-----------------------------------------------------------

! set values for the physical quantities

!-----------------------------------------------------------

if (ifluxflag.eq.0) then

diagdis = flux

else

energy = flux

endif

!-----------------------------------------------------------

! protocoll feature

!-----------------------------------------------------------

write(*,1500) iwidth, diagdis, energy

1500 format("start @ iw= ", i4.1, ", dd= ", g10.3, ", en= ", g10.3)

!-----------------------------------------------------------

! initialize the random number generator.

!-----------------------------------------------------------

call srandom(iseed)

!-----------------------------------------------------------

! initialize the wave vectors and the gamma sums

!-----------------------------------------------------------

! reset the wave vectors

psia= zero

psib= zero

do index=1,isize

psia(index,index) = one

enddo

! reset the gammas and error

gamma = zero

gamma2 = zero

acc_variance = zero

! set convergence flag

tmm_converged = .false.

!-----------------------------------------------------------

! iteration loop

!-----------------------------------------------------------

tmm_loop: do iter1= 1, max( (nofiter)/(nofortho), 1)

!--------------------------------------------------------

! serial tmms

!--------------------------------------------------------

select case(iswapflag)
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! perform one tmmult per iteration, then swap

case(1)

northo_loop_swap: do iter2= 1, nofortho, 1

call tmmult2d( psia, psib, &

energy, diagdis, iter1, iwidth)

call swap( psia, psib, isize)

enddo northo_loop_swap

! or perform two tmmult’s per iteration

case default

northo_loop: do iter2= 1, nofortho, 2

call tmmult2d( psia, psib, &

energy, diagdis, iter1, iwidth)

call tmmult2d( psib, psia, &

energy, diagdis, iter1, iwidth)

enddo northo_loop

end select

!--------------------------------------------------------

! serial renorm

!--------------------------------------------------------

call renorm(psia,psib,gamma,gamma2,iwidth)

!--------------------------------------------------------

! ngamma and check convergence

!--------------------------------------------------------

call ngamma_calc_cpu(ngamma,gamma,gamma2,&

acc_variance,isize,iwidth,iter1,tmm_converged)

!--------------------------------------------------------

! output

!--------------------------------------------------------

if(iwriteflag.ge.1 .and. mod(iter1,nofprint).eq.0 ) then

call writeoutput(iter1, isize, ngamma, &

acc_variance, psia)

endif

!--------------------------------------------------------

! check convergence

!--------------------------------------------------------

if(tmm_converged) goto 4000

enddo tmm_loop

!-----------------------------------------------------------

! continue through here if convergence for a single

! configuration is not achieved, reset iter1

!-----------------------------------------------------------

print*,"no convergence in nofiter-loop:"

iter1= iter1-1

!-----------------------------------------------------------

! jump to this label if convergence for a single

! configuration is achieved.

!-----------------------------------------------------------

4000 continue

!-----------------------------------------------------------

! write the avg data

!-----------------------------------------------------------

call writeoutputavg(iwidth, diagdis, energy, ngamma, &

acc_variance, nofg, psia, iter1, ierr )

!-----------------------------------------------------------

! dump end data to standard output

!-----------------------------------------------------------

write(*,5010) iter1, diagdis, energy

write(*,5012) ngamma(1), acc_variance(1)

5010 format("end @ ", i15.1, ",", g15.7, ",", g15.7)

5012 format(" ", g15.7, ",", g15.7)

!-----------------------------------------------------------

! deallocate memory

!-----------------------------------------------------------

deallocate(psia,psib,ngamma,gamma,gamma2,acc_variance)

!-----------------------------------------------------------

! end of flux loop

!-----------------------------------------------------------

enddo flux_loop_serial

!-----------------------------------------------------------------

!-----------------------------------------------------------------

! cuda2 code

!-----------------------------------------------------------------

!-----------------------------------------------------------------

case(2)

!--------------------------------------------------------------

! allocate memory for the arrays

!--------------------------------------------------------------

call allocatearrays(isize, ierr, num_paras)

!--------------------------------------------------------------

! set dbg arrays

!--------------------------------------------------------------

if(idbgflag >= 1) then

d_dbg2 = -1.0

d_dbg2b = -1.0

d_dbg3 = -1.0

d_dbg4 = -1.0

d_dbg5 = -1.0

d_dbg6 = -1.0

h_dbg2 = -1.0

h_dbg3 = -1.0

h_dbg4 = -1.0

h_dbg5 = -1.0

h_dbg6 = -1.0

end if

!--------------------------------------------------------------

! protocoll feature

!--------------------------------------------------------------

write(*,1510) iwidth, diagdis0, diagdis1, energy0, energy1

1510 format("iw= ", i4.1, ", dd0= ", g10.3, ", dd1= ", g10.3, &

", en0= ", g10.3, ", en1= ", g10.3)

!--------------------------------------------------------------

! initialize the random number generator.

!--------------------------------------------------------------

if (icudaflag.ge.1) call srandom_cuda2<<<1,isize,int_bytes>>>&

(isize,num_paras)

!--------------------------------------------------------------

! initialize the wave vectors and the gamma sums

!--------------------------------------------------------------

! reset the wave vectors

d_psi_a = zero

d_psi_b = zero

h_psia = zero

h_psib = zero

do bid=1,num_paras

do index=1,isize

d_psi_a(bid,index,index) = one

enddo

end do

! reset the gammas and error

d_gamma = zero

d_gamma2 = zero

d_acc_variance = zero

d_ngamma = zero !new

h_gamma = zero

h_gamma2 = zero

h_acc_variance = zero

h_ngamma = zero !new

!--------------------------------------------------------------

! set convergence flags

!--------------------------------------------------------------

h_tmm_converged = .false.

d_tmm_converged = .false.

!--------------------------------------------------------------

! setup flux parameters

!--------------------------------------------------------------

if(ifluxflag==1) then

do bid = 1, num_paras

h_energy(bid) = energy0 + (bid-1)*denergy

h_diagdis(bid) = diagdis0

end do

else

do bid = 1, num_paras

h_diagdis(bid) = diagdis0 + (bid-1)*ddiagdis

h_energy(bid) = energy0

end do

end if

d_energy = h_energy

d_diagdis = h_diagdis

!--------------------------------------------------------------

! prepare other stuff for kernel launch

!--------------------------------------------------------------

h_iter1 = 0

d_iter1 = 0

new_num_paras = num_paras

kernel_finished = .false.

h_finished = .false.

!--------------------------------------------------------------

! iteration loop (cuda2)

!--------------------------------------------------------------

do while( .not.kernel_finished )

d_finished = h_finished

call master_kernel<<<num_paras,isize*isize,num_bytes>>>&

(energy0,denergy,diagdis0,ddiagdis,epsilon,isize,iwidth,&
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nofortho,nofiter,&

iwriteflag,idbgflag,nofprint,irngflag,iswapflag,&

ibcflag,ifluxflag)

!-----------------------------------------------------------

! copy data from device to host

!-----------------------------------------------------------

h_psia = d_psi_a

h_psib = d_psi_b

h_acc_variance = d_acc_variance

h_ngamma = d_ngamma

h_gamma = d_gamma

h_gamma2 = d_gamma2

! load logicals, number of iterations

h_tmm_converged = d_tmm_converged

h_iter1 = d_iter1

!-----------------------------------------------------------

! write data to standard output (and file)

!-----------------------------------------------------------

call writeoutputcuda2(num_paras, new_num_paras)

!-----------------------------------------------------------

! write dbg

!-----------------------------------------------------------

if(idbgflag > 0) then

h_dbg2 = d_dbg2

h_dbg2b = d_dbg2b

call writeoutputcudadbg2(isize)

endif

!-----------------------------------------------------------

! check to see if all blocks have finished

!-----------------------------------------------------------

if (new_num_paras < 1) kernel_finished = .true.

end do

!--------------------------------------------------------------

! write the avg data

!--------------------------------------------------------------

call writeoutputavgcuda2(iwidth, num_paras, diagdis0, energy0, &

h_ngamma, h_acc_variance, nofg, h_psia, h_iter1, ierr)

!--------------------------------------------------------------

! deallocate memory

!--------------------------------------------------------------

! device arrays

deallocate(d_idum,d_gamma,d_gamma2,d_psi_a,d_psi_b,d_z)

deallocate(d_ngamma,d_acc_variance)

deallocate(d_iter1,d_tmm_converged,d_finished,d_energy,d_diagdis)

! host arrays

deallocate(h_gamma,h_gamma2,h_psia,h_psib,h_ngamma,h_acc_variance)

deallocate(h_iter1,h_tmm_converged,h_finished,h_diagdis,h_energy)

! dbg arrays

if(idbgflag.ge.1) then

deallocate(d_dbg1, d_dbg2, d_dbg2b, d_dbg3, d_dbg3b)

deallocate(d_dbg4, d_dbg4b, d_dbg5, d_dbg6)

deallocate(h_dbg1, h_dbg2, h_dbg2b, h_dbg3, h_dbg3b)

deallocate(h_dbg4, h_dbg4b, h_dbg5, h_dbg6)

end if

!-----------------------------------------------------------------

!-----------------------------------------------------------------

! cuda3 code

!-----------------------------------------------------------------

!-----------------------------------------------------------------

case(3)

flux_loop_cuda3: do flux= flux0,flux1,dflux

!-----------------------------------------------------------

! allocate memory for the arrays

!-----------------------------------------------------------

call allocatearrays(isize, ierr)

!-----------------------------------------------------------

! set dbg variables

!-----------------------------------------------------------

h_test = 0

d_test = 0

if(idbgflag >= 1) then

d3_dbg2 = -1.0

d3_dbg3 = -1.0

d3_dbg4 = -1.0

d3_dbg5 = -1.0

d3_dbg6 = -1.0

h3_dbg2 = -1.0

h3_dbg3 = -1.0

h3_dbg4 = -1.0

h3_dbg5 = -1.0

h3_dbg6 = -1.0

end if

!-----------------------------------------------------------

! set values for the physical quantities

!-----------------------------------------------------------

if (ifluxflag.eq.0) then

diagdis = flux

else

energy = flux

endif

!-----------------------------------------------------------

! protocoll feature

!-----------------------------------------------------------

2500 write(*,2510) iwidth, diagdis, energy

2510 format("start @ iw= ", i4.1, ", dd= ", g10.3, ", en= ", g10.3)

!-----------------------------------------------------------

! initialize the random number generator.

!-----------------------------------------------------------

call srandom_cuda3<<<1,isize,int_bytes>>>(isize)

!-----------------------------------------------------------

! initialize the wave vectors and the gamma sums

!-----------------------------------------------------------

! reset the wave vectors

d3_psi_a = zero

d3_psi_b = zero

do index=1,isize

d3_psi_a(index,index) = one

enddo

! reset the gammas and error

d3_gamma = zero

d3_gamma2 = zero

d3_acc_variance = zero

! set flags and iterations

h3_tmm_converged = .false.

d3_tmm_converged = .false.

kernel_finished = .false.

d3_kernel_finished = .false.

d3_iter1 = 0

!-----------------------------------------------------------

! start iterations

!-----------------------------------------------------------

!-----------------------------------------------------------

arrayin = 0

arrayout = 0

d_atomic = 0

do while (.not.kernel_finished)

call cuda3kernel<<<isize,isize,num_bytes>>>&

(energy,diagdis,epsilon,isize,iwidth,nofortho,nofiter,&

iwriteflag,idbgflag,nofprint,irngflag,iswapflag,&

ibcflag)

!--------------------------------------------------------

! copy data from device to host

!--------------------------------------------------------

h3_psia = d3_psi_a

h3_psib = d3_psi_b

h3_acc_variance = d3_acc_variance

h3_ngamma = d3_ngamma

h3_gamma = d3_gamma

h3_gamma2 = d3_gamma2

! load number of iterations

iter1 = d3_iter1

! load convergence and kernel flags

h3_tmm_converged = d3_tmm_converged

kernel_finished = d3_kernel_finished

!--------------------------------------------------------

! check convergence

!--------------------------------------------------------

if(h3_tmm_converged) goto 4010

!--------------------------------------------------------

! write data to standard output

!--------------------------------------------------------

call writeoutputcuda3(iter1, diagdis, energy)

end do

!-----------------------------------------------------------

! continue through here if convergence for a single

! configuration is not achieved, reset iter1

!-----------------------------------------------------------

print*,"no convergence in nofiter-loop:"

!iter1= iter1-1

4010 continue

!-----------------------------------------------------------

! write the avg data

!-----------------------------------------------------------

call writeoutputavg(iwidth, diagdis, energy, h3_ngamma, &

h3_acc_variance, nofg, h3_psia, iter1, ierr )

!-----------------------------------------------------------
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! dump end data to standard output

!-----------------------------------------------------------

6000 write(*,6010) iter1, diagdis, energy

write(*,6012) h3_ngamma(1), h3_acc_variance(1)

6010 format("end @ ", i7.1, ",", g15.7, ",", g15.7)

6012 format(" ", g15.7, ",", g15.7)

if(idbgflag >= 1) then

h3_dbg2 = d3_dbg2

h3_dbg3 = d3_dbg3

h3_dbg4 = d3_dbg4

h3_dbg5 = d3_dbg5

call writeoutputcudadbg3(isize)

end if

!-----------------------------------------------------------

! deallocate memory

!-----------------------------------------------------------

! device arrays

deallocate(d_idum,d3_gamma,d3_gamma2,d3_psi_a,d3_psi_b,d3_z)

deallocate(d3_ngamma,d3_acc_variance)

! host arrays

deallocate(h3_gamma,h3_gamma2,h3_psia,h3_psib)

deallocate(h3_ngamma,h3_acc_variance)

! gpu_sync arrays

deallocate(arrayin, arrayout, d_atomic)

! dbg arrays

if(idbgflag.ge.1) then

deallocate(d3_dbg1, d3_dbg2, d3_dbg2b, d3_dbg3, d3_dbg3b)

deallocate(d3_dbg4, d3_dbg4b, d3_dbg5, d3_dbg6)

deallocate(h3_dbg1, h3_dbg2, h3_dbg2b, h3_dbg3, h3_dbg3b)

deallocate(h3_dbg4, h3_dbg4b, h3_dbg5, h3_dbg6)

end if

!-----------------------------------------------------------

! end of flux loop

!-----------------------------------------------------------

enddo flux_loop_cuda3

!--------------------------------------------------------------

!--------------------------------------------------------------

! end of serial/cuda code

!--------------------------------------------------------------

!--------------------------------------------------------------

case default

stop "invalid icudaflag"

end select

print*,"---------------------------------------------------------"

!-----------------------------------------------------------------

! get time at the end of the process

!-----------------------------------------------------------------

t2 = etime(endtime)

time(1,1) = t2 -t

time(2,1) = endtime(1)-starttime(1)

time(3,1) = endtime(2)-starttime(2)

t = time(1,1)

t2 = time(2,1)

write(*,’(a20,6f12.4)’) &

"time(usr,sys,diff): ", time(1,1), time(2,1), time(3,1)

!-----------------------------------------------------------------

! close avg file

!-----------------------------------------------------------------

call closeoutputavg( ierr, time(1,1), time(2,1), time(3,1) )

!-----------------------------------------------------------------

! end of width loop

!-----------------------------------------------------------------

enddo width_loop

! close other files

close(ichhostname)

close(ichproject)

! write date and time of end of run

call date_time_str

write (*,6) datestr, timestr

6 format ("(* date ", a8, "; time ", a8, " *)" )

stop "tmsexd $revision: 1.1 $"

end program tmsexd

A.2 util.f90

This source code contains the subroutines used in the Serial-TMM, except for the
random number generator which is contained in random.f90.

! --------------------------------------------------------------------

! tmmult2d:

!

! multiplication of the transfer matrix onto the vector (psi_a,psi_b),

! giving (psi_b,psi_a) so that the structure of the transfer matrix

! can be exploited

subroutine tmmult2d(psi_a,psi_b, en, diagdis, iter1, M )

use mynumbers

use ipara

use rng

use dpara

! wave functions:

!

! (psi_a, psi_b) on input, (psi_b,psi_a) on output

implicit none

integer M, iter1 ! strip width

real(kind=rkind) diagdis,&! diagonal disorder

en ! energy

real(kind=rkind) psi_a(M,M), psi_b(M,M)

integer isite, jstate, iseeddummy

real(kind=rkind) onsitepot

real(kind=rkind) new, psileft, psiright

!print*,"dbg: tmmult2d()"

do isite=1,M

! create the new onsite potential

select case(irngflag)

case(0)

onsitepot= en - diagdis*(drandom(iseeddummy)-0.5_rkind)

case(1)

onsitepot= mod(iter1,10) * 0.1

end select

do jstate=1,M

if (isite.eq.1) then

if (ibcflag.eq.0) then

psileft= czero ! hard wall bc

else if (ibcflag.eq.1) then

psileft= psi_a(jstate,M) ! periodic bc

else if (ibcflag.eq.2) then

psileft= -psi_a(jstate,M) ! antiperiodic bc

endif

else

psileft= psi_a(jstate,isite-1)

endif

if (isite.eq.M) then

if (ibcflag.eq.0) then

psiright= czero ! hard wall bc

else if (ibcflag.eq.1) then

psiright= psi_a(jstate,1) ! periodic bc

else if (ibcflag.eq.2) then

psiright= -psi_a(jstate,1) ! antiperiodic bc

endif

else

psiright= psi_a(jstate,isite+1)

endif

new= onsitepot * psi_a(jstate,isite) - &

( psileft + psiright ) - psi_b(jstate,isite)
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psi_b(jstate,isite)= new

enddo ! jstate

enddo ! isite

return

end subroutine tmmult2d

! --------------------------------------------------------------------

! tmmult3d:

!

! 3d version of tmmult2d. extra boundary conditions

subroutine tmmult3d(psi_a,psi_b, en, diagdis, M )

use mynumbers

use ipara

use rng

use dpara

! wave functions:

!

! (psi_a, psi_b) on input, (psi_b,psi_a) on output

implicit none

integer M ! strip width

real(kind=rkind) diagdis,&! diagonal disorder

en ! energy

real(kind=rkind) psi_a(M*M,M*M), psi_b(M*M,M*M)

integer isite, jstate, iseeddummy

real(kind=rkind) onsitepot

real(kind=rkind) new, psileft, psiright, psiup, psidown

!print*,"dbg: tmmult3d()"

do isite=1,M*M

! create the new onsite potential

select case(irngflag)

case(0)

onsitepot= en - diagdis*(drandom(iseeddummy)-0.5_rkind)

case(1)

onsitepot= en - diagdis*(drandom(iseeddummy)-0.5_rkind)&

*sqrt(12.0_rkind)

case(2)

onsitepot= en - grandom(iseeddummy,0.0_rkind,diagdis)

end select

do jstate=1,M*M

! psileft

!if (isite.eq.1) then

if (mod(isite,M).eq.1) then

if (ibcflag.eq.0) then

psileft= czero ! hard wall bc

else if (ibcflag.eq.1) then

psileft= psi_a(jstate,isite+m-1) ! periodic bc

else if (ibcflag.eq.2) then

psileft= -psi_a(jstate,isite+m-1) ! antiperiodic bc

endif

else

!print*,"dbg: isite=",isite

psileft= psi_a(jstate,isite-1)

endif

! psiright

!if (isite.eq.M) then

if (mod(isite,M).eq.0) then

if (ibcflag.eq.0) then

psiright= czero ! hard wall bc

else if (ibcflag.eq.1) then

psiright= psi_a(jstate,isite-m+1) ! periodic bc

else if (ibcflag.eq.2) then

psiright= -psi_a(jstate,isite-m+1) ! antiperiodic bc

endif

else

psiright= psi_a(jstate,isite+1)

endif

! psiup

if (isite.gt.(M-1)*M) then

if (ibcflag.eq.0) then

psiup= czero ! hard wall bc

else if (ibcflag.eq.1) then

psiup= psi_a(jstate,isite-(M-1)*M) ! periodic bc

else if (ibcflag.eq.2) then

psiup= -psi_a(jstate,isite-(M-1)*M) ! antiperiodic bc

endif

else

psiup= psi_a(jstate,isite+M)

endif

! psidown

if (isite.lt.(M+1)) then

if (ibcflag.eq.0) then

psidown= czero ! hard wall bc

else if (ibcflag.eq.1) then

psidown= psi_a(jstate,isite+(M-1)*M) ! periodic bc

else if (ibcflag.eq.2) then

psidown= -psi_a(jstate,isite+(M-1)*M) ! antiperiodic bc

endif

else

psidown= psi_a(jstate,isite-M)

endif

new= onsitepot * psi_a(jstate,isite) - &

( psileft+ psiright + psiup + psidown ) &

- psi_b(jstate,isite)

psi_b(jstate,isite)= new

enddo ! jstate

enddo ! isite

return

end subroutine tmmult3d

! ---------------------------------------------------------------

! swap:

!

! (psi_a,psi_b)= (old,new) is the incoming vector, this is

! swapped into (psi_a,psi_b)= (new,old)

subroutine swap( psi_a, psi_b, M)

use mynumbers

integer M

real(kind=rkind) psi_a(M,M), psi_b(M,M)

integer jstate, index

real(kind=rkind) dummy

! print*,"dbg: swap()"

do jstate=1,M

do index=1,M

dummy = psi_b(index,jstate)

psi_b(index,jstate)= psi_a(index,jstate)

psi_a(index,jstate)= dummy

enddo

enddo

return

end subroutine swap

! ---------------------------------------------------------------

! resort:

!

! sort the lyapunov eigenvalues s.t. the largest comes first.

! resort() is shellsort taken from numrec, shell().

subroutine resort( psi_a, psi_b, array0, array1, n )

use mynumbers

integer n

real(kind=rkind) psi_a(n,n),psi_b(n,n)

real(kind=rkind) array0(n), array1(n)

real(kind=rkind) aln2i, localtiny

parameter (aln2i=1.4426950_rkind, localtiny=1.d-5)

integer nn,m,l,k,j,i,lognb2, index

real(kind=rkind) dummya, dummyb

! print*,"dbg: resort()"

! print*,"array0(1),array0(n)",array0(1),array0(n)

lognb2=int(log(real(n))*aln2i+localtiny)

m=n

do 12 nn=1,lognb2

m=m/2

k=n-m

do 11 j=1,k

i=j

3 continue

l=i+m

if(array0(l).gt.array0(i)) then

dummya = array0(i)

array0(i)= array0(l)

array0(l)= dummya

dummyb = array1(i)

array1(i)= array1(l)
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array1(l)= dummyb

do 100 index=1,n

dummya = psi_a(index,i)

dummyb = psi_b(index,i)

psi_a(index,i)= psi_a(index,l)

psi_b(index,i)= psi_b(index,l)

psi_a(index,l)= dummya

psi_b(index,l)= dummyb

100 enddo

i=i-m

if(i.ge.1) goto 3

endif

11 enddo

12 enddo

! print*,"array0(1),array0(n)",array0(1),array0(n)

return

end subroutine resort

!---------------------------------------------------------

! renorm:

!

subroutine renorm(psi_a,psi_b,gamma,gamma2,M)

use mynumbers

use iconstants

use ipara

use my_kernels

implicit none

integer M

real(kind=rkind) psi_a(M,M), psi_b(M,M)

real(kind=rkind) gamma(M), gamma2(M)

integer ivec,jvec,kindex,i,j

real(kind=rkind) sum

real(kind=rkind) dummy2

real(kind=rkind) dummy,norm

equivalence (dummy,norm)

!make the local variables static

!save

!print*,"dbg: renorm()"

!---------------------------------------------------------

! serial gs

!---------------------------------------------------------

do ivec=1,M

!---------------------------------------------------------

! normalise

!---------------------------------------------------------

! calculation of norm

norm= zero

do kindex=1,M

norm= norm + psi_a(ivec,kindex) * psi_a(ivec,kindex) &

+ psi_b(ivec,kindex) * psi_b(ivec,kindex)

enddo

! normalise wavefunctions

dummy = one/sqrt(norm)

do kindex=1,M

psi_a(ivec,kindex)= dummy * psi_a(ivec,kindex)

psi_b(ivec,kindex)= dummy * psi_b(ivec,kindex)

enddo

!---------------------------------------------------------

! orthogonalise (serial)

!---------------------------------------------------------

do jvec=ivec+1,M

sum= zero

! calculate projection

do kindex=1,M

dummy2 = psi_a(jvec,kindex)*psi_a(ivec,kindex) &

+ psi_b(jvec,kindex)*psi_b(ivec,kindex)

sum= sum + dummy2

enddo

! subtract projection from vector

do kindex=1,M

psi_a(jvec,kindex)= psi_a(jvec,kindex) - &

sum * psi_a(ivec,kindex)

psi_b(jvec,kindex)= psi_b(jvec,kindex) - &

sum * psi_b(ivec,kindex)

enddo

enddo

!----------------------------------------------------------------

! calculate gamma

!----------------------------------------------------------------

!print*,’dbg: dummy = ’, dummy

dummy = log(dummy)

gamma(ivec) = gamma(ivec) - dummy

gamma2(ivec)= gamma2(ivec) + dummy*dummy

enddo

return

end subroutine renorm

! --------------------------------------------------------------------

! ngamma_calc_cpu:

!

subroutine ngamma_calc_cpu(ngamma,gamma,gamma2,acc_variance,&

isize,iwidth,iter1,tmm_converged)

use mynumbers

use iconstants

use ipara

use dpara

implicit none

integer, intent(in) :: isize, iwidth

!integer, intent(in) :: iter1

integer(kind=8), intent(in) :: iter1

logical :: tmm_converged

real(kind=rkind), dimension(isize) :: ngamma, gamma, gamma2, &

acc_variance

real(kind=rkind) :: thing

integer :: ig

do ig=1, isize

ngamma(isize+1-ig)= gamma(ig)/real(nofortho*iter1)

thing = gamma(ig)/real(iter1)

acc_variance(isize+1-ig)= &

sqrt( abs( &

(gamma2(ig)/real(iter1) - &

(thing)**2 ) &

/ real( max(iter1-1,1) ) &

)) / abs( thing )

enddo

!-----------------------------------------------------------

! check accuracy and dump the result

!-----------------------------------------------------------

if( iter1.ge.iwidth .and. &

iter1.ge.miniter ) then

if( acc_variance(1).le.epsilon .and. &

acc_variance(1).ge.tiny) then

tmm_converged=.true.

endif

endif

end subroutine ngamma_calc_cpu

A.3 cuda util.f90

This source code contains all the subroutines (including the RNG), arrays and vari-
ables used by the GPU for the CUDA-TMM. All references to cuda2 relate to the
MPS, whereas cuda3 relates to the SPS. cuda1 is an old, inefficient CUDA-TMM
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scheme which has been removed from the code.

module my_kernels

use mynumbers

use iconstants

use cudafor

implicit none

!-----------------------------------------------------------------

! cuda2 + cuda3 arrays and variables

!-----------------------------------------------------------------

integer(kind=ikind),device,dimension(:),allocatable :: d_idum

!-----------------------------------------------------------------

! cuda2 arrays and variables (multi-parameters)

!-----------------------------------------------------------------

! device arrays

real(kind=rkind),device,dimension(:,:),allocatable :: d_gamma, d_gamma2

real(kind=rkind),device,dimension(:,:,:), allocatable :: d_psi_a, d_psi_b

integer(kind=ikind),device,dimension(:,:),allocatable :: d_z

real(kind=rkind),device,dimension(:,:),allocatable :: d_ngamma, &

d_acc_variance

integer(kind=8), device, dimension(:),allocatable :: d_iter1 !64-bit

logical,device, dimension(:),allocatable :: d_tmm_converged

logical,device, dimension(:),allocatable :: d_finished

real(kind=rkind),device,dimension(:),allocatable :: d_energy, d_diagdis

! host arrays (page-locked memory)

real(kind=rkind),pinned,dimension(:,:),allocatable :: h_gamma, h_gamma2

real(kind=rkind),pinned,dimension(:,:,:), allocatable :: h_psia, h_psib

real(kind=rkind),pinned,dimension(:,:),allocatable :: h_ngamma, &

h_acc_variance

integer(kind=8),pinned,dimension(:), allocatable :: h_iter1

logical,pinned,dimension(:),allocatable :: h_tmm_converged

logical,pinned,dimension(:),allocatable :: h_finished

real(kind=rkind),pinned,dimension(:),allocatable :: h_diagdis, h_energy

! dbg arrays

real(kind=rkind),allocatable,dimension(:,:,:,:) :: h_dbg1

real(kind=rkind),device,allocatable,dimension(:,:,:,:) :: d_dbg1

real(kind=rkind),allocatable,dimension(:,:,:) :: h_dbg2

real(kind=rkind),device,allocatable,dimension(:,:,:) :: d_dbg2

real(kind=rkind),allocatable,dimension(:,:,:) :: h_dbg2b

real(kind=rkind),device,allocatable,dimension(:,:,:) :: d_dbg2b

real(kind=rkind),allocatable,dimension(:,:,:) :: h_dbg3

real(kind=rkind),device,allocatable,dimension(:,:,:) :: d_dbg3

real(kind=rkind),allocatable,dimension(:,:,:) :: h_dbg3b

real(kind=rkind),device,allocatable,dimension(:,:,:) :: d_dbg3b

real(kind=rkind),allocatable,dimension(:,:,:) :: h_dbg4

real(kind=rkind),device,allocatable,dimension(:,:,:) :: d_dbg4

real(kind=rkind),allocatable,dimension(:,:,:) :: h_dbg4b

real(kind=rkind),device,allocatable,dimension(:,:,:) :: d_dbg4b

real(kind=rkind),allocatable,dimension(:,:,:) :: h_dbg5

real(kind=rkind),device,allocatable,dimension(:,:,:) :: d_dbg5

real(kind=rkind),allocatable,dimension(:,:,:) :: h_dbg6

real(kind=rkind),device,allocatable,dimension(:,:,:) :: d_dbg6

!-----------------------------------------------------------------

! cuda3 arrays and variables (cudalarge)

!-----------------------------------------------------------------

! device arrays

real(kind=rkind),device,dimension(:),allocatable :: d3_gamma, d3_gamma2

real(kind=rkind),device,dimension(:,:), allocatable :: d3_psi_a, d3_psi_b

integer(kind=ikind),device,dimension(:),allocatable :: d3_z

real(kind=rkind),device,dimension(:),allocatable :: d3_ngamma, &

d3_acc_variance

! host arrays (page-locked memory)

real(kind=rkind),pinned,dimension(:),allocatable :: h3_gamma, h3_gamma2

real(kind=rkind),pinned,dimension(:,:), allocatable :: h3_psia, h3_psib

real(kind=rkind),pinned,dimension(:),allocatable :: h3_ngamma, &

h3_acc_variance

! gpu_sync arrays

integer, device, dimension(:), allocatable :: arrayin, arrayout

integer, device, dimension(:,:), allocatable :: d_atomic

! flags and other variables

logical,device :: d3_tmm_converged

logical,device :: d3_kernel_finished

logical :: h3_tmm_converged

integer(kind=8), device :: d3_iter1 !64-bit

!integer(kind=8) :: h3_iter1 !64-bit

! dbg arrays

real(kind=rkind),allocatable,dimension(:,:,:) :: h3_dbg1

real(kind=rkind),device,allocatable,dimension(:,:,:) :: d3_dbg1

real(kind=rkind),allocatable,dimension(:,:) :: h3_dbg2

real(kind=rkind),device,allocatable,dimension(:,:) :: d3_dbg2

real(kind=rkind),allocatable,dimension(:,:) :: h3_dbg2b

real(kind=rkind),device,allocatable,dimension(:,:) :: d3_dbg2b

real(kind=rkind),allocatable,dimension(:,:) :: h3_dbg3

real(kind=rkind),device,allocatable,dimension(:,:) :: d3_dbg3

real(kind=rkind),allocatable,dimension(:,:) :: h3_dbg3b

real(kind=rkind),device,allocatable,dimension(:,:) :: d3_dbg3b

real(kind=rkind),allocatable,dimension(:,:) :: h3_dbg4

real(kind=rkind),device,allocatable,dimension(:,:) :: d3_dbg4

real(kind=rkind),allocatable,dimension(:,:) :: h3_dbg4b

real(kind=rkind),device,allocatable,dimension(:,:) :: d3_dbg4b

real(kind=rkind),allocatable,dimension(:,:) :: h3_dbg5

real(kind=rkind),device,allocatable,dimension(:,:) :: d3_dbg5

real(kind=rkind),allocatable,dimension(:,:) :: h3_dbg6

real(kind=rkind),device,allocatable,dimension(:,:) :: d3_dbg6

!-----------------------------------------------------------------

! serial arrays and variables

!-----------------------------------------------------------------

real(kind=rkind),dimension(:),allocatable :: gamma, gamma2

real(kind=rkind),dimension(:,:), allocatable :: psia, psib

real(kind=rkind),dimension(:),allocatable :: ngamma, acc_variance

logical :: tmm_converged

!-----------------------------------------------------------------

! other stuff

!-----------------------------------------------------------------

! rng parameters

real(kind=rkind), parameter :: am = 4.656612873077d-10

integer(kind=ikind), parameter :: ia = 16807

integer(kind=ikind), parameter :: im = 2147483647

integer(kind=ikind), parameter :: iq = 127773

integer(kind=ikind), parameter :: ir = 2836

! dbg variables

integer, device :: d_test

integer :: h_test

contains

!-------------------------------------------------------------

!-------------------------------------------------------------

! rng kernels

!-------------------------------------------------------------

!-------------------------------------------------------------

! -----------------------------------------------------------------

! rlfsr113_kernel() returns random numbers of interval (0, 1)

! -----------------------------------------------------------------

attributes(device) function rlfsr113_device(z1, z2, z3, z4, z) &

result (dret)

integer(kind=ikind), intent(in), value :: z1, z2, z3, z4

integer(kind=ikind), shared, dimension(*) :: z

integer(kind=ikind) :: b

real(kind=rkind) :: dret

b = ibits(ieor(ishft(z(z1),6),z(z1)),13,19)!32-13)

z(z1) = ieor(ishft(iand(z(z1),-2),18),b)

b = ibits(ieor(ishft(z(z2),2),z(z2)),27,5)!32-27)

z(z2) = ieor(ishft(iand(z(z2),-8),2),b)

b = ibits(ieor(ishft(z(z3),13),z(z3)),21,11)!,32-21)

z(z3) = ieor(ishft(iand(z(z3),-16),7),b)

b = ibits(ieor(ishft(z(z4),3),z(z4)),12,20)!32-12)

z(z4) = ieor(ishft(iand(z(z4),-128),13),b)

dret=ibits(ieor(ieor(ieor(z(z1),z(z2)),z(z3)),z(z4)),1,31)*am

end function rlfsr113_device

! -----------------------------------------------------------------

! lfsrinit_kernel() initialize rlfsr113_kernel (z1,z2,z3,z4)

! -----------------------------------------------------------------

attributes(device) subroutine lfsrinit_device(i, z1, z2, z3, z4, z)

implicit none

integer(kind=ikind), intent(in), value :: i, z1, z2, z3, z4

integer(kind=ikind) :: k

real(kind=rkind) :: dummy

integer(kind=ikind), shared, dimension(*) :: z

! initialize z1,z2,z3,z4

if (d_idum(i).le.0) d_idum(i)=1

k=(d_idum(i))/iq

d_idum(i)=ia*(d_idum(i)-k*iq)-ir*k

if (d_idum(i).lt.0) d_idum(i) = d_idum(i) + im

if (d_idum(i).lt.2) then

z(z1)=d_idum(i)+2

else

z(z1)=d_idum(i)

endif

k=(d_idum(i))/iq

d_idum(i)=ia*(d_idum(i)-k*iq)-ir*k

if (d_idum(i).lt.0) d_idum(i) = d_idum(i) + im

if (d_idum(i).lt.8) then

z(z2)=d_idum(i)+8

else

z(z2)=d_idum(i)

endif
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k=(d_idum(i))/iq

d_idum(i)=ia*(d_idum(i)-k*iq)-ir*k

if (d_idum(i).lt.0) d_idum(i) = d_idum(i) + im

if (d_idum(i).lt.16) then

z(z3)=d_idum(i)+16

else

z(z3)=d_idum(i)

endif

k=(d_idum(i))/iq

d_idum(i)=ia*(d_idum(i)-k*iq)-ir*k

if (d_idum(i).lt.0) d_idum(i) = d_idum(i) + im

if (d_idum(i).lt.128) then

z(z4)=d_idum(i)+128

else

z(z4)=d_idum(i)

endif

! make a single call to rand_gen() to achieve a valid state

dummy = rlfsr113_device(z1, z2, z3, z4, z)

end subroutine lfsrinit_device

! ------------------------------------------------------------------

! srandom_cuda2()

! ------------------------------------------------------------------

attributes(global) subroutine srandom_cuda2(n, num_paras)

implicit none

integer, intent(in), value :: n, num_paras

integer(kind=ikind) :: tid, bid, z1, z2, z3, z4

real(kind=rkind) :: dummy

integer(kind=ikind), shared, dimension(*) :: z

! identify threads and blocks

tid = threadidx%x

! create offsets for shared array, z

z1 = tid

z2 = z1 + n

z3 = z2 + n

z4 = z3 + n

! create seeds

d_idum(tid) = 1276 + tid

! initialise random number generator

call lfsrinit_device(tid,z1,z2,z3,z4,z)

! save z to global memory

do bid = 1,num_paras

d_z(bid,z1) = z(z1)

d_z(bid,z2) = z(z2)

d_z(bid,z3) = z(z3)

d_z(bid,z4) = z(z4)

end do

end subroutine srandom_cuda2

! ------------------------------------------------------------------

! srandom_cuda3()

! ------------------------------------------------------------------

attributes(global) subroutine srandom_cuda3(n)

implicit none

integer, intent(in), value :: n

integer(kind=ikind) :: i, z1, z2, z3, z4

real(kind=rkind) :: dummy

integer(kind=ikind), shared, dimension(*) :: z

! identify threads

i = threadidx%x

! create offsets for shared array, z

z1 = i

z2 = z1 + n

z3 = z2 + n

z4 = z3 + n

! create seeds

d_idum(i) = 1276 + i

! initialise random number generator

call lfsrinit_device(i,z1,z2,z3,z4,z)

! save z to global memory

d3_z(z1) = z(z1)

d3_z(z2) = z(z2)

d3_z(z3) = z(z3)

d3_z(z4) = z(z4)

end subroutine srandom_cuda3

!-------------------------------------------------------------

!-------------------------------------------------------------

! tmm kernels

!-------------------------------------------------------------

!-------------------------------------------------------------

! -----------------------------------------------------------------

! master_kernel:

!

attributes(global) subroutine master_kernel(energy0, denergy, diagdis0, &

ddiagdis, epsilon, isize, iwidth, nofortho, nofiter, iwriteflag, &

idbgflag, nofprint, irngflag, iswapflag, ibcflag, &

ifluxflag)

integer, intent(in), value :: isize, iwidth, nofortho,&

iwriteflag, idbgflag, nofprint, irngflag, iswapflag, &

ibcflag, ifluxflag

!integer, intent(in), value :: nofiter

integer(kind=8), intent(in), value :: nofiter

real(kind=rkind), intent(in), value :: energy0, denergy, diagdis0, &

ddiagdis, epsilon

integer :: iter2, tid, i, j, psi_a, psi_b, z1, z2, z3, z4, v, &

isize2, gamma, gamma2, ngamma, acc_var, norm_sum, orth_sum, &

ivec, norm_1, orth_1, psi_a_ivec, psi_b_ivec, acc_var_1, &

psi_a_1, psi_a_m, psi_b_1, psi_b_m, bid

!integer :: iter1, index

integer(kind=8) :: iter1, index, itersave

real(kind=rkind) :: energy, diagdis

real(kind=rkind), shared, dimension(*) :: shared_real

integer(kind=ikind), shared, dimension(*) :: shared_int

logical :: tmm_converged

! identify threads, blocks, virtual and real id’s

tid = threadidx%x

bid = blockidx%x

i = mod(tid-1,isize) + 1 ! virtual threadid

j = (tid-1) / isize + 1 ! virtual blockid

!-----------------------------------------------------------

! if parameter finished, stop here

!-----------------------------------------------------------

if ( d_finished(bid) ) return

!-----------------------------------------------------------

! setup flux parameter

!-----------------------------------------------------------

energy = d_energy(bid)

diagdis = d_diagdis(bid)

!-----------------------------------------------------------

! load number of iterations from before

!-----------------------------------------------------------

itersave = d_iter1(bid)

!-----------------------------------------------------------

! offset indices

!-----------------------------------------------------------

isize2 = isize*isize

! shared_real indices unique to each thread in kernel

psi_a = tid

psi_b = isize2 + tid

norm_sum = 2*isize2 + tid

orth_sum = 3*isize2 + tid

! shared_real indices unique to virtual block

psi_a_1 = (j-1)*isize + 1

psi_a_m = j*isize

psi_b_1 = psi_a_1 + isize2

psi_b_m = psi_a_m + isize2

norm_1 = psi_a_1 + 2*isize2

orth_1 = psi_a_1 + 3*isize2

gamma = 4*isize2 + isize + j

gamma2 = gamma + isize

ngamma = gamma2 + isize

acc_var = ngamma + isize

acc_var_1 = 4*isize2 + 5*isize

! shared_real indices unique to virtual threads

v = 4*isize2 + i

! shared_int indices unique to virtual threads

z1 = 4*isize2 + 5*isize + i

z2 = z1 + isize

z3 = z2 + isize

z4 = z3 + isize

!-----------------------------------------------------------

! copy psi, gammas and acc_var from global memory to shared memory

!-----------------------------------------------------------

shared_real(psi_a) = d_psi_a(bid,j,i)

shared_real(psi_b) = d_psi_b(bid,j,i)

if (i.eq.1) then

shared_real(gamma) = d_gamma(bid,j)

shared_real(gamma2) = d_gamma2(bid,j)

shared_real(acc_var) = d_acc_variance(bid,isize+1-j)

endif

!-----------------------------------------------------------

! fetch random numbers from global memory

!-----------------------------------------------------------

if(j.eq.1) then

shared_int(z1) = d_z(bid, i)

shared_int(z2) = d_z(bid, i + isize)

shared_int(z3) = d_z(bid, i + 2*isize)

shared_int(z4) = d_z(bid, i + 3*isize)
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end if

! sync threads before starting main part of kernel

call syncthreads()

tmm_converged = .false.

!-----------------------------------------------------------

! start iterations

!-----------------------------------------------------------

cuda_tmm_loop: do iter1 = itersave + 1, max( (nofiter)/(nofortho), 1)

!------------------------------------------------------

! carry out transfer-matrix multiplications (cuda2)

!------------------------------------------------------

select case(iswapflag)

! perform one tmmult per iteration, then swap...

case(1)

northo_loop_swap: do iter2= 1, nofortho, 1

call tmmult_device2(shared_real, energy, diagdis, isize, v,&

i, j, iter1, psi_a, psi_a_1, psi_a_m, psi_b, psi_b_1, &

psi_b_m, z1, z2, z3, z4, shared_int, irngflag, ibcflag)

call cuda_swap(shared_real, psi_a, psi_b)

enddo northo_loop_swap

! or perform two tmmult’s per iteration

case default

northo_loop: do iter2= 1, nofortho, 2

call tmmult_device2(shared_real, energy, diagdis, isize, v,&

i, j, iter1, psi_a, psi_a_1, psi_a_m, psi_b, psi_b_1, &

psi_b_m, z1, z2, z3, z4, shared_int, irngflag, ibcflag)

call tmmult_device2(shared_real, energy, diagdis, isize, v,&

i, j, iter1, psi_b, psi_b_1, psi_b_m, psi_a, psi_a_1, &

psi_a_m, z1, z2, z3, z4, shared_int, irngflag, ibcflag)

enddo northo_loop

end select

!-----------------------------------------------------------

! carry out gram-schmidt reorthonormalisation

!-----------------------------------------------------------

psi_a_ivec = i

psi_b_ivec = psi_a_ivec + isize2

do ivec = 1,isize

call norm_device(isize,ivec,norm_sum,norm_1,&

gamma,gamma2,psi_a,psi_b,i,j,shared_real,iwriteflag)

call orth_device(isize,isize2,ivec,orth_sum,orth_1,i,j,&

psi_a,psi_b,psi_a_ivec,psi_b_ivec,shared_real,iwriteflag)

psi_a_ivec = psi_a_ivec + isize

psi_b_ivec = psi_b_ivec + isize

enddo

!-----------------------------------------------------------

! calculate ngamma and check convergence !maydo: i==1

!-----------------------------------------------------------

call ngamma_device(isize,iwidth,nofortho,iter1,epsilon,&

gamma,gamma2,ngamma,acc_var,acc_var_1,tmm_converged,&

shared_real,bid)

!-----------------------------------------------------------

! exit if converged

!-----------------------------------------------------------

if(tmm_converged) goto 900

!-----------------------------------------------------------

! exit and relaunch kernel if nofprint exceeded

!-----------------------------------------------------------

select case(iwriteflag)

case(0)

continue

case default

if (mod(iter1,nofprint) == 0) goto 900

end select

end do cuda_tmm_loop

! no convergence in nofiter-loop

iter1 = iter1 - 1

900 continue

!-----------------------------------------------------------

! save number of iterations to global memory

!-----------------------------------------------------------

d_iter1(bid) = iter1

!-----------------------------------------------------------

! save random numbers to global memory

!-----------------------------------------------------------

if(j.eq.1) then

d_z(bid, i) = shared_int(z1)

d_z(bid, i + isize) = shared_int(z2)

d_z(bid, i + 2*isize) = shared_int(z3)

d_z(bid, i + 3*isize) = shared_int(z4)

end if

!-----------------------------------------------------------

! copy psi, gammas, acc_variance and ngamma from shared to global mem

!-----------------------------------------------------------

d_psi_a(bid,j,i) = shared_real(psi_a)

d_psi_b(bid,j,i) = shared_real(psi_b)

if (i.eq.1) then

d_gamma(bid,j) = shared_real(gamma)

d_gamma2(bid,j) = shared_real(gamma2)

d_acc_variance(bid,isize+1-j) = shared_real(acc_var)

d_ngamma(bid,isize+1-j) = shared_real(ngamma)

endif

end subroutine master_kernel

!---------------------------------------------------------

! transfer-matrix multiplication device subroutine

!---------------------------------------------------------

attributes(device) subroutine tmmult_device2(shared_real, en, diagdis, &

m, v, i, j, iter1, psi_a, psi_a_1, psi_a_m, psi_b, psi_b_1, &

psi_b_m, z1, z2, z3, z4, z, irngflag, ibcflag)

! input parameters

integer, intent(in), value :: m, psi_a, psi_a_1, psi_a_m, psi_b, &

psi_b_1, psi_b_m, v, i, j, z1, z2, z3, z4, irngflag, &

ibcflag

!integer, intent(in), value :: iter1

integer(kind=8), intent(in), value :: iter1

real(kind=rkind), intent(in), value :: diagdis, en

! local/shared variables and arrays

integer(kind=ikind), shared, dimension(*) :: z

real(kind=rkind), shared, dimension(*) :: shared_real

real(kind=rkind) :: psileft, psiright

real(kind=rkind) :: r_test

! create new onsite potential

select case(irngflag)

case(0)

if(j.eq.1) then

shared_real(v) = en - diagdis * &

(rlfsr113_device(z1,z2,z3,z4,z) - 0.5)

endif

case(1)

! dbg:

if(j.eq.1) then

shared_real(v) = mod(iter1,10) * 0.1

endif

end select

! sync after getting random number, and before updating psileft/right

call syncthreads()

! calculate left wavefunction

if (i.eq.1) then

if (ibcflag.eq.0) then

psileft= 0.0 ! hard wall bc

else if (ibcflag.eq.1) then

psileft= shared_real(psi_a_m) ! periodic bc

else if (ibcflag.eq.2) then

psileft= -shared_real(psi_a_m) ! antiperiodic bc

endif

else

psileft= shared_real(psi_a-1)

endif

! calculate right wavefunction

if (i.eq.m) then

if (ibcflag.eq.0) then

psiright= 0.0 ! hard wall bc

else if (ibcflag.eq.1) then

psiright= shared_real(psi_a_1) ! periodic bc

else if (ibcflag.eq.2) then

psiright= -shared_real(psi_a_1) ! antiperiodic bc

endif

else

psiright= shared_real(psi_a+1)

endif

! update wavefunction

shared_real(psi_b)= shared_real(v) * shared_real(psi_a) &

- (psileft + psiright) &

- shared_real(psi_b)

end subroutine tmmult_device2

!---------------------------------------------------------

! orthogonalisation device subroutine

!---------------------------------------------------------

attributes(device) subroutine orth_device(m,m2,ivec,orth_sum,orth_1,i,j,&

psi_a, psi_b, psi_a_ivec, psi_b_ivec, shared_real, iwriteflag)
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! local variables

integer,intent(in),value :: m, m2, ivec, orth_sum, orth_1, i, j, &

psi_a, psi_b, psi_a_ivec, psi_b_ivec, iwriteflag

integer :: s

! shared arrays

real(kind=rkind),shared,dimension(*) :: shared_real

!---------------------------------------------------------

! orthogonalise (cuda2)

!---------------------------------------------------------

! calculate dot product <i|j>(k)

if(j > ivec) then

shared_real(orth_sum) = &

shared_real(psi_a_ivec) * shared_real(psi_a) + &

shared_real(psi_b_ivec) * shared_real(psi_b)

end if

! sync threads before performing sum

call syncthreads()

! calculate sum using reduction <i|j> = sum_k{<i|j>(k)}

if (j > ivec) then

if (m >= 64) shared_real(orth_sum) = &

shared_real(orth_sum) + shared_real(orth_sum + 32)

if (m >= 32) shared_real(orth_sum) = &

shared_real(orth_sum) + shared_real(orth_sum + 16)

if (m >= 16) shared_real(orth_sum) = &

shared_real(orth_sum) + shared_real(orth_sum + 8)

if (m >= 8) shared_real(orth_sum) = &

shared_real(orth_sum) + shared_real(orth_sum + 4)

if (m >= 4) shared_real(orth_sum) = &

shared_real(orth_sum) + shared_real(orth_sum + 2)

if (m >= 2) shared_real(orth_sum) = &

shared_real(orth_sum) + shared_real(orth_sum + 1)

end if

! subtract projection from the wavevectors |j> = |j> - <i|j><i|

if(j > ivec) then

shared_real(psi_a) = shared_real(psi_a) - &

shared_real(orth_1) * shared_real(psi_a_ivec)

shared_real(psi_b) = shared_real(psi_b) - &

shared_real(orth_1) * shared_real(psi_b_ivec)

end if

end subroutine orth_device

!---------------------------------------------------------

! normalisation device subroutine

!---------------------------------------------------------

attributes(device) subroutine norm_device(m,ivec,norm_sum,norm_1,&

gamma,gamma2,psi_a,psi_b,i,j,shared_real,iwriteflag)

! local variables

integer,intent(in),value :: m, ivec, norm_sum, norm_1, gamma, gamma2,&

i, j, psi_a, psi_b, iwriteflag

integer :: s

real(kind=rkind) :: dummy

! shared arrays

real(kind=rkind),shared,dimension(*) :: shared_real

!---------------------------------------------------------

! normalise (cuda2)

!---------------------------------------------------------

! calculate dot product <i|i>(k)

if(j==ivec) then

shared_real(norm_sum) = shared_real(psi_a)*shared_real(psi_a) &

+ shared_real(psi_b)*shared_real(psi_b)

endif

! sync threads before performing sum

call syncthreads()

! calculate total norm using sum reduction <i|i> = sum_k{<i|i>(k)}

if (j==ivec) then

if (m >= 64) shared_real(norm_sum) = &

shared_real(norm_sum) + shared_real(norm_sum + 32)

if (m >= 32) shared_real(norm_sum) = &

shared_real(norm_sum) + shared_real(norm_sum + 16)

if (m >= 16) shared_real(norm_sum) = &

shared_real(norm_sum) + shared_real(norm_sum + 8)

if (m >= 8) shared_real(norm_sum) = &

shared_real(norm_sum) + shared_real(norm_sum + 4)

if (m >= 4) shared_real(norm_sum) = &

shared_real(norm_sum) + shared_real(norm_sum + 2)

if (m >= 2) shared_real(norm_sum) = &

shared_real(norm_sum) + shared_real(norm_sum + 1)

end if

! normalise wavevectors |i> = |i> / <i|i>

if(j==ivec) then

dummy= 1.0/sqrt(real(shared_real(norm_1)))

shared_real(psi_a) = dummy * shared_real(psi_a)

shared_real(psi_b) = dummy * shared_real(psi_b)

end if

! sync threads so that norm is ready for orth

call syncthreads()

!---------------------------------------------------------

! calculate gamma

!---------------------------------------------------------

if(i==1 .and. j==ivec) then

dummy = log(dummy)

shared_real(gamma) = shared_real(gamma) - dummy

shared_real(gamma2)= shared_real(gamma2) + dummy*dummy

endif

end subroutine norm_device

! --------------------------------------------------------------------

! ngamma_device:

!

attributes(device) subroutine ngamma_device(isize,iwidth,nofortho,&

iter1,epsilon,gamma,gamma2,ngamma,acc_var,acc_var_1,&

tmm_converged,shared_real,bid)

integer, intent(in), value :: isize, iwidth, nofortho, &

gamma, gamma2, ngamma, acc_var, acc_var_1, bid

!integer, intent(in), value :: iter1

integer(kind=8), intent(in), value :: iter1

real(kind=rkind), intent(in), value :: epsilon

real(kind=rkind) :: thing

logical :: tmm_converged

real(kind=rkind),shared,dimension(*) :: shared_real

shared_real(ngamma)= shared_real(gamma)/real(nofortho*iter1)

thing = shared_real(gamma)/real(iter1)

shared_real(acc_var)= &

sqrt( abs( &

(shared_real(gamma2)/real(iter1) - &

thing*thing ) &

/ real( max(iter1 -1,1) ) &

)) / abs( thing )

!-----------------------------------------------------------

! check accuracy and dump the result

!-----------------------------------------------------------

if( iter1.ge.iwidth .and. &

iter1.ge.miniter ) then

if( shared_real(acc_var_1).le.epsilon .and. &

shared_real(acc_var_1).ge.tiny) then

d_tmm_converged(bid)=.true.

tmm_converged=.true.

endif

endif

end subroutine ngamma_device

!----------------------------------------------------------------

! cuda_swap:

!

! (psi_a,psi_b)= (old,new) is the incoming vector, this is swapped

! into (psi_a,psi_b)= (new,old)

attributes(device) subroutine cuda_swap(psi, a, b)

use mynumbers

integer, intent(in), value :: a, b

real(kind=rkind), shared, dimension(*) :: psi

real(kind=rkind) :: dummy

dummy = psi(b)

psi(b) = psi(a)

psi(a) = dummy

end subroutine cuda_swap

!-------------------------------------------------------------

!-------------------------------------------------------------

! cuda3 kernels

!-------------------------------------------------------------

!-------------------------------------------------------------

! -----------------------------------------------------------------

! cuda3kernel:

!

attributes(global) subroutine cuda3kernel(energy, diagdis, epsilon, &

m, iwidth, nofortho, nofiter, iwriteflag, idbgflag, &

nofprint, irngflag, iswapflag, ibcflag)

integer, intent(in), value :: m, iwidth, nofortho,&

iwriteflag, idbgflag, nofprint, irngflag, iswapflag, &

ibcflag

integer(kind=8), intent(in), value :: nofiter

real(kind=rkind), intent(in), value :: energy, diagdis, epsilon

integer :: iter2, i, j, psi_a, psi_b, z1, z2, z3, z4, v, &

norm_sum, orth_sum, ivec, norm_1, orth_1, psi_a_ivec, psi_b_ivec,&

index, psi_a_1, psi_a_m, psi_b_1, psi_b_m, sync_count

integer(kind=8) :: iter1, itersave

real(kind=rkind) :: gamma, gamma2, ngamma, acc_var

real(kind=rkind), shared, dimension(*) :: shared_real

integer(kind=ikind), shared, dimension(*) :: shared_int

!logical :: tmm_converged
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! identify threads and blocks

i = threadidx%x

j = blockidx%x

!-----------------------------------------------------------

! load number of iterations from before

!-----------------------------------------------------------

itersave = d3_iter1

!-----------------------------------------------------------

! offset indices used for shared memory

!-----------------------------------------------------------

! shared memory indices unique to each thread in block

psi_a = i

psi_b = i + m

norm_sum = i + 2*m

orth_sum = i + 3*m

v = i + 4*m

z1 = i + 5*m

z2 = i + 6*m

z3 = i + 7*m

z4 = i + 8*m

! other shared memory indices

psi_a_1 = 1

psi_a_m = m

psi_b_1 = 1 + m

psi_b_m = m + m

norm_1 = 1 + 2*m

orth_1 = 1 + 3*m

!-----------------------------------------------------------

! initialise shared memory

!-----------------------------------------------------------

shared_real(psi_a) = 0.0

shared_real(psi_b) = 0.0

shared_real(norm_sum) = 0.0

shared_real(orth_sum) = 0.0

shared_real(v) = 0.0

shared_int(z1) = 0

shared_int(z2) = 0

shared_int(z3) = 0

shared_int(z4) = 0

! reset sync_count used in gpu_sync

sync_count = 0

!-----------------------------------------------------------

! copy psi, gammas and acc_var from global mem to shared/local mem

!-----------------------------------------------------------

shared_real(psi_a) = d3_psi_a(j,i)

shared_real(psi_b) = d3_psi_b(j,i)

gamma = d3_gamma(j)

gamma2 = d3_gamma2(j)

acc_var = d3_acc_variance(m+1-j)

!-----------------------------------------------------------

! fetch random numbers from global memory

! (same for each block, different for each thread)

!-----------------------------------------------------------

shared_int(z1) = d3_z(i)

shared_int(z2) = d3_z(i + m)

shared_int(z3) = d3_z(i + 2*m)

shared_int(z4) = d3_z(i + 3*m)

! sync threads before starting main part of kernel

call syncthreads()

!tmm_converged = .false.

cuda_tmm_loop: do iter1 = itersave + 1, max( (nofiter)/(nofortho), 1)

!------------------------------------------------------

! carry out transfer-matrix multiplications (cuda3)

!------------------------------------------------------

select case(iswapflag)

! perform one tmmult per iteration, then swap...

case(1)

northo_loop_swap: do iter2= 1, nofortho, 1

call tmmult_cuda3(shared_real, energy, diagdis, m, v,&

i, j, iter1, psi_a, psi_a_1, psi_a_m, psi_b, psi_b_1,&

psi_b_m, z1, z2, z3, z4, shared_int, irngflag, ibcflag)

call cuda_swap(shared_real, psi_a, psi_b)

enddo northo_loop_swap

! or perform two tmmult’s per iteration

case default

northo_loop: do iter2= 1, nofortho, 2

call tmmult_cuda3(shared_real, energy, diagdis, m, v,&

i, j, iter1, psi_a, psi_a_1, psi_a_m, psi_b, psi_b_1,&

psi_b_m, z1, z2, z3, z4, shared_int, irngflag, ibcflag)

call tmmult_cuda3(shared_real, energy, diagdis, m, v,&

i, j, iter1, psi_b, psi_b_1, psi_b_m, psi_a, psi_a_1,&

psi_a_m, z1, z2, z3, z4, shared_int, irngflag, ibcflag)

enddo northo_loop

end select

!-----------------------------------------------------------

! carry out gram-schmidt reorthonormalisation (cuda3)

!-----------------------------------------------------------

do ivec = 1,m

call norm_cuda3(m,ivec,norm_sum,norm_1,gamma,gamma2,&

psi_a,psi_b,i,j,shared_real,iwriteflag)

call orth_cuda3(m,ivec,orth_sum,orth_1,i,j,&

psi_a,psi_b,shared_real,iwriteflag,sync_count)

enddo

!-----------------------------------------------------------

! calculate ngamma and check convergence

!-----------------------------------------------------------

call ngamma_cuda3(iwidth,nofortho,iter1,epsilon,&

gamma,gamma2,ngamma,acc_var,shared_real,j,m)

!-----------------------------------------------------------

! perform gpu sync to wait for convergence flag to be loaded

!-----------------------------------------------------------

call threadfence()

call gpu_sync(-1,i,j)

!-----------------------------------------------------------

! exit if converged

!-----------------------------------------------------------

!if(iter1==335) goto 900 ! dbg:

if(d3_tmm_converged) goto 900

!-----------------------------------------------------------

! exit and relaunch kernel if nofprint exceeded

!-----------------------------------------------------------

select case(iwriteflag)

case(0)

continue

case default

if ( mod(iter1,nofprint) == 0 ) goto 1000

end select

end do cuda_tmm_loop

! no convergence in nofiter-loop

iter1 = iter1 - 1

900 continue

d3_kernel_finished = .true.

1000 continue

! save number of iterations to global memory

d3_iter1 = iter1

!-----------------------------------------------------------

! save random numbers to global memory

!-----------------------------------------------------------

if(j.eq.1) then

d3_z(i) = shared_int(z1)

d3_z(i + m) = shared_int(z2)

d3_z(i + 2*m) = shared_int(z3)

d3_z(i + 3*m) = shared_int(z4)

end if

!-----------------------------------------------------------

! copy psi, gammas, acc_var and ngamma from shared/local to global mem

!-----------------------------------------------------------

d3_psi_a(j,i) = shared_real(psi_a)

d3_psi_b(j,i) = shared_real(psi_b)

if (i.eq.1) then

d3_gamma(j) = gamma

d3_gamma2(j) = gamma2

d3_acc_variance(m+1-j) = acc_var

d3_ngamma(m+1-j) = ngamma

endif

end subroutine cuda3kernel

attributes(device) subroutine tmmult_cuda3(shared_real, en, diagdis, &

m, v, i, j, iter1, psi_a, psi_a_1, psi_a_m, psi_b, psi_b_1, &

psi_b_m, z1, z2, z3, z4, z, irngflag, ibcflag)

! input parameters

integer, intent(in), value :: m, psi_a, psi_a_1, psi_a_m, psi_b, &

psi_b_1, psi_b_m, v, i, j, z1, z2, z3, z4, irngflag, ibcflag

integer(kind=8), intent(in), value :: iter1

real(kind=rkind), intent(in), value :: diagdis, en

! local/shared variables and arrays

integer(kind=ikind), shared, dimension(*) :: z

real(kind=rkind), shared, dimension(*) :: shared_real

real(kind=rkind) :: psileft, psiright

real(kind=rkind) :: r_test

! create new onsite potential

select case(irngflag)

case(0)

shared_real(v) = en - diagdis*(rlfsr113_device(z1,z2,z3,z4,z) - 0.5)

71



case default

shared_real(v) = mod(iter1,10) * 0.1

end select

! sync after getting random number, and before updating psileft/right

call syncthreads()

! calculate left wavefunction

if (i.eq.1) then

if (ibcflag.eq.0) then

psileft= 0.0 ! hard wall bc

else if (ibcflag.eq.1) then

psileft= shared_real(psi_a_m) ! periodic bc

else if (ibcflag.eq.2) then

psileft= -shared_real(psi_a_m) ! antiperiodic bc

endif

else

psileft= shared_real(psi_a-1)

endif

! calculate right wavefunction

if (i.eq.m) then

if (ibcflag.eq.0) then

psiright= 0.0 ! hard wall bc

else if (ibcflag.eq.1) then

psiright= shared_real(psi_a_1) ! periodic bc

else if (ibcflag.eq.2) then

psiright= -shared_real(psi_a_1) ! antiperiodic bc

endif

else

psiright= shared_real(psi_a+1)

endif

! update wavefunction

shared_real(psi_b)= shared_real(v) * shared_real(psi_a) &

- (psileft + psiright) - shared_real(psi_b)

end subroutine tmmult_cuda3

!---------------------------------------------------------

! normalisation device subroutine

!---------------------------------------------------------

attributes(device) subroutine norm_cuda3(m,ivec,norm_sum,norm_1,&

gamma,gamma2,psi_a,psi_b,i,j,shared_real,iwriteflag)

! local variables

integer,intent(in),value :: m, ivec, norm_sum, norm_1, &

i, j, psi_a, psi_b, iwriteflag

real(kind=rkind) :: dummy, gamma, gamma2

! shared arrays

real(kind=rkind),shared,dimension(*) :: shared_real

!---------------------------------------------------------

! normalise (cuda3)

!---------------------------------------------------------

! calculate dot product <i|i>(k)

if(j == ivec) then

shared_real(norm_sum) = shared_real(psi_a)*shared_real(psi_a) &

+ shared_real(psi_b)*shared_real(psi_b)

endif

! sync threads before performing sum

call syncthreads()

! calculate total norm using sum reduction <i|i> = sum_k{<i|i>(k)}

! carry out reduction across warps

if (m >= 512) then

if (j == ivec .and. i <= 256) shared_real(norm_sum) = &

shared_real(norm_sum) + shared_real(norm_sum + 256)

call syncthreads()

end if

if (m >= 256) then

if (j == ivec .and. i <= 128) shared_real(norm_sum) = &

shared_real(norm_sum) + shared_real(norm_sum + 128)

call syncthreads()

end if

if (m >= 128) then

if (j == ivec .and. i <= 64) shared_real(norm_sum) = &

shared_real(norm_sum) + shared_real(norm_sum + 64)

call syncthreads()

end if

if (m >= 64) then

if (j == ivec .and. i <= 32) shared_real(norm_sum) = &

shared_real(norm_sum) + shared_real(norm_sum + 32)

call syncthreads()

end if

! carry out reduction inside warp

if (j==ivec) then

! if (m >= 64) shared_real(norm_sum) = &

! shared_real(norm_sum) + shared_real(norm_sum + 32)

if (m >= 32) shared_real(norm_sum) = &

shared_real(norm_sum) + shared_real(norm_sum + 16)

if (m >= 16) shared_real(norm_sum) = &

shared_real(norm_sum) + shared_real(norm_sum + 8)

if (m >= 8) shared_real(norm_sum) = &

shared_real(norm_sum) + shared_real(norm_sum + 4)

if (m >= 4) shared_real(norm_sum) = &

shared_real(norm_sum) + shared_real(norm_sum + 2)

if (m >= 2) shared_real(norm_sum) = &

shared_real(norm_sum) + shared_real(norm_sum + 1)

end if

! normalise wavevectors |i> = |i> / <i|i>

if(j == ivec) then

dummy= 1.0/sqrt(real(shared_real(norm_1)))

shared_real(psi_a) = dummy * shared_real(psi_a)

shared_real(psi_b) = dummy * shared_real(psi_b)

end if

! sync threads so that norm is ready for orth

call syncthreads() ! maydo: investigate whether this is necessary

!---------------------------------------------------------

! calculate gamma

!---------------------------------------------------------

if(j == ivec) then ! maydo: also put if(i==1), do same for ngamma_cuda3

dummy = log(dummy)

gamma = gamma - dummy

gamma2 = gamma2 + dummy*dummy

endif

end subroutine norm_cuda3

!---------------------------------------------------------

! orthogonalisation device subroutine (cuda3)

!---------------------------------------------------------

attributes(device) subroutine orth_cuda3(m,ivec,orth_sum,orth_1,i,j,&

psi_a,psi_b,shared_real,iwriteflag,sync_count)

! local variables

integer,intent(in),value :: m, ivec, orth_sum, orth_1, i, j, &

psi_a, psi_b, iwriteflag

integer :: sync_count

real(kind=rkind) :: psi_a_ivec, psi_b_ivec

! shared arrays

real(kind=rkind),shared,dimension(*) :: shared_real

!---------------------------------------------------------

! orthogonalise (cuda3)

!---------------------------------------------------------

! load psi from block ivec into global memory

if(j == ivec) then

d3_psi_a(ivec,i) = shared_real(psi_a)

d3_psi_b(ivec,i) = shared_real(psi_b)

end if

! inter-block sync to wait for global memory to finish loading

sync_count = sync_count + 1

call threadfence() ! this flushes the cached global memory

call gpu_sync(sync_count, i, j)

! load psi from global memory into psi_ivec

if(j > ivec) then

psi_a_ivec = d3_psi_a(ivec,i)

psi_b_ivec = d3_psi_b(ivec,i)

end if

! calculate dot product <i|j>(k)

if(j > ivec) then

shared_real(orth_sum) = &

psi_a_ivec * shared_real(psi_a) + &

psi_b_ivec * shared_real(psi_b)

end if

! sync threads before performing sum

call syncthreads()

! calculate sum using reduction <i|j> = sum_k{<i|j>(k)}

! carry out reduction across warps

if (m >= 512) then

if (j > ivec .and. i <= 256) shared_real(orth_sum) = &

shared_real(orth_sum) + shared_real(orth_sum + 256)

call syncthreads()

end if

if (m >= 256) then

if (j > ivec .and. i <= 128) shared_real(orth_sum) = &

shared_real(orth_sum) + shared_real(orth_sum + 128)

call syncthreads()

end if

if (m >= 128) then

if (j > ivec .and. i <= 64) shared_real(orth_sum) = &

shared_real(orth_sum) + shared_real(orth_sum + 64)

call syncthreads()

end if

if (m >= 64) then

if (j > ivec .and. i <= 32) shared_real(orth_sum) = &

shared_real(orth_sum) + shared_real(orth_sum + 32)
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call syncthreads()

end if

! carry out reduction inside warp

if (j > ivec) then

! if (m >= 64) shared_real(orth_sum) = &

! shared_real(orth_sum) + shared_real(orth_sum + 32)

if (m >= 32) shared_real(orth_sum) = &

shared_real(orth_sum) + shared_real(orth_sum + 16)

if (m >= 16) shared_real(orth_sum) = &

shared_real(orth_sum) + shared_real(orth_sum + 8)

if (m >= 8) shared_real(orth_sum) = &

shared_real(orth_sum) + shared_real(orth_sum + 4)

if (m >= 4) shared_real(orth_sum) = &

shared_real(orth_sum) + shared_real(orth_sum + 2)

if (m >= 2) shared_real(orth_sum) = &

shared_real(orth_sum) + shared_real(orth_sum + 1)

end if

! subtract projection from the wavevectors |j> = |j> - <i|j><i|

if(j > ivec) then

shared_real(psi_a) = shared_real(psi_a) - &

shared_real(orth_1) * psi_a_ivec

shared_real(psi_b) = shared_real(psi_b) - &

shared_real(orth_1) * psi_b_ivec

end if

end subroutine orth_cuda3

! -------------------------------------------------------------

! ngamma_cuda3:

!

attributes(device) subroutine ngamma_cuda3(iwidth,nofortho,&

iter1,epsilon,gamma,gamma2,ngamma,acc_var,shared_real,j,m)

integer, intent(in), value :: iwidth, nofortho, j, m

integer(kind=8), intent(in), value :: iter1

real(kind=rkind), intent(in), value :: epsilon

real(kind=rkind) :: thing, gamma, gamma2, ngamma, acc_var

real(kind=rkind),shared,dimension(*) :: shared_real

!logical :: tmm_converged

ngamma= gamma/real(nofortho*iter1)

thing = gamma/real(iter1)

acc_var = &

sqrt( abs( &

(gamma2/real(iter1) - &

thing*thing ) &

/ real( max(iter1 -1,1) ) &

)) / abs( thing )

!-----------------------------------------------------------

! check accuracy and dump the result

!-----------------------------------------------------------

if(j == m) then

if( iter1.ge.iwidth .and. &

iter1.ge.miniter ) then

if( acc_var.le.epsilon .and. &

acc_var.ge.tiny) then

d3_tmm_converged=.true.

endif

endif

endif

end subroutine ngamma_cuda3

!-----------------------------------------------------------

! gpu_sync

!-----------------------------------------------------------

attributes(device) subroutine gpu_sync(goalval, tid, bid)

integer, intent(in), value :: goalval, tid, bid

! only thread 1 is used for synchronisation

if(tid == 1) arrayin(bid) = goalval

if(bid == 1) then

do while(arrayin(tid) /= goalval)

! use atomic operation

d_atomic(bid,tid) = atomiccas(d_atomic(bid,tid), 0, 1)

end do

call syncthreads()

arrayout(tid) = goalval

end if

if(tid == 1) then

do while(arrayout(bid) /= goalval)

! use atomic operation

d_atomic(bid,tid) = atomiccas(d_atomic(bid,tid), 0, 1)

end do

end if

call syncthreads()

end subroutine gpu_sync

end module my_kernels

A.4 random.f90

This source code contains the random number generator used in the Serial-TMM.
The RNG for CUDA-TMM would have been put in here, but in CUDA FOR-
TRAN when one calls a kernel, one can only call subroutines that are contained
within the same module as that kernel. So the CUDA-RNG had to be contained in
cuda util.f90.

module RNG_RLFSR113

use MyNumbers

implicit none

! accessibility

private

public :: rlfsr113

public :: lfsrinit

! variables

integer(kind=ikind) :: z1, z2, z3, z4

! parameter

real(kind=rkind), parameter :: AM = 4.656612873077d-10

integer(kind=ikind), parameter :: IA = 16807

integer(kind=ikind), parameter :: IM = 2147483647

integer(kind=ikind), parameter :: IQ = 127773

integer(kind=ikind), parameter :: IR = 2836

contains

! -----------------------------------------------------------------

! rlfsr113() returns a random number of interval (0, 1)

! -----------------------------------------------------------------

function rlfsr113() result(dRet)

real(kind=rkind) :: dRet

integer(kind=ikind) :: b

b = ishft(ieor(ishft(z1,6),z1),-13)

z1 = ieor(ishft(iand(z1,-2),18),b)

b = ishft(ieor(ishft(z2,2),z2),-27)

z2 = ieor(ishft(iand(z2,-8),2),b)

b = ishft(ieor(ishft(z3,13),z3),-21)

z3 = ieor(ishft(iand(z3,-16),7),b)

b = ishft(ieor(ishft(z4,3),z4),-12)

z4 = ieor(ishft(iand(z4,-128),13),b)

dRet=ishft(ieor(ieor(ieor(z1,z2),z3),z4),-1)*AM

end function rlfsr113

! -----------------------------------------------------------------

! lfsrinit() initialize rlfsr113 (z1,z2,z3,z4)

! -----------------------------------------------------------------

subroutine lfsrinit(idum)

integer(kind=ikind), intent(inout) :: idum

integer(kind=ikind) :: k,c1,c2,c3,c4

! Check whether the FORTRAN integers can be used as unsigned long !

! data c1 /B’11111111111111111111111111111110’/

! data c1 /X’FFFFFFFE’/

c1 = Z"FFFFFFFE"
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! data c2 /B’11111111111111111111111111111000’/

! data c2 /X’FFFFFFF8’/

c2 = Z"FFFFFFF8"

! data c3 /B’11111111111111111111111111110000’/

! data c3 /X’FFFFFFF0’/

c3 = Z"FFFFFFF0"

! data c4 /B’11111111111111111111111110000000’/

! data c4 /X’FFFFFF80’/

c4 = Z"FFFFFF80"

if ((c1.ne.-2).or.(c2.ne.-8).or.(c3.ne.-16).or.(c4.ne.-128)) then

print *,"c1,c2,c3,c4", c1,c2,c3,c4

print *,’Nonstandard integer representation. Stoped.’

stop

endif

! Initialize z1,z2,z3,z4

if (idum.le.0) idum=1

k=(idum)/IQ

idum=IA*(idum-k*IQ)-IR*k

if (idum.lt.0) idum = idum + IM

if (idum.lt.2) then

z1=idum+2

else

z1=idum

endif

k=(idum)/IQ

idum=IA*(idum-k*IQ)-IR*k

if (idum.lt.0) idum = idum + IM

if (idum.lt.8) then

z2=idum+8

else

z2=idum

endif

k=(idum)/IQ

idum=IA*(idum-k*IQ)-IR*k

if (idum.lt.0) idum = idum + IM

if (idum.lt.16) then

z3=idum+16

else

z3=idum

endif

k=(idum)/IQ

idum=IA*(idum-k*IQ)-IR*k

if (idum.lt.0) idum = idum + IM

if (idum.lt.128) then

z4=idum+128

else

z4=idum

endif

end subroutine lfsrinit

end module RNG_RLFSR113

! -------------------------------------------------------------------

!

! MODULE RandomNumberGenerator random.f90

! RANDOM - Standard F77/F90 interface for random number generators

!

! -------------------------------------------------------------------

module RNG

use RNG_RLFSR113

use MyNumbers

implicit none

! accessibility

private

public :: SRANDOM

public :: DRANDOM

public :: GRANDOM

! parameter

! ! kind parameter for double precision

! integer, parameter :: PRECISION = 8

! number of random number inside [0,1] for routine gauss

integer, parameter :: GAUSS_N = 20

contains

! ------------------------------------------------------------------

! SRANDOM()

!

! Random number generator SEED interface for use with any old RND

! ------------------------------------------------------------------

subroutine SRANDOM( ISeed )

integer, intent(in) :: ISeed

real(kind=rkind) :: dummy

integer(kind=ikind) idum

! change following lines to incorporate different RND generators

idum = ISeed

call lfsrinit(idum)

! Make a single call to rlfsr113() to achieve a valid state

dummy=rlfsr113()

end subroutine SRANDOM

! ------------------------------------------------------------------

! DRANDOM()

!

! Random number generator interface for use with any old RND

! ------------------------------------------------------------------

function DRANDOM( ISeed ) result(dRet)

integer, intent(in) :: ISeed

real(kind=rkind):: dRet

! change following lines to incorporate different RND generators

dRet = rlfsr113() ! NOTE that ISeed is never used

end function DRANDOM

! ------------------------------------------------------------------

! GRANDOM()

!

! Gaussian random number generator interface

! ------------------------------------------------------------------

function GRANDOM( ISeed, avg, sigma) result (dRet)

integer, intent(in) :: ISeed

real(kind=rkind), intent(in) :: avg

real(kind=rkind), intent(in) :: sigma

real(kind=rkind) :: dRet

! change following lines to incorporate different RND generators

call gauss(dRet, sigma, avg) ! NOTE that ISeed is never used

end function GRANDOM

! ------------------------------------------------------------------

! GAUSS()

!

! THE ROUTINE GAUSS GENERATES A RANDOM NUMBER

! IN A GAUSSIAN DISTRIBUTION

!

! VARIABLES:

!

! X - THE OUTPUT GAUSSIAN VARIABLE

! sigma - standard deviation

! mu - average

!

! NOTE: The random number generator rlfsr113 should be

! initialised by calling

! the subroutine lfsrinit

! ------------------------------------------------------------------

subroutine gauss(X,sigma,mu)

real(kind=rkind), intent(out):: X

real(kind=rkind), intent(in) :: sigma

real(kind=rkind), intent(in) :: mu

real(kind=rkind) :: Y, SUM

integer i

SUM=0.0

do i=1,GAUSS_N

Y=rlfsr113()

Y=2._RKIND*(Y-0.5_RKIND)

SUM=SUM+Y

end do

X=mu+sigma*SUM* DSQRT( 3.0_RKIND /DBLE(GAUSS_N) )

end subroutine gauss

end module RNG
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[13] R. A. Römer and M. Schreiber. “Numerical investigations of scaling at the
Anderson transition”. In: The Anderson Transition and its Ramifications –
Localisation, Quantum Interference, and Interactions (2003), pp. 3–19.

75



[14] A. MacKinnon and B. Kramer. “One-Parameter Scaling of Localization Length
and Conductance in Disordered Systems”. In: Phys. Rev. Lett. 47.21 (1981),
pp. 1546–1549.

[15] J. K. Cullum and R. A. Willoughby. Lanczos Algorithms for Large Symmetric
Eigenvalue Computations, Volume 1: Theory. Birkhäuser, Boston, 1985.
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