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ABSTRACT

We present the exact solution to a one-dimensional, two-component, quanturn marny-
body system in which like particles interact with a pair potential s(s -+ 1)/sinh*(r), while
unlike particles interact with a pair potential —s(s + 1)/cosh®(r). We call this the SC
model, for the sinh-cosh interaction. After giving a proof of integrability, we then derive
the coupled equations determining the complete spectrum. All singularities occur in
the ground state when there are equal numbers of the two components; we give explicit
results for the ground state and low-lying states in this case. For s > 0, the system is
an antiferromagnet/insulator, with excitations consisting of a pair-hole-pair continuum,
a two-particle continuum with gap, and excitons with gaps. For —1 < s < 0, the system
has excitations consisting of a hole-particle continuum, and a two-spin wave continuui,
both gap-less, and we may be usefully view the SC model as a Heisenberg-Ising fluid with
moving Heisenberg-Ising spins. Using finite-size scaling methods of conformal field theory,
we calculate the asymptotic expressions and critical exponents for correlation functions of
these gapless excitations at zero temperature. The conformal structure is closely related
to the Hubbard model with repulsive on-site interaction, although the critical anomaly
¢ can not be read off from the finite-size corrections to the ground state emergy. We
then investigate the transport properties of the model by threading it with a flux. The
Luttinger liquid relation for the stiffness and the susceptibility is derived, both from
conformal arguments, and directly from the integral equations. IFinally, we investigate
the opening and closing of the ground state gaps for both SC and Heisenberg-Ising models,

as the interaction strength is varied.



To Yoginie



CONTENTS

ABS T R AC T o e iv
LIST OF FIGURES ... i e e e e e e e vii
ACKNOWLEDGMENTS ... .. i i X
CHAPTERS
1. INTRODUCTION ...ttt it et ettt 1
1.1 Exactly-Soluble Many-Body Systems . ...... ..o il 1
1.2 The SCModel .. ... PR 3
2. THE ASYMPTOTIC BETHE ANSATZ SOLUTION .............. 5
2.1 Imtegrabilify . ... oo e 5
2.2 The Two-Body Problem . ... ...t 7
2.3 Consistency and Phase Shifts .. ... i i 10
2.4 Bethe-Ansatz EqUations ... ...ttt 17
3. PROPERTIES OF LOW-LYING STATES........................ 20
3.1 The Unbound Case ... .ot e et 20
32 The Bound Case ..o v ittt it e i e s 25
4. CORRELATION FUNCTIONS FOR THE ZERO SECTOR ....... 29
4.1 Conformal Approach for Correlation Functions . ......... ... ... ..., 30
4.2 The Central Charge. . . ..o vttt i e s 31
4.3 Asymptotic Correlation Functions for the Unbound Case ............. 34
4.4 Asymptotic Correlation Functions for the Bound Case................ 42
4.5 The Noninteracting Two-Component System .. ..., 44
5. TRANSPORT PROPERTIES OF THE UNBOUND CASE ........ 47
5.1 The Twisted Bethe Ansatz Equations. ....... ... ..o i, 47
5.2 Stiffness and Susceptibility . ..... .o 49
LT O i1 oo P 51
6. CONCLUSION S . . ittt e e e et e s 57
REFE RENCES .. ittt ittt e et et e et e 59



2.1

2.2

2.3
2.4
2.5

2.6

2.7

2.8

2.9

2.10

3.1

3.2

3.3

3.4

LIST OF FIGURES

Particle-particle phase shift 8g o{k) for various values of the interaction strength
s = —0.98, —0.49,0,0.49, 0.98, 1.47, and 1.98, corresponding to increasing dash

0531 Y1« R R 11
A pair of type m. Solid and dashed arrows indicate the two different kinds of

PALICIES. it 11
The three possible outgoing states for a particle-pair scattering process. .. ... 12

Particle-pair scattering channels and their amplitudes as explained in the text. 13

Particle-pair phase shift 8g1(k) for various values of the interaction strength
s = 0.02,0.51,1.00,1.49, 1.98, corresponding to increasing dash length. ...... 14

A pair-pair scattering process consists of two subsequent particle-pair scatter-
FIE DPOCESSES. + « v vt sttt e e 15

Pair-pair phase shift 611(k) for various values of the interaction strength s =
0.02,0.51, 1.00, 1.49, 1.98, corresponding to increasing dash length. ......... 15

At the threshold values for a new bound state, ie., s = integer, we have
80,0(00)/m = number of bound states. . ...... . ... 16

Particle-spin wave phase shift 6p_1(k) for various values of the interaction
strength s = —0.99, —0.75, ~0.50, —0.25, —0.01, corresponding to increasing
dash JemEth. . oo e et 19

Spin wave-spin wave phase shift 6_1,..1{k) for various values of the interaction
strength s = —0.99,-0.75, -0.50, —0.25, —0.01, corresponding to increasing
dash length. ... oot 19

Ground state energy per unit length Eo/ L versus density N/ L for the unbound
case at 8 = —1/2 and the bound case at s = 1/2,1,3/2.. ... ............. 23

Energy above the ground state energy versus momentum (dispersion relations)
for the low lying excitations when s = —1/2 and density N/L = 0.600....... 24

Particle-hole excitation velocity vo as s function of particle density dy for
various interaction strength values s. s == —0.95 for the longest dashed
curve and increases in increments of 0.13 up to s = —0.02. The solid curve
corresponds to the noninteracting case, i.e., vo(s =0) =7ndo/2. . .. ... ...... 25

Spin wave-spin wave excitation velocity v_; as a function of particle density
dy for various interaction strength vaiues s. s = —0.95 for the longest dashed
curve and increases in increments of 0.13 up to s = —0.02. The solid curve
corresponds to the noninteracting case, e, v_1(s =0) = ndp/2 =7wd_y. .... 26



3.5

3.6

4.1

4.2

4.3

4.4

5.1

.2

5.3

5.4

5.5

Energy above the ground state energy versus momentum (dispersion relations)
for the low lying excitations when s = 3/2 and density N/L = 0.943. .......

Pair-pair hole excitation velocity vy as a function of particle density dop for
various interaction strength values s. s = 0.95 for the longest dashed curve and
decreases in increments of —0.13 up to ¢ = 0.02. The solid curve corresponds
to the noninteracting case, i.e., vi{s=0)=ad1/2. ... ... ... .. L

The central charge of the SC mode! as a function of the interaction strength
s. Note that ¢ ~ I only for the noninteracting case s =1. ............ ...

Lines of constant universal behavior for the unbound case. Contours of con-
stant value of the dressed charge & in the (dy, s) plane are shown. The lines
represent increments of .1 starting from & = 1.0 at dp = 0 up to & = 1.8,
The dashed line correspond to the value & = /2 of a noninteracting system.

Plot of &y as function of particle density dp for various values of interaction
strength s for the unbound case. ... ... o i i

Lines of constant universal behavior for the bound case. Contours of constant
value of the dressed charge £ in the (do,s) plane are shown. The lines
represent increments of .1 starting from &y = 2.0 at do = 0 down to §; = 1.2.
The dashed line correspond to the value & = v/2 of a noninteracting system.

Plot of 8; as function of particle density dp for various values of interaction
strength s for the bound case. ... ... i i

The low-lying states for the bosonic SC model at L = 12, Np = 6 and Ny = 3.
The bold eurve corresponds to the ground state Wy, The winding number of
Up is n = 6 = Np. Note the various level crossing in this free spin wave case,
especially the crossing of Wy and the first exited state ¥y at ® = 2z. The
dashed curves correspond to four higher lying states. ...................

Pseudo-momenta k, rapidities A and complex rapidities ~ as a function of
flux @ for the ground state ¥y of the bosonic SC model at § = —1/2, L =12,
Ng = 6 and N_; = 3. The initial quantum numbers for this state are I =
{~5/2,~3/2,-1/2,1/2,3/2,5/2} and J = {~1,0,1}. Note the periodicity of

21 Np for the A/« cycle and the symmetry of the pseudo-momenta k around 0.

Plot of the ground state energy variation L[t — E(®)/E(2r)] for the SC model
at §=—1/3for L=12,20and 28. ... .. ...

Energy of the ground state and first exited state and their difference in the H-I
model at ® = 27 for Ny; = 12. Note the closing of the gap at A = cos(n/Q)
TOT Q@ = 2,3, 4,5, ottt e e

The charge stiffness D(s) for the SC model. The dashed curves correspond
to I = 12, 24 and 32 and converge to D(0} = 1/8 at s — 07. The solid
curve comes from Equation (5.8), which can be derived by conformal methods
or from thermodynamics. (Note that as s — 07, the solid curve does not
converge to 1/8. This is due to a buildup of numerical errors in the integration
FOUBITIE.) © v ettt ettt e e e e

viii

28



5.6 Log-log plot of Fy versus L for values of s = —0.04, -0.22, —0.40, —0.57,
—0.75 and --0.93 corresponding to increasing dash length. For L > 10, we see
straight lines corresponding to purely algebraic finite-size behavior. ........ 56

ix



ACKNOWLEDGMENTS

It is my honor to acknowledge the guidance and support of my advisor Prof. Bill
Sutherland during the course of this research. His continuous encouragement and inspir-
ing enthusiasm made the present work possible.

My deepest respect and love is due to my wife Yoginie, who had the strength and
courage to stay with me for more than two years of separation. I dedicate this work to
her.

Chapters 2 and 3 include material that has already appeared as a Physical Review
Letter [41]. Chapters 3 and 4 include material that has already appeared in Physical Re-
view B [67]. Results of both publications are used according to the copyright agreements

with the American Physical Society.



CHAPTER 1
INTRODUCTION

1.1 Exactly-Soluble Many-Body Systems

Low-dimensional, many-body systems are an important testing ground of theoretical
ideas and methods in physics. The restriction of the possible degrees of freedom in these
systems, due to their low-dimensionality, reduces some of the analytical and numerical
complications in solving them. However, the systems are rich enough in physical structure
that it might be that the understanding gained could be generalized to higher dimensions.
Purthermore, the recent discoveries of high-T, superconductivity {1] and quantum Hall
effect [2, 3] have renewed interest in these systems in their own right, since the reduced
dimensionality seems to be the paramount cause for these effects.

Particles confined to a line can not go sround each other and, in this sense, have
to interact strongly with each other. However, by looking at the scattering process
of two incoming particles, we see that conservation of energy and momentum restricts
the scattering to a single outgoing chanmnel. Therefore, there are no dissipative effects
such as, e.g., thermalization of the momenta for & two-body scattering. Only scattering
processes involving more than two particles can give dissipation. Furthermore, for a
system with interaction range ¢, the mean-free-path for a three-body collision is 1 JCd?
with d the particle density. Thus for ¢ sufficiently small — like a é-function gas — this
mean-free-path will be huge. Therefore, we may expect that for an incoming M-body
state with amplitude A(py,...,pur), the scattering will be of the two-body type only and
simply rearrange the momenta such that the outgoing amplitude is A(pmy, ..., pria). The

eigenfunctions can then be written as

U(x) — ZA(II) exp [a Z mjpnj} , (1.1)
il

and there is no thermalization. This nondiffraction property is at the heart of the Bethe-
Ansatz and has been used by Bethe in 1931 to solve the Heisenberg chain [4]. Other
models solved by this method are the §-function gas [5, 6, 7, 8, 9, 10], the Hubbard model



[14] and the anisotropic Heisenberg-Ising chain {11, 12, 13]. Certainly, not all possible
interactions will fall into this picture and it has been shown that in order for the Bethe
Ansatz to hold, we have a set of congistency equations that imposes restrictions on the
set of possible interaction potentials [15, 16]. In genersl, these nondiffractive potentials
are called integrable [17].

The reduced dimensionality also affects the statistical properties of a given system.
Particle exchanges in two dimensions may be either clockwise or counterciockwise and
in one-dimensions we have a linear ordering of particle positions. Suppose we study a
one-component one-dimensional model such that the reflection amplitude is zero. Then
the two-body scattering results in a phase shift only. This phase shift is due to (i) the
dynamical scattering phase G4(k ~ k'), dependent on the relative momenta and (ii) the
statistical phase ;. These two phases add up and we may reinterpret the process as
a scattering of free particles without dynamical phase but statistical phase shift ¢ =
fs + 04(k — k'). Thus we can see that one-dimensional systems may be viewed as having
a statistical interaction only. For @ independent of the momenta, the resulting statistics
is known as fractional statistics [39]; for @ explicitly a function of k, ¥/, it is called mutual
statistics [19].

Of special interest in this context is the g/7* model which has been solved exactly
by Sutherland [20] in 1972 and which is closely related to the important edge states in
the quantum Hall effect [21], and also, surprisingly, to level distributions in quantum
chaotic systems [22]. In particular, a lattice version of the periodic g/r® model, the
so-called Haldane-Shastry model [23, 24], has been studied extensively in the last few
years. This model has striking similarities to the Heisenberg antiferromagnetic chain,
and is intimately linked with Gutzwiller projection of free Fermi states, a useful technique
in strongly correlated fermi systems. Also, the algebraic structures in these models are
currently under investigation in the context of quantum groups [25].

In this thesis, we will present a study of a model of the g/r? type with competing
interactions. We have two types of particles and a two-body potential such that like
particles repel and unlike particles atiract, or vice versa depending on the sign of the
interaction strength s. This new model is closely related to the above mentioned systems
and we will argue that it may be usefully viewed as a Heisenberg-Ising fluid with moving
spins.

After introducing the Hamiltonian in the next section, we then present its solution via



the asymptotic Bethe Ansatz in Chapter 2, where we also show integrability. Ground state
properties and excitations in the thermodynamic limit are studied in Chapter 3. For an
equal number of particles of the two components, the ground state for s > 0 corresponds to
an antiferromagnet/insulator. Excitations consist of a gapless pair-hole-pair continuum,
a two-particle continuum with gap and excitons with gap. For —1 < 8 < 0, the system
has two gapless excitations — a particle-hole continuum and & two spin-wave continuim.
In Chapter 4, using finite-size scaling methods of conformal field theory, we calculate the
asymptotic expressions and critical exponents for correlation functions of these gapless
excitations at zero temperature. The conformal structure is closely related to the Hubbard
model with repulsive on-site interaction. However, we can not simply read off the critical
anomaly ¢ from the finite-size corrections to the ground state energy. This is also true of
the periodic g/r? model and we give arguments why this forrmila may fail. For —1 < s <0
the system behaves very much like a Heisentberg-Ising fluid. We proceed to thread it with
a flux ® in Chapter 5 and study its resulting transport properties. We examine the
periodicity of the spectrum as & function of the flux for varying interaction strength and
show that — just as for the Heisenberg-Ising chain [13] — there exist threshold values of

s where the periodicity becomes macroscopic, i.e., implying free acceleration.

1.2 The SC Model
We present the exact solution to a one-dimensional, two-cornponent, quantum many-
body system of considerable complexity. The two kinds of particles are distinguished by a
quantum number o = =1, which may be thought of as either spin or charge. The system
is defined by the Hamiltonjan
H = Z %}%2-2— -+ Z ’Ujk(:}:'j - k), (}_.2)
1gj=N 7 1Zi<hksN
where the pair potential is
l+ojo,  1—050k
2sinh?(z)  2cosh?(z) |’
We assume s > —1 such that we have a finite bound on the ground state energy (26,

Chapter 35]. We call this the SC model, for the sinh-cosh interaction. Thus for s > 0,

vin(w) = s{s + 1)

(1.3)

like particles repel, and unlike particles attract. When like particles are near, the repulsive
potential increases as 1/r2, but for large separations, both potentials decay exponentiaily
with a decay length we take as our length scale, and hence unity. The potentials might

usefully be thought of as a screened 1/r® potential.



This system was first introduced by Calogero et al [27], who showed it to be integrable.
Sutherland [28] soon afterward showed that the system could be exactly solved, and
gave the solution for a single component system. He further showed the Toda lattice
to be the low-density limit, and was able to take the classical limit to reproduce Toda’s
celebrated results, identifying the particle-hole excitations of the quantum system with
the soliton-phonon modes of the classical system.

Let us begin.



CHAPTER 2

THE ASYMPTOTIC BETHE ANSATZ
SOLUTION

Our solution for the two-component system exploits in a fundamental way the in-
tegrability of the system, so we discuss this point first. The two-body problem, which
gives us the particle-particle phase shifts, is studied next. We then show that indeed the
consistency equations are obeyed and proceed to write the Bethe Ansatz wave function

and the Bethe Ansatz equations.

2.1 Integrability

For a classical system of N one-dimensional particles, Lax [30], Moser {31} and Calogero
[32] have shown that for certain potentials one can find two Hermitean N x IV matrices
L and A that obey the Lax equation dL/dt = i[A4,L]. Thus L evolves by a umitary
transformation generated by A, and hence det{L—w 1] is a constant of motion. Expanding
the determinant in powers of w, we find N integrals of motion, ie., det[L —w 1] =
Socien Ji{~w)¥ 74§ = 1,..., N. Further, these integrals have been shown to be in
involution, and thus the system is integrable.

Under a reasonable assumption for the form of the Lax 4 and L matrices, Calogero
has shown that the most general solution to the Lax equations is given in terms of the
Jacobi elliptic function sn(zjm), and by a suitable choice of parameters, our Hamiltonian
is included.

Calogero has also demonstrated that if one replaces the classical dynamical variables
with the corresponding quantum mechanical operators, det[L — w 1] is well defined with
no ordering ambiguity, and the quantum mechanical commutator |H,det[L —w 1]] =
0. Thus, the J; are still constants of motion. Finally, Calogero showed that | det[L —
w 1],det|L — ' 1}]] = 0, and thus the quantum system is also completely integrable.

To sum up the situation: Our system is completely integrable. For the general

classical system integrability tells us something concrete, namely that the motion in



terms of action-angle variables is on a torus. However, for the general quantum system
integrability seems to buy one almost nothing. The exception is for those special cases
that support scattering; i.e., systems that fly apart when the walls of the box are removed.
In these cases, in the distant past and future the Lax matrix L approaches a diagonal
matrix with the momenta as diagonal elements, so that det|L — w 1} = [Ty<;en(p; — w)-
Thus the individual momenta p; are conserved in & collision, and hence, as emphasized
by Sutherland {28, 29], the wavefunction is given asymptotically by Bethe’s Ansatz.
Sutherland has exploited this fact to completely determine, in the thermodynamic limit,
properties of systems interacting by such potentials including our system. We stress that
no features of the proof of integrability are needed. All we need is to know it to be
integrable, by whatever method.

The proof of Calogero, however, is very difficult, and only briefly sketched in the
literature. For that reason, we now offer an alternative proof of integrability based on a

method of Shastry [33]. Let us write the Lax matrices as

A = Sy ol + (5 — Dedy, (2.1)
I#]
Lig = Gjps + i1~ dp)cin, (2.2)
where
1 ; _ 1 — o2
Qi = =S8 {*‘—i-“;—ﬂ-“&(:ﬂth(mj -~ Zp) + ~~—-fﬂﬁtsunh(ar:j - mk)} . (2.3)

Then if the two-body potential potential vy is given by v = o + oy —s°, we find that
the quantum Lax equation [H, L] = [L, 4] is satisfied. Here the first fancy commutator is
s quantum mechanical commutator between operators, whereas the second commutator
is an ordered matrix commutator, so that the equation above is really N? equations of
the form [H, Ljx] = Xi<< w{Ladi — AyLy,). This potential, however, is exactly the
potential for our system.

We now observe that the Lax A matrix has the following very important property.
Defining 8 vector ¢ with {; = 1, we see A = ¢(TA = 0. This allows us to construct

constants of motion by I, = ¢1L7¢, since

H, L) = ('H, L) (2.4)

= ¢ Y {ra, i (2.5)
O<j<n~1

= ¢t 3 {pPlanrie (2.6)

O<j<n—1



— {ALn—i _ L”WEA} ¢=0. (2.7)

By Jacobi’s relation for commutators, | I, In| is a constant of motion, and since this is a
system that supports scattering, we see [In, Im} — 0, and hence the system is completely

integrable.

2.2 The Two-Body Problem

Having shown the system to be integrable, we then know that the model has a complete
set of conserved quantities and that any many-body scattering event is just a sequence of
two-body scatterings. Therefore the set of momenta for an incoming state will be simply
rearranged by the scattering event, and so the wavefunction has to be of the Bethe Ansatz
form at least asymptotically. Then the only further input needed for the Bethe Ansatz is
the solution to the two-body problem. For a system thet supports scattering and which
has a convergent virial series, this asymptotic form of the wave function is enough to
insure that our results will become ezact in the thermodynamic limit, ie., L — oo at
fixed density [17].

First, we discuss like particles. In terms of the relative coordinate r = z — x1,
the potential is s(s + 1)/sinh?(r) and the relative momentum k = (kg — k1)/2. The

center-of-mass motion factors and we now seek a solution to the equation

" s(s+1)| ,
& (ry+ [,r& - Smhz(r)} ¢ =0, (2.8)

such that agymptotically,

et 7 — 0,

Let us make a change of variables, i.e,,

$(r) = [sinh(r)]"Fy(ul(r)), (2.10)
u(r) = 1/(1—e*). (2.11)

The equation for y{u) now reads as
w(1 ~ )y () + (ik + 1)1~ 2u)y/(u) — (ik — 5)(ik + s + Dy(u) = 0. (2.12)

This second order differential equation is solved by hypergeometric functions F{a, 3, v, ).

Choosing & = tk+s+1, 8 = ik—s and v = ik+1, then y1{u) = F(a, 8,7, u) is a solution.



The second independent solution may be written as yo(u) = (—u) ™" F(/, ', ', u) with
& =f—v+1l=-8F =a—v+1l=1+gandy =2—v=1-ik However, neither of

these solutions is finite at u — 00, a8 We can see by an asymptotic expansion [34, 15.3.7.

Fla, B,7v,u)
F(V)P(ﬁ“‘a) —
TET(—e W Flat mrt el = e/
m_w_u ....ﬁ — — ’
iF(a)F('y—ﬁ)( VEF(B L=y + 81— atf1/u)

w00 T(MT(B — o)
BTy — o)

Thus, the linear combination

MOLE —d), T f)
W) = By =)™ T Tt - 5™

(—u)~ -1+ Fla = f) (—u)~P . 1.

L)l (y - B)

(2.13)

is finite as © — co. We then determine the phase shift S{(k), by looking at the behavior
of y(u) as u — 07 (r — +00),

_y _ P(1—dk)(1 + 2s) T(1 +ik)D(1 + 29) »
y(u—07) = T(1+8)I(14 s~ ik))' T T(s+ik)T(1L+ s)l(—u) *. (2.14)
A B

Let us relate this result to the original wave function ¢(r),

o) B0 [smh(r)]Fy(u(r) (2.15)
—ile _ —ik

e [l - o) [A_B(W’“_i_izw) } (2.16)

o 24 [e“ik“"~(B/A)eik’”]. (2.17)

Therefore, the scattering amplitude S(k) is given by

I'(1 +ik/2)T(1 + s —ik/2)
T = ik/2T (1 + 5 +ik/2)

S(k) = (2.18)

This scattering does not rearrange the particles. For bosons (fermions) the wavefunction
must be (anti)symmetric, so the scattering amplitude for transmission will be £5(k}. In
this chapter, we will drop factors of —1 in the scattering amplitudes, assuming that they
are taken care of by either the choice of statistics of the particles, the choice of quantum
numbers as half-odd-integers, or the choice of number of particles as even or odd. We

will, however, elaborate on this in the next chapters.



Now, we discuss unlike particles, with the potential —s(s +1)/ cosh?(r). We need not
require ¢(r = 0} = 0, and so unlike particles may pass through each other. The wave

function in the center of mass is then given asymptotically as

$(r) = { e o+ R(2k)e™™" 7 - oo, (2.19)

T{(2k) et P — +00.

As before, we may write the solution in terms of hypergeometric functions. The explicit
ealculations are much as before and can be found also in [26, Chapter 18]. The reflection
and transmission amplitudes are given as R(k) = S(k)r(k), T(k) = S(k)t(k), where

sinms

k e 2,
rk) = Rtk (2.20)
sinmik/2
eSS 2.2
k) sinm(s + tk/2) (2.21)
Also present are bound states, labeled by an index m = 1,2,..., M, according to

increasing energy. Thus the parity of the states is (~1)™"1, and even parity states
have spin 0, while odd parity states have spin 1. Bound states appesr as poles of the
reflection and transmission amplitudes, R(k; — ko) and T'(k; — k2) on the positive half of
the imaginary axis, given by k12 = k £ ix,k > 0. The momentum snd energy of such a
bound state is P = 2k, and E = k? — 2. Let us concentrate on T'(k). From {34, 6.1.2],

we know that we can rewrite the I' function as

. n! n®
D(z) = lim, FCES RN (222)
and for k = ix,
- R R R
S(ér) "g(l—n)(s+l+1+n)' (2.23)

Thus, for [ = 1,2,..., the poles are located at £ = [,—s — [ — 1 and the zeros at £ =

~1,8+1+ 1. Furthermore,
) S

l=—00
such that for [ = 0,1, 2, ..., the poles lie at s = [+ and the zeros at x = [. Inthe same
way, we treat the poles of 7(k) and putting it all together, we find km = s +1 —m, where
m==1,2,...,M, and M(s) is the largest integer less than s. There are no bound states
for 0 < § < —1. Threshold values of s are s = 0,1, 2,..., and at these values, the reflection
amaplitude vanishes. At the bound state poles we also find 7(2ikm)/H{2iky) = (—1)™1,
We call the bound states pairs.
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2.3 Consistency and Phase Shifts
2.3.1 Yang-Baxter equations
We know the Yang-Baxter equations [15, 16] must hold, and we can verify this

explicitly. For a two-component system the Yang-Baxter equations are equivalent to
Py = Pary +tarat;  and  rsig = rafy - I3rery, (2.25)

where 7y = r(ky — ko), 72 = r(ks — k3), rs = r(kz — k3) etc. for t;. A degenerate situation
occurs at a pole in 73 and ts, when kg — k3 = 2iky,. There, since r3/ts = (—1)”"1, the

equations become
0=r1+ (=)™ oty and to =1t + (=)™ Trary, (2.26)

where g, = r(k £ ikm), and ete. for ¢;. These relationships will be important when we
calculate phase shifts.

2.3.2 Derivation of various phase shifts
If a particle of type m passes through a particle of type m’, without reflection, then
we have a scattering amplitude exp|—ifmmy (k1 — k2)] , and a corresponding phase shift
Omms (k). These phase shifts are at the heart of the Bethe Ansatz. Let us label the
unbound particle by m = 0. Then we have found

I'(1 + ik/2)T(1 + s — ik/2)
(1l —ik/2)T(1+s+ ik/2)} '

oo (k) == ilog { (2.27)

As we explained, we will not include factors of —1 in the scattering amplitudes, 50 fo0(0) =
0. In general B (k) = —Opmy(—k) = Bmym(k), and we will find that we always have
e (0) = 0. In Figure (2.1), we plot 8gn(k) for various values of the interaction strength
s.

Now, consider the scattering of a particle k; on a pair of two particles with momenta
ks & ikm. Let k = k1 — kp. Figure (2.2) depicts the incoming state and in Figure (2.3)
we show all three possible outgoing states. There are five possible scattering channels
leading to these out states. They are shown in Figure (2.4). Let us briefly describe channel
(a}, the other four channels should then be seif-explanatory: The incoming particle first
scatters off s like particle with phase shift Sy = S(k — ikm). Then the phase shifted

particle encounters an unlike particle and passes through with transmission amplitude
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Figure 2.1. Particle-particle phase shift 6oo(k) for various values of the interaction
strength s = —0.98, —0.49,0,0.49, 0.98,1.47, and 1.98, corresponding to increasing dash
length.

Figure 2.2. A pair of type m. Solid and dashed arrows indicate the two different kinds
of particles.
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Figure 2.3. The three possible outgoing states for a particle-pair scattering process.
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Figure 2.4, Particle-pair scattering channels and their amplitudes as explained in the
text.
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Ty = T(k + ikm,). The overall effect of this process should be a net phase shift, fom, i.e.,

nondiffractive scattering. Thus we have a set of consistency equations

0 = S18|te —ty -+ (-ml)mwiﬁ“l’fg], (2.28)
0 = S1Safre + (—=1)""1ritg). (2.29)

These equations may be proved using the degenerate Yang-Baxter equations (2.26). Thus,

we find for the particle-pair scattering amplitude
118y = S{k + ikm)S(k ~ ikm}t(k + ikm) = expl—ifom (k). (2.30)

Using the explicit forms, we can furthermore verify that 8o.,(k) is real for k real. Figure
(2.5) shows the phase shift 8,1 (k) of particles scattering on pairs of type 1.

Finally, we view the scattering of a pair from a pair as the scattering of two particles
with momenta ky = i, from a pair with kg = ik, as shown in Figure (2.6). This gives
us a net phase shift Oy (k) = Boms (k — 1K) + Bomr (k + 15 ). Again, using the explicit
forms, we can verify that @ (k) is real for k real, and symmetric in m, m/. In Figure

(2.7}, we plot the resulting phase shift of type 1 pairs. Furthermore, in Figure (2.8), we

5 "
| l | | ! | =
B P g
/:—»""""
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B - // —
3 e =5 Al -
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@ 2 {"m // //// L
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w; PA
7.4 ]
# | t I
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Figure 2.5. Particle-pair phase shift 6 1(k) for various values of the interaction strength
s = 0.02,0.51,1.00,1.49, 1.98, corresponding to increasing dash length.
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Figure 2.6. A pair-pair scattering process consists of two subsequent particle-pair

scattering processes.
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Figure 2.7. Pair-pair phase shift #;1(k) for various values of the interaction strength
s = 0.02,0.51, 1.00, 1.49, 1.98, corresponding to increasing dash length.
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Figure 2.8. At the threshold values for a new bound state, i.e., s = integer, we have
o o(00)/7 = number of bound states.

show @11(c0) as a function of s and the graph is very much reminiscent of Levinson’s

theorem, Le.,

fo,0(00)/m = mumber of bound states. (2.31)

To summarize: We have N; particles with ¢ = +1, and Ny with ¢ = —1, for a total
of N = Ny + N). Let us assume Ny > N|. Further, pairs of up-down spins bind into a
variety of bound states, or pairs, labeled by m, m = 1,...,M(s). Let there be Ny, of
each type. Then the number of unbound particles is Ng = N — 2371 <1< g Ny, We will
call these simply particles from now on. They would correspond to spinons/ions in the
spin/charge picture. Of these particles, we have N_; with spin down; let us call them
spin waves. Clearly N_y = N| ~ 31 cneps Nm, and Noq < No/2.

We still must treat the dynamics of the spin waves, but since they are not “real” parti-
cles, but only correlations in the quantum numbers of particles, they have no momentum

or energy directly. Thus, we define

0, m
nm - 1, T
2, m

~1,
0, (2.32)
1,2,...,M(s);

i
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then we can write the momentum and energy as

Pe Y mnShm (239

—1<m<M  km

Bo=5 Y Xk 3 Nad (239)

—1SmSM ko 1<m<M

2.4 Bethe-Ansatz Equations
Since particle-pair and pair-pair pass through one another with only a phase shift and
no reflection, their interaction is in some sense trivial. However, particles do scatter from
particles with reflection, and their interaction is not trivial. We write the asymptotic
wavefunction explicitly in the Bethe Ansatz form, and for now consider only the Np
particles. We use the spin language, so o,(j) = &1 according to whether the jth particle
in the ordering @1 < ... < 2n, has spin up or down. A choice for all 0.(j) we denote

simply by o. Then asymptotically the wave function is given by

1<4<No

U(z|o) — Y A(l|o) exp lz > mjknj} . (2.35)

1l
The summation is over all the No! permutations of the momenta, We arrange the A(Iljo)
for fixed II as a column vector £(I1). Then the Yang-Baxter equations ensure that we

can find a consistent set of amplitudes A(Il|o), by finding the simultaneous eigenvector

of the Ny equations

okl H S(k; — kn) Xj5-1 - Xj1X5 N0 -+ - X&) = E(I). (2.36)

1<n<Np

In this equation, the X, are operators given as

Xim = ! -%";(k) 1+ 1W2t(k) oz(f)o=(n)
8 16,5102 0) + 0y (Do) (2.37)

where k = krj — knn.

These eigenvalue equations can in turn be solved by a Bethe Ansatz for the N_4
overturned spins — the spin waves — on a lattice of Ng particles. These equations can
be solved either: (i) directly, by the methods of Yang [35]; (ii) with commuting transfer
madrices, by the methods of Baxter [36]; or (iii) by quantum inverse scattering methods

of Faddeev and Takhtajan [37]. We are not aware that these equations have appeared

-
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before in the solution of a quantum many-body problem, although the low-density case
has often appeared, for instance first in Yang’s original solution for §-function fermions.

The solution is sufficiently technical as to be rather unpleasant to spell out. Moreover,
a general solution for a two-component model, given in terms of ¢(k) and r(k), has been
given already in [38] and thus we refrsin from repeating it here. Using those formulas,
we find for the eigenvalues of the previous equations,

" inrls — ik; — A)]/2
gL S(k; ~ & sinls —ilk; — A2 _ 2.38
191:'5[% (ks = ko) 1ggI;INW1 sinmls -+ i(k; — Ag)l/2 (2.38)

In this equation, the X's are the momenta of the spin waves, and are determined from
the equation

sinmis +i{A; — Ag)/2] sinmls —i(A; — kn)l/2
11 sinm|s —i(A; — Ag)/2] sinw(s + (A ~ kn)j/2

i. (2.39)

1<g<N 1<n<No

We now have our two final phase shifts, for particle-spin wave and spin wave-spin wave

scattering:
. sinw(s —wik]/?]
fo-1(k) = tlog {simr{s +ik]/2]° (2.40)
o sinw(s ~§-z‘k/2]j|
f.1-1(k) = ilog Linqr[s k3] (2.41)

As noted, there is no phase shift for spin wave-pair scattering. In Figures (2.9) and
(2.10), we plot these phase shifts for varying s. At the threshold values s = integer,
the spin wave modes uncouple completely from the particles, and thus from the system,
since they contribute no energy or momentum directly. In this case, we have the very
high degeneracies found in the 1/9? lattice systems [39, 40], and for the same reason —
an absence of reflection.

Let us now impose periodic boundary conditions and take any particle, pair or spin
wave with momentum P = nk around a ring of large circumference. Along the way, it
suffers a phase change as it scatters from every other particle, pair or spin wave, plus a
phase change of PL. Periodicity requires that this phase change be an integer multiple of
97, the integer being the quantum number. We write this statement as coupled equations
in a rather symbolic form:

Lk = 2nhn(Bm) + 3 > o (b — Kor), m=—1,0,1,..., M. (2.42)
~1<mISM K,

Here the I, (kn) are the quantum numbers, the only subtlety being that for the spin

waves, J_q ranges only over 1,..., Np.
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Figure 2.9. Particle-spin wave phase shift 6o 1(k) for various values of the interaction
strength s = —0.99, —0.75, —0.50, —0.25, ~0.01, corresponding to increasing dash length.
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Figure 2.10. Spin wave-spin wave phase shift §_1,_1(k) for various values of the
interaction strength s = —0.99, —0.75, —0.50, —0.25, —-0.01, corresponding to increasing
dash length.



CHAPTER 3

PROPERTIES OF LOW-LYING STATES

I this chapter, we give explicit results for the ground state and {other) low-lying states
when Ny = N|, which we call the spin/charge zero-sector. This certainly is the most
interesting case, since all singularities in the (Ny, N}) ground state phase disgram occur
for Ny = N|. In fact, as we shall see, for s > 0, the chemical potential has a discontinuity
across the line Ny = N, and thus the system is an antiferromagnet /insulator, although
not of the Neel/Mott type. For —1 < s < 0, there Is a weak singularity at Ny = N|,

without a discontinuity in the chemical potential.

3.1 The Unbound Case
3.1.1 The Ground State
For —1 < s < 0, there are no bound states and we will call this the unbound case in
the sequel. From Equation {(2.42), we therefore have only two coupled equations for No
particles with pseudo-momenta ko = (ki1,...,kn,) and N_; spin waves with rapidities
ko= (A, AN )

N3 No
Lk; = 27{‘Ij(kj) +- Z 99,_1_(kj — Aa) + Zgo,o(k‘j — kz), (3.1a)
=] =1
Ny No
0 = 2nJa(la) + Y 0-1,-100a ~ Ag) + Y O-1,0(ha — k5). (3.1b)
B=1 =1

In the thermodynamic limit, i.e., I — oo with fixed dy = Ny/L, d_; = N..1/L, the ground
state is o filled Fermi sea characterized by the distribution function p(k) of particles and

a(A) of down-spins.

o) = oo [ s poin o [ thok = o, (32)

27

i

C
o(A) = 0 ,5:%,. f_ 09’_1,_1()\ — wolm)dy - é}« f_ Z 81 (A — )p(h)dh. (3.2b)
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Here the prime denotes the first derivative. The values of B and C are fixed by the
following equations:

/ Pk = do, (3.35)
B

jG c(NAA = doy = do/2 — M, (3.3b)

where M = (Ny — N|)/2L is the magnetization per unit length.

Let us now restrict our discussion to the zero sector, when Ny = N, N_; = N/2 and
M = 0. Since o()\) > 0, this corresponds to the limit C of the spin wave distribution
imtegration being co. Following [13], we introduce an operator notation, i.e., (k|p) = p(k),
(Noy = a(\) and (k| K pwlh) = 50, ok — ). Furthermore, B and C are defined as

projection operators to yield the finite limits of integration, i.e.,

_{ plk) for ~B<Ek<B,
Bp = { 0 for |k > B. (3.4)
Then for zero magnetization, the ground state equations may be written as
g+ KooBp+ Ko,10 = ¢, (3.52)
o+ K.q,-10+ Ko_1Bp = 0. (3.5b)

We introduce the resolvent J_y _; such that (1+J_g,—1)(1-+ Ko1,-1) = {1+ K 1 1)1+
Jo1-1) = 1. Then ¢ = —(1 + J_1,-1)Ko,.18p and

¢ = p+[Koo— Ko-1{1+ J-1,-1)Ko,-1] Bp, (3.6)

and we define K & Koo — Ko,_l(l e J_l,_.l)Ko,WL
We will solve these equations by Fourier methods. Thus let us define the Fourier
transform of f(k) as

B 1 feo
fly= o= [ e sy, (37
27 Joo
and the inverse Fourier transform by

sy = [ e feda (3.8)

The convolution is defined as

G+ )®) = [ gtk =) (W)an 3.9
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J——

and so g x f = 2n§ /. The Fourier transformed Equation (3.6) now reads as

¢ = p+ 2K Bp, (3.10)

where
K = Kog —2rRZ_1/(1 +2nK_11). (3.11)

This is an integral operator with kernel
m o~ .
K(k) = f & (o)e*da, (3.12)
o (30
and defining 2nK (k) = 64(k) — W' (k) = 6'(k), we have

0 [2’1?R0,_1]2

(k) = 2 e do. 3.13
( ) —00 1 + QWK_L_l ( )
Let us write out the kernels, i.e.,
1 sin(rs)
Koak) = 2 cosh(rk) — cos(ms)’ (3.14)
1 sin(2ms
K110 (2m5) (3.15)

" 2 cosh(mk) — cos(2rs)’

However, from [13], we then immediately know the Fourier transforms of these kernels,

ie.,
~ sinh[a(1 + s)]
27?}(0,..1(@) Siﬂh(()i) s (316)
- _ sinhla(1 + 2s))
211"K..1,_1(Ol) = sinh(a) . (3.17)
Therefore, the kernel ¢'(k) is given as
o o sinht(1+s)
& (k) = B(k) — 1/2 L e, (3.18)

We substitute this back into the particle equation, giving a single integral equation for

the distribution of particles p(k):

1 1 B,
o= ol + 5 j{_ 0= Ryp(r)an. (3.19)
Then, as usual, energy and momentum are given by
B
P/L = f (ki =0, (3.20)
1 B
Bl = 5 f ()RR, (3.21)

We have solved the particle equation numerically for p. In Figure (3.1), we show FEo/L
versus N/L for s = —1/2.
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Figure 3.1. Ground state energy per unit length Ep/L versus density N/L for the
unbound case at s = —1/2 and the bound case at s = 1/2,1,3/2.

3.1.2 [Exited States

Having determined the ground state properties of the system, we now determine the
low-energy excited states. They are given by the following: (i) Remove a particie from
the ground state distribution, and place it outside the limits; we call this creating a hole
and a particle, and it gives a two parameter continuum. (i) Remove a spin wave from
the ground state distribution, and place it on the line with imaginary part equal to #; we
call this creating two spin waves, one with spin up and the other with spin down. It gives
a two parameter continuum of the type familiar from the Heisenberg-Ising model [13].

By the techniques of Yang and Yang [10], the dispersion relations for particles and

holes are given parametrically by

APy = ¢-— f_i B(g — kYp(k)dk, for all g, (3.22}
= or /0 *odk, gl < B (3.23)
AEy = ¢%/2 - %LZ #(q — k)e(k)dk, for all g, (3.24)
= ¢{g)+p g <B. (3.25)

Particle-like excitations correspond to |g| > B, whereas hole-like excitations correspond

to |g| < B. The spin wave dispersion relations are
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AP

i

B
| 9ta=wpl)ar, (3.26)
AE = —m fB & (q — k)e(k)dk (3.27)
w o B q € N .
and hold for all . Here e(k) is the solution to the integral equation
B
K2/2 — = e(k) + 51; / 0k~ Ryel)an, (3.28)

and ¢/ (k) = groelmissy- The results of a numerical solution of these equations are shown
in Figure (3.2), for s = —1/2, B =1, d = N/ = 0.600, Eo/L = 0.094, o = 0.374.

3.1.3 Excitation Velocities
Each of these two types of two-particle continua has an excitation velocity given by

the slope of the dispersion relations. The velocity of excitation (i) is then given as

0(a) = Pt = ¢/ 70(a). (3.29)

Let us call vy = vp(B) the Fermi velocity of this excitation. In Figure (3.3), we show vg

as o function of s for various densities.

1.0 | i |

- hole-particle continuum -

2-spin wave
continuum

| |
0.0
0.0 Ttd, 2nd, 5.0

AP

Figure 3.2. Energy above the ground state emergy versus momentum (dispersion
relations) for the low lying excitations when s = ~1/2 and density N/L = 0.600.
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0.0 0.5 1.0

Figure 3.3. Particle-hole excitation velocity vy as a function of particle density do for
various interaction strength values s. s = —0.95 for the longest dashed curve and increases
in increments of 0.13 up to s = —0.02. The solid curve corresponds to the noninteracting
case, 1.e., vo(s = 0) = mwdg/2.

The excitation velocity of (ii) is more complicated. Using the spin wave dispersion

results and Equation (3.29), we integrate by parts end obtain the Fermi velocity

o = L [TpeTm e (kydk
T 2w B k2 p(k)dk

(3.30)

As has been pointed out in [41], the two velocities are in general not identical. The
same is true of the Hubbard model with repulsive on-site interaction, and we will make
extensive use of the conformal results obtained for this model [49, 50, 51, 53] in the next

chapter. In Figure (3.4), we show v_; a8 a function of s for various densities.

3.2 The Bound Case
3.2.1 The Ground State
For s > 0, which we call the bound case, the ground state in the zero sector consists of
a spin fluid of type m =1, and thus spin 0. This is the bound state with lowest binding
energy, when s = s, and so P(k) = 2k and E(k) = k? — s®. The finite size Bethe Ansatz

equations that describe the ground state may be written as
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Figure 3.4. Spin wave-spin wave excitation velocity v, as a function of particle density
do for various interaction strength values s. s = —0.95 for the longest dashed curve and
increases in increments of 0.13 up to s = —~0.02. The solid curve corresponds to the
noninteracting case, L.e., v_1(s = 0) = ndo/2 = wd_1.

Np2
2Lk; = 2w Hi(k;) -+ (ks — k). (3.31)
I=1

Note here that k; is the pseudo-momentum of a pair, and is not the pseudo-momentum
of an individual particle, which would be complex and of the form k;/2 -+ is.

Let us again take the thermodynamic limit. Then in the ground state, the &’s for the
pairs distribute themselves densely with a density 7(k), between limits +D, normalized
s0 that

4= NyL = L Zv—(k)dk ~ NJ2L. (3.32)
The energy and momentum are given by

P/l = 2 /~ ifr(k)kdk —0, (3.33)

E/L = /_ Z P2k — Ny /L. (3.34)

The integral equation which determines 7(k) is

1 D
Lm=r(k) + 5 [ Bk = Wy ()dn. (3.35)
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The kernel of the equation, &, (k), is the derivative of the phase shift for pair-pair
scattering. In Figure (3.1} we show Ep/L versus N/ L for selected values of s = 1 /2,1,3/2.

3.2.2 Excited States
The low-energy excited states are given by the following: (i) Remove a pair from
the ground state distribution, and place it outside the limits; we call this creating a
pair-hole and a pair, and it gives a two parameter continuum. (ii) Break a pair, to give
two particles, one spin up and the other spin down; this also gives a two parameter
continuum. (iil) Excite a pair into a higher energy bound state, if allowed; these we call
excitons, and they have single parameter dispersion relations. The dispersion relations

are given parametrically by

D
AP = > {nmkm— /_ Demi(zcm—- k)p(k:)dk} , (3.36)
AE = > [—"1’%’%& — -2% f_ Z 8 1 (ke — k)e(k)dk} . (3.37)

Here ¢(k) is the solution to the integral equation
2 1 (B
B s = = k) + f Ok — K)elH)aK. (3.38)

The chemical potential p; is the chemical potential for pairs, given by JFKp JON.

Again, we have solved these integral equations numerically. The results are gshown in
Figure (3.5) for s = 3/2, B = 3/2, d = N/L = 0.943, Eo/L = —0.691, yi = 1.215. The
gap for the creation of two particles is AE = 1.170, and is equal to the discontinuity
of the chemical potential across the line Ny = N;. The exciton with m = 2 is the only

exciton allowed at this value of s, and has a gap of AE = 1.017.

3.2.3 Excitation Velocity
Let us denote the Fermi velocity of the excitations of type (i) by

v = (D) 2n7(D). (3.39)

In Figure (3.6), we show v; as a function of s for various densities.
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Figure 3.5. Energy above the ground state energy versus momentum (dispersion
relations) for the low lying excitations when s = 3/2 and density N/L = 0.943.
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Figure 3.6. Pair-pair hole excitation velocity v; as a function of particle density do for
various interaction strength values s. s = 0.95 for the longest dashed curve and decreases
in increments of ~0.13 up to s = 0.02. The solid curve corresponds to the noninteracting
case, i.e., v1(s = 0) = wdy /2.



CHAPTER 4

CORRELATION FUNCTIONS FOR THE
ZERO SECTOR

“T'he concept of conformal invariance in one-dimensional quantum systems at criticality
constrains the possible asymptotic behavior of correlation functions and allows a classifi-
cation into universality classes, distinguished by the value of the central charge ¢ of the
underlying Virasoro algebra [42, 43, 44]. For models with short-range interactions and a
gapless excitation spectrum with a single excitation velocity, we can determine both ¢ and
the critical exponents of correlators directly from finite-size corrections to the ground state
energy and the low-lying exited states. In most cases, such models have been found to
belong to the universality class of the one-dimensional Tomonaga-Lieb-Mattis-Luttinger
model {45, 46, 47, 48], i.e., ¢ = 1, and the critical exponents to vary as functions of the
coupling constant of the corresponding conformal theory.

Recently, various authors have extended these concepts to include multicomponent
systems with different excitation velocities, such as the Hubbard model [49, 50, 51, 52, 53].
In genersl, one finds a ¢ = 1 Virasoro algebra for each critical degree of freedom, i.e., each
gapless excitation with a unique velocity. It is then possible to construct the full theory
as a semidirect product of these independent algebras. Again, critical exponents may be
calculated from finite-size corrections but now they are functions of a matrix of coupling
constants.

In another recent development, the ideas of conformal field theory have been applied
to models with long-range interactions such as the 1/7° system [54, 55, 56]. It turns out
that one can no longer simply read off the value of the central charge from the finite-size
corrections to the ground state energy. However, one may still calculate the correct
critical exponents of the asymptotics of the correlations functions from the finite-size

scaling behavior of the low-lying excitations [57].
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4.1 Conformal Approach for
Correlation Functions

Let us recall the basic ideas for calculating the correlation functions and their critical
exponents [66]. Every primary field ¢4, in a conformal field theory on an infinite strip of
width L in the space direction gives rise to a tower of exited states. Let 2 = At + A™
denote the scaling dimension and ¢ = A* — A~ the spin of ¢+. Then the energies and

momenta of these exited states scale as
E(A% N~ Fy ~ 3%31(90 + N+ N, @)
P(AE, N~ By ~ %Z;‘l(wm ~ N7+ 2Dk;. (4.2)

Here Fy is the ground state energy of the finite system, N+ and N~ are positive integers,
» is the common Fermi velocity of the excitations and 2D is the momentum of the state in
units of the Fermi momentum k;. The so-called conformal weights A* will in general be
dependent on the number of particles N as well s D and N #, Furthermore, the explicit
functional behavior A¥(N, D, N*) is governed by the value of the central charge ¢. For
¢ = 1, the interaction strength of the model under consideration changes the weights A%,
too.

We may then write the correlation functions of the primary fields at zero temperature

(expressions for low but finite temperature may also be given} as

T o

We remark that for a box of finite length L the correlator has to be periodic in I and

(4.3)

the above formuls should be replaced by

exp{—2iDksx)
i)/ L1?8" sinh[n (vt — d2)/L]2A7°
As has been shown in [57], this form is important for comparison with numerical studies

(s (@, 0902 (0,0) = (44

of particles confined to a finite ring.

Now, let @an{x,t) be a local operator which changes the number of particles by AN.
Then from [50], we know that the asymptotics of the correlator (O_an{x,t)Oan(0,0))
may be written as an expansion in correlators of primary fields ¢4 such that

(OWAN(CE: t)OAN((): D)) ~ Z H(qﬁAi” (w, t)@A:‘: (Ov O)): (4'5)
DNE &
for AN fixed. The leading asymptotic behavior is then given by minimizing the critical

exponents w.r.t. D and nonzero [ will lead to oscillatory behavior.
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However, the excitation spectrum of the SC model is quite different for the bound
(5 > 0) and the unbound (-1 < s < 0) case as we have argued in the previous section.
Most importantly, the unbound case does not have a common velocity for all excitations
anymore, and so the formulas given above for a Lorentz-invariant conformal field theory

can no longer hold.

4.2 The Central Charge

Following the arguments of the last section, we should first establish the value of the
central charge for the SC model. This is usually done with the help of the finite-size

sealing formula,
Ty

6—LC.
Here, ¢o is the ground state energy density in the thermodynamic limit. In short-ranged

By~ eoL — (4.6)

one-dimensional quantum models, including Bethe-Ansatz solvable models, ¢ = 1 as
mentioned above (61, 62]. However, for long-ranged models, straightforward application
of this equation leads to unphysical results [56]. (We include the SC model in this class,
although its pair potential decays exponentially, since it can only be solved by means
of the asymptotic Bethe Ansatz.) For instance, in the 1/7? models ¢ is predicted to be
equal to the interaction strength, although independent calculations show that the eritical
exponents are those of the ¢ = 1 universality class {37]. However, if one instead estimates
¢ from the low temperature expansion of the free energy [58, 59], one does get the correct
answer ¢ = 1 and

2
Mﬂzﬁ@:mm%%. @.7)

Let us look at the central charge of the SC model for the unbound case. As pointed
out in the last chapter, there are two gapless excitations with different velocities each.
Thus following the arguments of [60], we expect one ¢ = 1 Virasoro algebra for each
excitation and thus Eqguation (4.6) is generalized to

Ey ~ el — (% - fg%i) c. (4.8)
We have iterated the Bethe Ansatz Equations (3.1) for finite systems in the ground state
and calculated the energy Fo(L). Using ey and the velocities vy, v_1 as calculated in the
preceding chapter from the integral equations, we may estimate ¢ for different interaction
strength s from a finite-size plot. In Figure (4.1), we show the results for lattice sizes

L = 4,8,12,...,32. (The reader should compare this result with the finite-size analysis
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\)

Figure 4.1. The central charge of the SC model as a function of the interaction strength
s. Note that ¢ =~ 1 only for the noninteracting case s = 1.

of Chapter 5 and especially Figure (5.6)). As for the periodic 1/ r? model, the standard
finite-size formuls. gives ¢ = 1 only for the noninteracting case s = 0.

Let us discuss some possible explanations for this contradiction. We have previously
argued [57] that long-ranged models “feel” the finite-size constraint much more strongly
than short-ranged systems and thus an additionsl boundary energy term should appear
in Equation (4.6). Boundary conditions for Equation (4.7) effect the time axis only, thus
explaining its success. However, all of the long-ranged models of the 1/r? type show a
perfectly reasonable thermodynamic limit and it seems improbable that boundary effects
play such a paramount role. Indeed, being able to take the thermodynamic Hmit I — oo
at fixed density is at the heart of the asymptotic Bethe Ansatz.

One might now argue that, since the asymptotic Bethe Ansatz is only supposed to
be exact in the thermodynamic limit, the deviations are due to Equation (4.6) not being
correct for the asymptotic Bethe Ansatz. This, however, cannot be true for the periodic
1/7? model, where the ground state energy is known exactly [20].

Now, let us make the case for ¢ = 1 on more general grounds. The behavior of the
correlation for a given one-dimensional model at large distances and low-temperatures

is determined by the gapless excitations [63]. These gapless excitations are due to
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hydrodynamic density fluctuations and their quasi-particle structure is mostly either given
by phonons or particles and holes,

The dispersion relation close to the pseudo-Fermi momentum is generically linear, ie,
e(k) = vik| with k = 2xn/L and n an integer. The phonons obey Bose statistics such
that their momentum distribution — and not the pseudo-momentum distribution p of
Chapter 3 — is np(k) = 1/(e¥7 — 1}. But then we easily calculate

AB = -2% [_Ze(k)n,g(k)dk

plh [ k
B ?[-ooevk/rr-‘ldk

B Tsz"O T
oy S et —1
7T?L

= 4.
= (+49)

and comparison with Equation (4.6) gives ¢ = 1.

Suppose now that we have a particle-hole continuum and the two types of quasi-
particles obey Fermi statistics. For both particles and holes, v will be the same and
again, we can calculate the low-temperature correction to the thermodynamics. This

time, however, we have two types of fermions, so

AE = 27 cbynpn)dk
T oo
9L

o k
= f_oo T

oT2L /"0 x
= dx
Ty —00 e’ “ 1
T2

= (4.10)

Again we have ¢ = 1. Interactions between particles and holes can be negiected, since

the number of particles (holes) will be rather small for low temperatures, ie.,
L o0
N = o fm  nr(k)de

L e k
= 5 L

I N D S
T ogv foe et 1
TLlog 2
_ IlLlog2 (4.11)
rin

Assuming our above arguments are correct and we may indeed read off the critical

anomaly ¢ = 1 from the finite-temperature corrections, we still have to explain what
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could be wrong with Equation (4.6). Let us thus put forward a few suggestions: To the
best of the authors knowledge, there is actually no direct derivation of Equation (4.6)
by conformal field theory, in contrast to Equation {4.7) [58, 59]. Equation (4.6) is then
derived from Equation (4.7) by noting that the free energy of a classical two-dimensional
system may be viewed as the ground state energy eo of a corresponding, although in
general not identical, one-dimensional quantum system [64, 65]. However, the derivation
of this correspondence is done for the case of a lattice model with isotropic interaction in
both. space and time directions. The classical two-dimensional models corresponding to
the 1/r? model and the SC model are not known, but due to the long-ranged character
of the interactions, there will be an anisotropy of space and time directions. Indeed it
has been shown that for even short-ranged lattice models with anisotropy, Equation (4.6)
is no longer true and the value of ¢ has to be rescaled by the anisotropy strength [66).
Furthermore, the 1/r% model and the SC model are both continuum models and it is thus
not, clear whether the results of [64, 65] should be expected to hold at all.

Let us conclude this section by reemphasizing that although we believe ¢ = 1 to be
the correct value of the critical anomaly by the above given general arguments and we

use it in the following [67], there is no satisfactory proof and further study is needed.

4.3 Asymptotic Correlation Functions
for the Unbound Case

4.3.1 The Dressed Charge Matrix
For the unbound case, two excitation branches are gapless, giving rise to a particle-hole
contimmum and to a spin wave continuum, with Fermi velocities vp and v..1, respectively.
‘Thus, the finite size corrections of Equations (4.1) and (4.2) need to be generalized. Their

new form now are [50, 53},

E(AN,D) — Ey ~
2n EANT(E"I)TV(E“I)AN +pTaye! D]

L
2t 4 - + —
= [N+ N5 ) Fuma (N + NI (4.12)
P(AN,D) — Py ~
2 T + - + -
= [ANT D + N — Ny + N ~NZj]

- 2D0kf,§ + 2(Dg + D-1)k‘f}l. (4.13)
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Here, the matrix V = diag(ve,v_1) and the excited state is characterized by the pairs
AN = (ANp,AN_1) and D = (Do, D..1). As before, NE and N¥ are positive integers
that label the descendant fields. The 2 x 2 matrix = is called the dressed charge matriz
[50, 53] and may be calculated by means of coupled integral equations. Thus if we denote

the components of Z by

= &o(B)  &-1(C)
- ( €10(B) é_11(C) ) (4.14)
then
boolk) =
B 1o
b 51%” /_ , Soo(l)foo(h — K)dh -2*1; L G0 (W0Lyp(u = k), (4150)
fo,—1(A) =
B c
0- ‘;; f_ , Soo(h)fo,1(h— Ndh — % /_ o101 (s = g, (4:150)
£q0(k) =
B o
0~ %LBE—z,e(h)%,o(h — k)dh — ;E Logmi’_l(ﬂ)gi“}(‘u ~ By, (4.150)
£_1-1(N) =

1[5 ' 1 q° .
i- %/:»B §~1,9(h)63,m1(h — Aydh — —2"¥ [—C §m1,m1(u,)9_1,wl(u — )\)du(4_15d)

Thus, the situation for -1 < s < 0 is analogous to the situation in the repulsive Hubbard
model away from half-flling [53, 40] and we may interpret Equations (4.13) and (4.13)
in terms of a semidirect product of two independent Virasoro algebras, both with ¢ = 1.
The formulas for the conformal weights A(}* and A%, as functions of the components of

the dressed charge matrix Z are given as

1 AN -~ En 1 AN_11?
AF(AN,D) = §[§O,GD0+£—1,0D-ii€ 1,-1ANo — o1 1] ’

2det 2

1 AN_1 — £_10ANy 12
A% (AN,D) = 5[go,_iD(ﬁ—Eml,_lD_;:l:EO’g zldeél"’ 0]. (4.16)

The generalization of the correlation functions of the primary fields as in Equation (4.3)
is
exp(~2¢Dok 1) exp|—2i{Dg + D_1)ky ;x|
(z — iwpt)?A0 (2 + dugt) 280 (o — w_18)?2 1 (g b jy_qt)?25

(4.17)
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For the zero sector, i.e., M = 0, the relevant equations simplify considerably. In this
case, ky,| = kg1 = ky = wdo/2, and the dressed charge matrix = may again be expressed

in terms of a single parameter & = &(B), ie.,

2= ( fg ? ) (4.18)
Y

Let us demonstrate how to arrive at this result. We will again use the operator notation

developed in the last chapter. Equation {4.15) in the zero sector is

¢ = &pt+ KopBéoo + Ko~180,-1 (4.192)
0 = o1+ Ko-1Béo+ K_1,-180,-1, (4.19b)
0 = &0+ K 1oBbro+ K-108-1,-1, (4.19¢)
¢ = bynt Koy 1Béogo+K_q 1é 1 1. (4.19d)

Let us consider Equations (4.19a) and (4.19b). We rewrite Equation (4.19b) with the
help of the resolvent such that &o.y = —(1 + J.1-1)Ko,-1B&p and put it back into
Equation (4.19a), so that

[1+ (Koo + K-1,0(1 + Jo1,-1) Ko,—1) Bl fo0 = ¢ (4.20)
Keeping in mind that K, = Knm, this is identical to Equation (3.6) and thus we
immediately have an integral equation for & (k) = &oo(k),
B
bt =15 [ &moh~w)dn, (4.21)
2r J..B

where the kernel is as in Equation (3.18).
Turning now to the second pair of equations, we again use the resolvent to solve for

¢_1,..1 and plug it back into Equation (4.19¢). This then gives us the equation
[+ (Koo + K-10(1 + Jo1,-1)Ko,-1) Bl éro = —K_1o(1+ Jog )¢ = (422)

This is very close to Equation (4.20), the only difference being the constant on the right
hand side. However, the right hand side can be caleulated explictly and the result is
¢! = 1/2. Therefore, we immediately have the desired relation (k) = £o,0(k)/2.

We are thus left with evaluating the last colurmnn. The &o,—1(k) entry can easily be

shown to be 0 for all k. Let us then turn to £-1,—1. The integral equation to be solved is

1 B ,
forma () o [ Eama (0 s (= R)dh =1 (4.23)

We may avoid a long Wiener-Hopf type calculation, by noting that this equation has been

studied previously by Yang and Yang [13]. Following [13] we parameterize the anisotropy
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in the Heisenberg-Ising model by A = —cos(ts). Then the correspondence is established
by setting p = s and we immediately have the result £.11(B) = /7/2{r — p} =
1/4/2(1 + 8) for the SC model in the zero sector.

Then from Equation (4.16), the conformal weights AE and A%, are given as

1 1 1
Ay = §§§(DD+-2-D~1)2 '@(ANG)Z
i%&%@mﬁJLQ+N$ (4.24)
£ 1 2, (1+3) 1 2
A-—l = 4»(l+8)(D_1) -+ ) (AN QAN{))
1
:&Z@AAhy—AN@Dmy%NfF (4.25)

Note that the second equation is independent of &. However, there is now an explicit
dependence on the interaction strength s and only for s = 0 do we recover the result of
the Hubbard model.

This s dependence can be understood by realizing that for the zero sector and —1 <
s < 0 the Bethe-Ansatz equations of the rapidities k1 = (A1,...,An.,) are essentially
the Bethe-Ansatz equations of the Heisenberg-Ising model. The effect of the Bethe-Ansatz
equations for the psendo-momenta is simply a renormalization. Thus we may say that the
behavior of the spin wave excitations changes from ferromagnetic at s — —17 (A = 1)
to antiferromagnetic at s — 07 (A = —1). Furthermore, we expect to see free spin waves
at s = —1/2. This picture has been confirmed by a study of the transport properties of
the SC model which we present in the next chapter.

Alternatively, we may simply express & in terms of thermodynamical response func-
tions. Let us change a given ground state configuration by adding particles while keeping
the Fermi ses at zero momentum, so that the excitation can be described by ANp =
2AN_; and D = (0,0). Then a second order expansion gives

AE = —uo(ANy) + éﬁ%d—g(zwe)ﬂ, (4.26)
where g = ——gj—% is the chemical potential for adding particles and &g is the particle-
compressibility. Comparison with (4.1) and (4.44) yields

&2 = muokodd = mdo/vo. (4.27)

In the last equation, we have used the well known relation vg = 1/(kodo). Therefore, we
may calculate the critical exponents of the correlation functions of the SC model in the

zero sector by simply using the Fermi velocity vo calculated in the last chapter.
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4.3.2 Correlators
For —1 < & < 0, we want to consider the following set of correlators: Let 9o (z, 1)
denote the field operator of a particle with spin o. Later, we will additionally restrict the
statistics to be either bosonic or fermionic by restricting the possible values of the pair
D. Then the field correlator — also called the one-particle reduced density matrix — is
given by
Cya, 1) = (s (2, 1)9](0,0)). (4.28)

Defining the number operator n(z,t) = nq(x,1) -+ ny{z,1), we write the density-density
correlator

Cnle,t) = (n{z,1)n(0,0)). (4.29)

The spin-spin correlation functions are
Cila,t) = (5%(=,1)5%(0,0)), (4.30)

Cr(x,t) = (5™ (2, )57(0,0)), (4.31)

where we used §* = (ng - n)/2 and St = w%q,bl. Note that for systems that are
rotationally invariant, such as the Hubbard model in zero magnetic field, these two spin-
spin correlators are closely related, i.e., C; = 20+

Following [53], we also consider the correlation function for singlet pairs,

Caing(®,) = (W}, )] (=, £)1(0,0)%,(0, 0)). (4.32)

Note that all these correlators are of the form {A(x,t)A(0,0)). By standard arguments
of conformal field theory [42, 43, 44], we may deduce the leading terms and the critical
exponents of the long-distance behavior of these correlators by expanding A in terms of
the primary fields ¢+ while minimizing with respect to D at the corresponding values of
AN. This approach, however, will leave the expansion coefficients undetermined and at
special points in the phase diagram, they may even vanish.

The particle quantum numbers I; and the spin-wave quantum numbers J, are re-
stricted by the parities of Ny, N_; and the statistics of the particles to the following
combination of integers and half-odd integers: If both spin-up and spin-down particles

are bosons

I = (No—1)/2 (mod 1),
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Jo = {(N.1—1)/2 {mod 1), (4.33)
whereas for fermions,
Ij == N_1/2 (mod }_),
Jo = (Ng+ N_y-1)/2 (mod 1). (4.34)

Due to the restrictions {4.33) and (4.34) on the quantum numbers of a given state, the

numbers D = (Dg, D_1) are integers or half-odd integers depending on the parities of the

pair AN = (ANg, AN_) and the statistics of 1t 4p. In particular, for fermionic particles
we have
Dy = %Lf—]\—rﬂ (mod 1), D.y= Al (mod 1). (4.35)

We can now apply the above scheme for calculating the leading asymptotic behavior of

the correlation function. Following our selection rules, we therefore have for a fermionie

system

Cy: AN 1 AN_y = 1

Dy = 0,%1,...; D3 = &3 Zyeee]
Chpt ANQ = 0; AN_l = 0,

Dy = 0,%1,...: Dy = 0,%1...;
Gg! AN() = 0‘, AN_l = 0,

Do = O0,41,...; Dy = 0,&1,...; (4-36)
C&L: AN{) = 0; AN..l W 1,

Dy = =i, Doy = 0,%l,...;
Csmg: AN(} s 2; AN_1 s 1,

Dy = £, D_y = 0,%1,....

This is identical to the results for the repulsive Hubbard model, and as in {53], we will write
the critical exponents as functions of fp = 2§§. However, there is an additional interaction
strength dependence in the correlation functions due to the explicit appearance of s in
Equation (4.25). This is a novel feature and not true in the Hubbard model. It emphasizes
the close correspondence of the Heisenberg-lsing model and the SC model for —1 < s <0
in the zero sector.

We now calculate the leading asymptotics of the fermionic field correlator in the SC

model to be

1
| + vot|1/00+00/16 | - juy_y |75 /4(5+)

o Re | Ane—iks® (m +z'fuot>71i (m—i— i’umlt)%
o @ — fvgt T — .1t

Cy (z, 1)
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1
|z + ivot|1/90+990/16|x + ivmlt!%—l-s2/4(3+l)
. 2 . 1
x Re | Aje~i3kse (‘” + “"’t> : ("’ "*“w'it) ! (4.37)
@ — tugt N UIRY ' ’
The density-density correlator is given by
cos{2ksx + ®1) cos{dkyx -+ Bo)
Co(x,t) ~ ng+ A ,
n(®1) "o+ A |+ dugt|0o/4lg + fu_y£|1/{E+e) ¥z F it
z? — (vgt)? 22 — (v.1t)?

+ A

3[&72 +(’U{}t)2]2 + 4I$2 i (,U_lt)glga (4.38)

and gince the selection rules for the density-density correlator are identical to the selection
rules for the longitudinal spin-spin correlator, the above calculation holds for C7 with
different constants and the replacement of M? for n3. Finally, for the transverse spin-spin

and the single-particle correlator we find

CHa,t) ~ Ao - ivglf’gﬁfjf_)lq(ws)
T w_lsz-i-sz/w Re [Al%] ’ (4.39)
Coimg(2,t) ~ Ao = ivgt!4/90§ml+ T
+ o ivgﬂz/f’o-i'%/‘ig”e {Ale—iﬁkfm%_g%} ‘ (4.40)

Following Equation (4.27), we calculate & from the Fermi velocity vo. In Figure (4.2),
we plot the lines of constant & in the (do, s) plane. Note that the value of fp(40) at zero
density is given by 2(1), whereas for finite densities and vanishing interaction strength
s — 0=, we have 6o — 4 (éo — +/2). As expected, this is the same behavior as in the
Hubbard model for vanishing on-site interaction strength u. In particular, the explicitely
s-dependent exponents in the SC model reduce to constant values as s — 07 which are
equal to the corresponding exponents in the Hubbard model. However, we can not bound
6o between those two values as we could for the Hubbard model. In fact, 6y is larger than
4 and continues to increase for finite densities and increasing negative interaction strength
s — —17. A plot of 6y as a function of the density dy for different values of the interaction
strength s is given in Figure (4.3).

For bose statistics, Dy and D_; are restricted to integer values. The correlators of

diagonal operators, i.e., the density-density correlator C, and the longitudinal spin-spin
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A

Figure 4.2. Lines of constant universal behavior for the unbound case. Coutours of
constant value of the dressed charge & in the (do, s} plane are shown. The lines represent
increments of .1 starting from & = 1.0 at dg = 0 up to & = 1.8. The dashed line
correspond to the value & = +/2 of a noninteracting system.
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Figure 4.3. Plot of 8y as function of particle density dg for various values of interaction
strength s for the unbound case.
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correlator CZ are independent of statistics, and so only the correlators Cy, C:+ and Ciing

change. We find for their asymptotics

1
A
Yo + vtz + qw_qt]0+eI/4
1
+ I+ fugt|00/4+1/00 g + dy_.q3|(s7Hes+10)/5(1+3)

% RelA e-wi2kf€0 (M) 2 (M)l/z (4 41)
1 @& — fugt T —iv_1t ' )

Co (2, 1)

1
2 + fy_gt|(1+s)
+ 1
|2 -+ dwot|f0/4] 4+ fu_qt{2+s"/(1+s)

x Re [Ale-"‘g’“fm (%)] , (4.42)
1

) PO —
®Ter + vot|2/%

C{j.'(ﬂ;‘,t) ~ Aoi

Csing (33, t) ~

1
* |2z -+ twgt]Po/4+4/00| g 4 ju_y 4|1/ (1+5)

x Re {Al ¢ iZkse (%)] , (4.43)

4.4 Asymptotic Correlation Functions
for the Bound Case

4.4.1 The Dressed Charge Scalar
For the bound case in the zero sector, only the pair-pair-hole excitation branch is
gapless. Thus there is only one excitation velocity and from the above arguments, we
expect the dimensions of the primary operators to obey the formulae for a single ¢ =1

Gaussian model, ie.,

2
AF(ANy, Dy) = -é— (D1£1 + %) . (4.44)

The coupling constant £; of this Gaussian model depends on the system parameters. It is
called the dressed charge scalar and may be calculated from the Bethe-Ansatz equations

by means of an integral equation [49]

D
£a(k) = 2 — % L &6, 1(h = k), (4.45)

where the constant is 2 because this excitation is a pair. However, we can again calculate
¢1 = &(D) by purely thermodynamical arguments as follows: Let us change a given

ground state configuration by adding pairs while keeping the Fermi sea st zero momentum,
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so that the excitation can be described by (ANy, Dy == 0). Then a second order expansion

gives
1 1
= — (AN + = =—— (AN;)? .
AE p1(ANT) + 5 Lﬁld%( 1) (4.46)
where l1 = w-gw% is the chemical potentisl for adding pairs and i is the pair-com-

pressibility. Comparison with (4.1) and (4.44} yields
£% = muik1d? = wdy /o1 (4.47)

In the last equation, we have used the well known relation v} = 1/(k1d1). Therefore,
by knowing the Fermi velocity of the pair — pair-hole excitations, we can calculate the

scaling dirnensions.

4.4.2 Correlators
For s > 0, the model exhibits a gap for breaking of pairs and there are no spin
waves. Therefore the correlators (4.28), (4.30) and (4.31) will decay exponentially. Let
us introduce the pair field operator ¥. The pair density - pair density correlator can be

written in terms of the pair number operator p = Ui as
Cpl,t) = (p(z, 1)p(0,0)), (4.48)
and the pair field correlator is given by
Colx, t) = (Ul{x, ) ¥(0,0)). (4.49)

As before, we can construct these correlators by an expansion in primary fields, minimiz-
ing with respect to ANy and D;.

The pair quantum numbers H; are restricted by the parity of Ny, and bose and fermi
statistics are given as

H; = (N1 +1)/2 (mod 1), (4.50)

since pair-pair scattering is symmetric for pairs of bosons and pairs of fermions. Due to
these restriction on the quantum numbers of a given state, Dy Is an integer or half-odd
integer depending on the parity of ANy for both bose and fermi statistics of the particles,

le,
AN

Dy = 5 mod 1). (4.51)

This selection rule is just the same as the case of one component bosons, and so we find
for the asymptotics of the pair density correlator
z? — (’Ult)2

. 2 ~ oo . Av—
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1
+ Ag cos(2k 2 + @i)w, (4.52)
and for the pair field correlator
i
Cylz,t A
¥(@0) Yo + iyt /o
1 . x + i
e A szfm_} . 4:.
| |z 4 dvt]PrH1/0 Re | Aze @~ il (4.53)

Here we again defined an exponent §; = 262, Following Equation (4.47), we can calculate
&y from the Fermi velocity of pairs v;. In Figure (4.4), we plot the lines of constant £ in
the (dy, s) plane. Note that the value of 6(£;) at zero density is given by 8(2), whereas
for finite densities and vanishing interaction strength s — 0%, we have #; — 4 (§1 — V2).
A plot of &1 as a function of the density dp for different values of the interaction strength

s is given in Figure (4.5).

4.5 'The Noninteracting Two-Component
System

At s = 0, the system reduces to a noninteracting two-component gas and we may
expect a certain continuity in the behavior of the correlators at this point. Indeed, as
s — 07, the two Fermi velocities vp and v—; both approach the Fermi velocity of a non-
interacting single-component model, i.e., vo(s — 07) = ndg/2 = wd—1 = v_1(5 — 07), a8
shown in Chapter 3. Consequently, the correlation functions of the bosonic (fermionic)
system reduce to the correlation functions of a noninteracting bose (fermi) system with
two components, i.e., with half the one component fermi momentum. Using the language
of conformal field theory, we can thus describe the excitations of the noninteracting
two-component gas by a ¢ = 2 generalized Gaussian model [49].

From the expression of the dressed charges & and &, we see that & = %gggg, As
s — 07, the Fermi velocity of the pairs goes to the Fermi velocity of a one component free
bose gas with doubled particle mass, L.e., v1(s — 0F) = wdy/2 = Zvo(s — 07). Therefore,
we expect #1 = 0y at s = 0 and this is indeed true as shown above. Furthermore, the free
energy of the system should be uniquely specified at s = 0. Following (4.7) we may write
the finite temperature corrections for the unbound case as

o 2
FanzF@wan-{?(£3+§Q, (4.54)

whereas for the bound case we have

ﬂﬁzF@mm—%g. (4.55)
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0.0 1.0 2.0

Figure 4.4. Lines of constant universal behavior for the bound case. Contours of
constant value of the dressed charge £y in the (do, s) plane are shown. The lines represent
increments of .1 starting from £&; = 2.0 at dp = 0 down to & = 1.2. The dashed line
correspond to the value & = v/2 of & noninteracting systerm.

Figure 4.5. Plot of 6; as function of particle density dg for various values of interaction
strength ¢ for the bound case.
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As predicted, these two equations are in agreement at s == 0 and identical to the free
energy of a noninteracting ¢ = 2 system.

The bound pairs for s > 0 are singlets. Therefore we might expect that the pair
field correlator (4.49) becomes identical to the singlet pair correlators (4.32) and (4.43)
of the unbound case as s — 0. However, ¥ creates pairs with characteristic length scale
1/s and not just two particle wave functions. Thus, the pair wave functions include a
normalization factor /3. As s — 07, the leading terms of the conformal expansion (4.53)
consequently vanish and higher order terms become important. It should therefore come

as 1o surprise that the expansions (4.32), (4.43) and (4.53) do not agree at s = 0.



CHAPTER 5

TRANSPORT PROPERTIES OF THE
UNBOUND CASE

In this chapter, we will further explore the connection of the SC model with the H-I
model by examining the response of the system to a flux ®. The addition of a flux
is compatible with integrability and allows the study of the transport properties by an
adiabatic variation of ®. For the H-I model, this has already been done |68, 69, 70] for the
interaction strength range ~1 < A < 1. We will show that the spin degrees of freedom
of the SC model for —1 < s < 0 may be usefully viewed as a H-I model with moving H-1
spins. The presence of the translational degrees of freedom will simply renormalize the

spin-spin coupling.

5.1 The Twisted Bethe Ansatz Equations

We thus restrict ourselves in what follows to the unbound case —1 < s < 0, such
that there are two gapless excitations corresponding to a particle-hole and a two spin-
wave continuum with Fermi velocities vp and v_j, respectively. Let us then modify the
Bethe Ansatz Equations (3.1} by threading them with a flux $. We have two coupled
equations for Np particles with pseudo-momenta k = (k1,..., kn,) and N_j spin waves
with rapidities X = (A1,..., An_,) on a ring of length L. The energy of a given state is
E(k) == %}:;-\21 kf and the total momentum is P(k) = Eé—\l’z k;. Boosting the system by ®
will accelerate the two kinds of particles in opposite directions due to the two components
being of equal but opposite charge. Therefore, we have no center-of-mass motion and
P = 0. The energy of a given state will change as a function of @, and the energy shift of
the ground state may be written as AFy(®) = Eo(®) — Eo(0) = D®?/2L + O(®*), where
D is called the stiffness constant and can be specified by perturbation arguments for @
up to 7 [69]. Note that since we do not have any center-of-mass motion, we can call D
either spin or charge stiffness depending on what interpretation of ¢ we adopt. We choose

the spin langusage for comparison with the H-I model. However, the charge interpretation
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is probably more natural to describe transport properties. We furthermore caution the
reader that the term charge stiffness has been previously used in lattice models to describe
center-of-mass motion.

The twisted Bethe Ansatz Equations {3.1) are given by

N No: N@
ij = 2?Tfj(kj) - —l,\;i}l@ + Z 90,-—1(kj - )\a,) + Z GO,O(kj - kl)a (5'13’)
a=} I=1

N_y N,

2
2 Ja{Ne) + @ -+ E 9__1,W1(Aa, - Ap) -+ EGGF}(A“’ — kj). (5.1b)
b} F=1

=
i

The two-body phase shifts for particle-particle, particle-spin wave and spin wave-spin
wave scattering, fo,0(k), 0o,—1(k) and #_;,_1(k) respectively, have been given in Chapter
2. The particle quantum numbers [; and the spin-wave quantum numbers J,, are integers
or half-odd integers depending on the parities of No, N.; as well as on the particle
statistics as shown in the last chapter. For comparison with the H-1 model, we use
mostly bosonic selection rules, although a purely fermionic or a mixed bose-fermi system
may be studied along similar lines.

We start with some general considerations. Let us denote by Fy 3(®) the energy of
a state specified by the ® = 0 set of quantum numbers {I,J}. We then adiabatically turn
on the flux until we return to our initial state. The energy will also return to its initial
value, although, it may return sooner; so, the period of the wave function will be an
integer multiple of the period of the energy. We can define a topological winding number
n to be the number of times the flux @ increases by 2 before the state returnes to its
initial value. As Sutherland and Shastry have shown, the ground state winding number of
she H-1 model with S, = 0 in the parameter range —1 < —cos{p) = A < 1 is 2, imoplying
charge carriers with half the quantum of charge, except at isolated points A = cos(w/Q),
where N_; > @ > 2 is an integer. In particular, at A = 0, the free particle wave function
has periodicity 2 Ny s, where Ny is the number of H-I sites, implying free acceleration
in the thermodynamic limit.

We now note the following important fact: Choosing y = —ws, the spin wave-spin
wave phase shift #..1.; is identical to the spin-spin phase shift in the H-I model. Using
the same identification for the spin wave-particle phase shift 6y _1 we may rewrite the

equation for the rapidities as
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Ny N
No@gg_l(}\a, ,u) =Ny Z Bo,—1{Aa — kj, )/ No = 271'.]&,()\@) “+ @ + Z O_1,—1(Aa — As, ,!,L).
F=1 b==1

(5.2)
which nearly is identical to the Bethe Ansatz equation of the H-I model, as can be readily

seen when we use the standard transformation for the H-I momenta
p = 2arctanftenh(c/2)/ cot{p/2)]. (5.3)

We then merely have to identify « = wA. The sole effect of the pseudo-momenta k is an
averaging on the left hand side. We can furthermore define a crystal momentum P and

write
P=3 0010k, p). (5.4)
Aa

P is the analogue of the momentum in the lattice gas picture of the H-I model [69] and
we have P = N_1®/Ny.

5.2 Stiffness and Susceptibility

Let us now restrict ourselves in what follows to the neutral (spin zero) sector such
that we have N. particles with o = 1 and N_j particles with ¢ = +1 for a total of
Ny = 2N_1. Then, a discussion of the behavior of the rapidities A for varying ® exactly
mimics the discussion of the H-I momenta p in [69] at 5, = 0: As long as {®] < 2n(s+1),
all X’s stay on the real axis. At ® = 2n{s+ 1), the largest root Ay_, goes to infinity. For
® increasing beyond this point, Ay_, will reappear from infinity as ém - 1 until exactly
at & = 2r, Av_, = iw (11 = 0) and the remaining N_; — 1 rapidities have redistributed
themselves symmetrically around 0 on the real axis. The momenta k are always real and
distributed about the origin. However, as mentioned above, this behavior is different at
the threshold values s = (1 — @)/@Q. Eq.(5.1b) simplifies at ® = 2x(s + 1) (and thus
An_, = co) and is in fact just the equation of N..; — 1 rapidities in the ground state. So

as in [69] using simple thermodynamical arguments, we may write
AEo(2m(s +1)) = Ey(No, Nox — 1) = Bo(No, N_y) = /2L - x4, (5.5)

where y is the susceptibility. Comparing with the definition of the stiffness constant D,
we find

D =x"1/an?(s + 1)2, (5.6)

On the other hand, we can read off the finite-size energy corrections for the SC model,

and then finite-size arguments of conformal field theory give an expression for A Eg(2n(s+
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1)) in terms of the conformal weights, the dressed charge matrix E and the spin wave
velocity v_1. The neutral sector dressed charge matrix is given in Equation (4.18) and
thus we have for ANy =0, AN_; # 0 and D =0,

AE = 71'1)__1&’94“ 1)

The susceptibility is defined as AE = 57-(AN_1)? and therefore, we have

(AN_y)%.

¥ = 2oy (s + 1) (5.7)

By comparison with Equation (5.6), we may then express the stiffness 7 in terms of the

spin wave velocity as
D =uv_1/2n(5+1). (5.8)

We emphasize that this formula for I is true also for a system of purely fermionic particles.
Shastry and Sutherland [69] have given an exact formula for the stiffness constant in
the H-1 model, by using the known expression for the H-I model spin wave velocity
v_y = wsin(u)/p [71, 72]. No such expression is known for the SC model and we can
only give v_1 a8 in Equation (3.30). However, written in terms of spin velocities the
stiffness formulas are identical and only the values of the respective spin wave velocities
are different. Thus the presence of the translational degrees of freedom in the SC model
simply renormalizes the spin-wave velocity.

Note that Equation (5.8} may also be written as
Dy ' =02, (5.9)

This is nothing but the analogue of the well-known hydrodynamical relation between
compressibility and velocity of sound waves. Let us briefly explain how to derive this
formula without having to use arguments of conformal field theory.

Given a gapless excitation branch, we know that long wave length hydrodynami-
cal fluctuations are important and we can define thermodynamical guantities such as
compressibility and stiffness. Then, since the particle number is conserved, there is a
continuity equation and so also a wave equation for the excitations. By standard ther-
modynamical arguments [73], we can now immediately read off Equation (5.9). However,
we have to treat the flux ® as a thermodynamical variable for this argument to be valid.
A discussion of this and related points can be found in [74, 75]. We emphasize, that
the arguments are quite general for all one-dimensionsl quantum models with gapless

excitations.
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5.3 TIteration

We have iterated the Bethe Ansatz Equations (5.1} in the neutral sector for reasonably
large systems and density d = No/L = 1/2 as a function of ®. By our correspondence
between the H-I model, and the spin wave part of the SC model, we expect free spin
waves at § = —1/2. In the thermodynamic limit, we would thus expect the periodicity
of the ground state energy to be infinite. For a finite system, this will be reduced to a
periodicity that scales with the system size. For the SC model we have indeed found that
at § = —1/2 the periodicity of the ground state energy is given as 2wrNp. Note that the
winding number is Ny, the number of particles, and not [, the number of sites. This
again confirms that the SC model for —1 < ¢ < 0 may be viewed as a H-1 model with Ny
moving H-T sites (SC particles) on a ring of length L. We may then speak of s — —17 as
the ferromagnetic critical point and s — 07 as the antiferromagnetic critical point of the
SC model.

In Figure (5.1}, we show the full spectrum of low-lying states with zero momentum
corresponding to bosonic particle statistics, respectively, at interaction strength s = —1/2
for L = 12, Ny == 6 and N_.; = 3. The ground state curve is emphasized and its periodicity
is 6 - 2. Figure (5.2) shows the behavior of the pseudo-momenta k and the real and
complex rapidities A and ~ for the ground state Wo. The behavior of k, A and -y for the
state ¥y is obtained by shifting the origin of Figure (5.2) by A® = 4x to the right. We
emphasize that in this free spin wave case the behavior of the rapidities as functions of
the flux @ is different from the behavior discussed in the last section. In particular, as
we increase the flux, the rapidities go complex one after the other, until at @ = 7Ny, i.e.,
half the period, all will have reappeared as +'s.

Note that at ® = 27 there is a level crossing between ground state and first exited
state in Figure (5.1). When the interaction strength changes from s = —1/2, immediately
a gap opens between the ground state and first exited state. Just as in the H-1 model the
periodicity is reduced to 4. Note that a perturbation theory argument can not describe
this behavior. Figure (5.3) shows the behavior of the ground state energy variation
L[l — E(®)/E(2m)] for s = —1/3 near ® == 2x for different lattice sizes. The rounding is
well pronounced and does not vanish as we increase the size.

Thus the behavior of the low-lying states in the SC and H-I models are qualitatively
the same, up to the renormalization of quantities such as the spin wave velocity v..1.

Let us briefly describe the behavior of the gaps in the H-I model, keeping in mind the



Figure 5.1. The low-lying states for the bosonic SC model at L = 12, Np = 6 and
N_; = 3. The bold curve corresponds to the ground state ¥y. The winding number of
Ug is n = 6 = Ny. Note the various level crossing in this free spin wave case, especially
the crossing of Wo and the first exited state ¥y at © = 2. The dashed curves correspond
to four higher lying states.
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d/21t

Figure 5.2. Pseudo-momenta k, rapidities A and complex rapidities v as a fune-
tion of flux ® for the ground state ¥g of the bosonic SC model at s = —1/2,
L = 12, Ny = 6 and N_; = 3. The initial quantum numbers for this state are
I={-5/2,-3/2,-1/2,1/2,3/2,5/2} and J = {—1,0,1}. Note the periodicity of 27 Np
for the A/ cycle and the symmetry of the pseudo-momenta k around 0.
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Figure 5.3. Plot of the ground state energy variation L{1 — E(®)/E(2r)] for the SC
model at s = —1/3 for L = 12,20 and 28.
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correspondence ft = —s. Increasing i beyond n/2 (A = 0}, we see that the gap continues
to wider up to a maximum value at o ~ Tr/12 (A ~ 0.26). It then closes up again exactly
at p = 2r/3 (A = 1/2). As has been noted before, this value of p coincides with the
appearance of a (@ = 3 string [13]. Further increase of y4 again opens, and then closes the
gap at the threshold for the next-longer @ = 4 string. This behavior continues, and the
threshold velues accunmulate as y — 7 (A — 1}, In Figure (5.4), we show the ground
state and the first exited state of the H-I model on a ring of Ngr = 12. Note that due
to the finite size of the ring, we can only observe strings up to length @ = 6. We will
present a more detailed finite-size study of the behavior of the gaps in H-I and SC model
in another publication. We only mention that for fixed y the gap scales with the system
size as a power, with variable exponent depending on the coupling constant p.

The stiffness constant D can be read off from the curvature of the ground state energy
Ey(®) as a function of ®. In Figure (5.5), we show D for systems of 12, 24 and 32
lattice sites. We also show the behavior of D as given by Eq.{(5.8). As s — 07, the spin
wave velocity approaches the velocity of a noninteracting single-component model, i.e.,
v_; — wd/2, as shown in Chapter 3. Thus D approaches the nonzero value 1/8 which is
compatible with the result of [69]. Furthermore, the SC model exhibits a gap for s > 0
and so I is zero. Thus D exhibits a jump discontinuity at s = 0 just as in the H-I model
for A = —1.

The derivation of the hydrodynamical relation is valid in the thermodynamical limit
by construction. Most of the other results given above have been derived using Equation
(5.1). These equations, however, have been derived by the asymptotic Bethe Ansatz. This
method is only correct in the thermodynamic limit [17]. Indeed the finite-size formula
for the energy of the periodic 1/r* model derived from the asymptotic Bethe Ansatz is
incorrect and only as L — oo, d constant, does one recover the correct result [20]. Thus
all our finite-size results should exhibit correction terms. From the hyperbolic form of
the pair potential (1.3), we may expect these corrections to be exponentially small in L.
Indeed, the log-log plot of the ground state energy versus L at fixed interaction strength
is given in Figure (5.6) and shows a simple power law behavior already for L > 6. Thus
the L — oo behavior of the finite-size Bethe-Ansatz equations for the SC model does not
seem to differ in any significant respect from usual finite size behavior for short ranged
models, This further supports our use of the asymptotic Bethe Ansatz in the present

study.
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Figure 5.4. Energy of the ground state and first exited state and their difference in the
H-I model at ® = 2 for Ng; = 12. Note the closing of the gap at A = cos(w/Q) for
Q =2,3,4,5.
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Figure 5.5. The charge stiffness D{(s) for the SC model. The dashed curves correspond
to L =12, 24 and 32 and converge to D{0) = 1/8 at s — 0. The solid curve comes from
Equation (5.8), which can be derived by conformal methods or from thermodynamics.
(Note that as s — 07, the solid curve does not converge to 1/8. This is due to a buildup
of numerical errors in the integration routine.)
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Figure 5.6. Log-log plot of Ey versus L for values of s = —0.04, —0.22, —0.40, —-0.57,
—0.75 and —0.93 corresponding to increasing dash length. For L > 10, we see straight
lines corresponding to purely algebraic finite-size behavior.



CHAPTER 6

CONCLUSIONS

In the preceding chapters, we introduced the SC model as a one-dimensional two-
component quantum many-body system with competing interactions. We subsequently
proceeded to solve the model exactly in the thermodynamic limit and computed the
asymptotic behavior of the correlation functions. Finally, we threaded the system with a
flux and calculated the stiffness and the susceptibility.

The physics of the SC model is surprisingly rich. For —1 < s < 0, where there are no
bound states, we showed that there is a close relationship to the Heisenberg-Ising model.
Indeed, we argued that the SC model may be usefully viewed as Heisenberg-Ising fluid
with moving spins. This then would open the possibility of modeling magnetic systems
in which the magnetic centers are moving themselves. A corresponding behavior had
not been seen previously in other models. However, we may also interpret the quantum
number ¢ as charge and the connection with the H-I model becomes purely formal.

For s > 0, we have an even richer structure due to the presence of exciton-like
excitations. Previous attempts to incorporate excitons in exactly-solvable models such as
the Hubbard model had been unsuccessful, since necessary additional interaction terms
such as next-nearest neighbor interactions usually violate the integrability. Thus the SC
model is the first exactly-soluble model with a natural description of exciton-like modes.

We applied finite-size scaling arguments of conformal field theory for the calculation
of the asymptotics of various correlation functions. However, there has recently been a
breakthrough regarding the calculation of the ezact correlation functions for the 1/r?
model [76] and the reader may wonder whether we could have done the same for the SC
model. The calculation of correlation functions in the 1/7* model makes use of the close
relation of the ground state wave function and the level distribution of eigenvalues of
random matrices [77, 78]. Unfortunately, there is no such relation for the SC model and

we can do no better than calculste the asyrptotics via conformal arguments.
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We have used quite general arguments to show that the universality class of one-
dimensional quantum systems with gapless excitations is given by the ¢ = 1 Luttinger
model. These arguments are — to the best of our knowledge — confirmed in all one-
dimensional models with short-range interactions. In long-ranged rodels, one can no
longer simply read off ¢ from Equation (4.6) and the plot (4.1) of ¢ versus s shows a
varying ¢(s) < 1 for —~1 < s < 0. Excluding the unphysical possibility of a continuously
varying universality class, this then must be wrong: In chapter 5, we show that the
susceptibility (5.7) varies with s using arguments independent of conformal finite-size
scaling. However, the susceptibility is closely connected with the conformal weights for
any ¢ [79]. Therefore, we can expect the conformal weights to vary with s, too. This then
has been shown to be allowed behavior for universality classes of ¢ = 1 only, since for
¢ < 1 the Kac formula uniquely specifies the weights already. Moreover, it has been argued
that continuously varying weights are most naturally described with a ¢ = 1 theory. We
therefore conclude that the universality class of the SC model is indeed ¢ = 1. However,
more work is needed to explain the failure of Equation (4.6) and we are currently involved
in a study of this question along the ideas outlined in section 4.2. Let us close this brief
discussion by noting that, as shown in Chapter 4, the low temperature corrections to the
free energy as in Equation (4.7) seem to be correct.

We have restricted ourselves in this dissertation to the zero sector of the SC model at
zero temperature. Studies of finite-temperature properties and of the full phase diagram
away from the zero sector are certainly very important especially regarding the possible
comparison of the SC model to experimental results in low-dimensional systems. We hope

to have the time to come back to these problems in the future,
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