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Abstract

This work aims to employ the well known real space renormalisation group method

in finding the critical exponent of conductance, ν, of the Chalker-Coddington net-

work model which is postulated to be equivalent to the integer quantum hall ex-

ponent. Previous low precision estimates for the critical exponent, ν, have been

found to be in the range, ν ∼ 2.3 − 2.4 [38, 36, 37, 54, 39, 13], which is close to

the recent experimentally observed critical exponent, νexp ∼ 2.38 [55]. In this the-

sis, we begin by showing how the critical exponents vary for a range of super unit

cell structures in the renormalisation group approach. We find that there exist two

types of renormalisation group units that produce the closest values to the integer

quantum hall critical exponent as the most recent high accuracy simulation results

using the CC network [78, 55, 79, 62, 63, 1, 60] as well as a tight binding model pro-

duced [73], ν ∼ 2.58− 2.6. The remainder of the work investigates the recent claim

that another type of disorder should also be taken into account - geometric disorder

[30]. We present the estimates of critical exponents we found when incorporating

various amounts of this disorder, in both the statistically isotropic and anisotropic

cases for a range of unit cells. Whence, our findings show that one can tune the

critical exponent to a particular value, by adding a set amount of geometric disorder

independent of the unit cell employed in the renormalisation group approach.
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Chapter 1

Introduction

The integer quantum Hall (IQH) effect, first discovered by Klitzing et al. [84],

occurs in the study of electrons in a 2D plane with a magnetic field, B, pointing

perpendicular to the plane. The electrons follow circular cyclotron orbits that are

quantised into the so-called Landau levels (LL), with energies denoted by En =

(n + 1/2)}ω : n ∈ Z and ω = eB/me, the well-known cyclotron frequency. When

disorder is brought into the picture, the LL’s are broadened by diffusive motion into

a Landau band (LB), which localises all states in the bulk of the sample except for

a single state which behaves critically in each band centre - a so-called critical state

[67].

At the edge of the system, skipping electron orbits lead to the aptly-titled

‘edge states’[33], which are extended states along the boundary and cause the sur-

prising plateau structure of the phase transition in the Hall conductance [84], as

illustrated in Figure 1.1. These plateaus were completely unexpected as they are a

sign of stability and thus strong predictability arising from the opposite - disorder.

When one tunes the Fermi energy, the energy difference between the highest and

lowest occupied states, through a critical state, the system undergoes a quantised

phase transition between localised phases [57]. The critical exponent, ν, describes

the power law divergence of an observable called the localisation length, ξ, at the IQH
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Figure 1.1: (Right) Illustration of Hall experiment setup in which an external mag-

netic field, B, induces a potential difference in the direction of the current, J. (Left)

Experimental plot by von Klitzing of the Hall voltage versus the voltage drop be-

tween the potential probes. For specific values of the filling factor, n, there exist

plateaus which contradict the classical Hall picture. The resistance on said plateaus

is quantised in units of e2/} as 1/n which is precisely the IQH effect [84].

critical point energy, Ec, as follows, ξ ∼ |E − Ec|−ν [26, 3, 89]. Although attempts

to find the critical exponent analytically have been made, the closest values we have

which map to experimental efforts thus far come from numerics-based approaches.

Early on, statistically limited results employing the Chalker-Coddington (CC) net-

work model were very promising, as they found νexp ∼ 2.3−2.4 [38, 36, 37, 54, 39, 13].

However, in the most recent and accurate numerical studies the critical exponent

was found to be in the range, νCC ∼ 2.58 − 2.6 [78, 55, 79, 62, 63, 1, 60] when

employing the CC network model [17] as well as most recently Puschmann et al.

using a tight binding lattice model [73].

The critical exponents obtained from the above high precision analyses still

differ significantly from the experimentally observed critical exponent, νexp ∼ 2.38(5)

[55]. Thus, one can conjecture that the CC network model does not capture the

IQH transition in its entirety and what is required is the inclusion of interactions

which exists in real materials [68, 70, 85, 71, 10, 55]. In this thesis, we remain in
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the non-interacting regime and perform a high accuracy study with the Real Space

Renormalisation Group (RSRG) approach on the CC network model. Upon inves-

tigation, we find that there exist two renormalisation group structures that produce

the closest values to the IQH critical exponent as the aforementioned recently simu-

lated results using the CC network and a tight binding model produced. The main

body of the work investigates the proposition that another type of disorder must be

into account - geometric disorder (GD), which first suggested by Gruzberg et al. in

Ref. [30].

The research we will present focuses on finding a shift in the critical exponent

of the IQH when taking into account GD. Its justification lies in the assumption

made when considering a regular lattice: the electrons are inherently ordered in

some fashion. However, in reality, their relative angles and distances are random,

and when they incorporated this into the CC model [30], the authors found that for a

particular amount of geometric disorder, there emerges a new critical exponent. The

closeness of the value they obtained for a particular amount of GD when compared

to experiment is still not well understood. For example, in the tight binding model

based work by Puschmann et al. in Ref. [73], the authors indicate that the statistics

are at fault - i.e. their numerical analysis involved a small sample set similar to the

early studies and thus it is no surprise that they obtained a value for ν close to the

ones obtained in early numerical studies and experimental observation - thus their

results may be unreliable. However, even if the study in Ref. [30] was poorly done

the validity of incorporating GD remains unchallenged.

The work in Ref. [30] employed the transfer matrix (TM) method as their

numerical technique [81], and applied it to the Chalker-Coddington (CC) network

model with a regular lattice structure [17], modified by GD. When including this new

type of disorder at a particularly chosen ‘magnitude’, they claim to have discovered

a value of the calculated exponent, ν ∼ 2.3. This leads the authors to believe that

there exists either one or even a line of critical exponents which depends solely on
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the magnitude of the GD imposed on the system.

The further claim is that this type of structural disorder can be taken as

effective fluctuations in 2D Euclidean space-time and hence a coupling to 2D quan-

tum gravity (2D QG) [23]. This has been previously studied and shown to modify

critical exponents of statistical mechanics models. The shift of said exponents is

given by the Knizhnik-Polyakov-Zamolodchikov (KPZ) relation in Ref. [50]. Thus,

one can postulate that such a modification is happening in the modified CC model

being studied. We aim to provide an overview of the reasoning behind this to test

its justifiability.

The aim of our work, on the other hand, was to set out in finding this

line of critical exponents using a different approach - the real-space renormalisation

group (RSRG) method. The RSRG approach has its roots in classical percolation

theory,[80] whenceforth it was then employed in Ref. [13], in finding the critical

exponents of the IQH with the CC network model. The results we found employing

the RSRG method have demonstrated a shift of the critical exponent upwards as GD

is increased in a statistically symmetric fashion and more nuanced results when GD

is varied asymmetrically. Interestingly, when investigating the results for different

RG unit cell structures, we found that they not only exhibit inherent differences in

their critical exponents, but there was a definite shift of their individual exponents

when GD is turned on. Our paper begins by introducing the theory behind the

KPZ relation and attempts to examine the method employed in modifying the CC

network analytically as well as numerically to match said relation.
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Chapter 2

Background and Theory

In this chapter, we will lay the necessary groundwork which was needed to develop

our understanding and produce our results. We will begin by a detailed discussion

of the Hall Effect, both its classical and quantised versions, elaborating on the ideas

hinted at in our introduction. From there, we will introduce the theory of random

networks and focus in particular on the CC network as it is the one employed in

our study. Lastly, we will illustrate how 2D QG is relevant and inevitably plays

a role when one attempts to formulate a purely analytical description of the IQH

phenomenon.

2.1 The Quantum Hall Effect

The field of study around this and other similar phenomena began with the discovery

of the Hall effect by Edwin H. Hall in 1879. This was known to be a classical result

based entirely on the physics of electric and magnetic field in a conducting surface.

As an instructive example one can consider the setup illustrated in Figure 1.1.
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2.1.1 The Classical Case

In the setup we are considering, we have a 2D homogeneous isotropic conducting

sample and an external electric field, E, parallel to the sample. In this case, the

sample acts as a resistor with E = ρj such that ρ is the material’s resistivity and

j is the current density. Once you turn on a magnetic field, B, perpendicular to

the sample, the charge carriers with charge, q, and velocity, v, are deflected by the

Lorentz force, F = q(v×B), which creates an additional electric field, EH , orthog-

onal to E. The resulting force from the electric field, FH , leads to a corresponding

Lorentz force, FL and when these two forces equate, FH = FL, the electric field,

EH induces a Hall voltage, UH = Ly|v||B|, such that Ly is the width of the sample

[82].

One can re-write UH using the relation, j = qnqv where nq is the carrier

density. It follows that,

UH =
1

qnq
Ly|j||B| = AHLy|j||B|, (2.1)

where AH = 1
qnq

is the so-called Hall coefficient, a proportionality constant which

depends on the band structure of the sample’s material and otherwise is independent

of the experimental setup.

Since we are dealing with a 2D sample, the resistivity will be described by a

tensor rather than a scalar, whence,

E =

 ρxx ρxy

−ρxy ρxx

 j, (2.2)

such that ρxx and ρxy are called the longitudinal and Hall resistivity, respectively.

Conversely, the conductivity tensor is defined as the inverse of the resistivity tensor

6



with,

σxx = σyy =
ρxx

ρ2
xx + ρ2

xy

, σxy = −σyx = − ρxy
ρ2
xx + ρ2

xy

, (2.3)

with the analogous σxx and σxy, the longitudinal and Hall conductivity, respectively

[82].

2.1.2 The Quantum Case

Let us now consider the quantum regime and how the Hall measurement is altered

in this case. To do so one has to investigate the same system as described in the

classical case except at very low temperatures, < 4K, large external magnetic field,

B > 10T and as thin a sample of electrons as possible to match the 2D condition.

One can achieve this experimental set up in various ways, one example is placing

the electrons on a free liquid helium surface which allows for very high densities [52].

The first successful measurement was achieved by von Klitzing et al. [84]

with a Si-MOSFET at T = 1.5K and B = 18T which showed that if one varied the

gate voltage, UH ; one observes plateaus in the Hall resistivity at quantised values,

ρxy = (1/N)h/e2 : N ≥ 1 while ρxx → 0. The measurements were also very precise,

thus providing a standard candle for all resistors to be defined with respect to;

this standard resistance is called the von Klitzing constant, RK = h/e2 [84]. After

the seminal discovery of the IQH effect which was awarded a Nobel Prize for its

importance [83], theorists scrambled to action and produced various explanations of

the effect. Unfortunately, we still lack a fundamental theory for this effect, and all

analytical descriptions rely on strong initial assumptions [12].

It is strongly suspected that the IQH effect is linked to Landau quantisation

which provides a quantum mechanics based description of electron motion in an

external magnetic field. One can start to see the effect by deploying a phenomeno-

logical approach, considering the electrons in the 2D Hall sample as free particles
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moving in a magnetic field which corresponds to the following Hamiltonian,

Ĥ =
1

2m∗
(p̂ + eA)2, (2.4)

such that p̂ is the momentum operator, m∗ is the effective electron mass and A is

the vector potential which is defined by the Maxwell equation, ∇ ×A = B. Now

the magnetic field causes the electrons to move along cyclotronic orbits. It is then

reasonable to split the coordinates into two parts,

x̂ = X̂ + ζ̂ , ŷ = Ŷ + η̂, (2.5)

where (X̂, Ŷ ) describe the position of the centre of the cyclotron motion and (ζ̂, η̂)

are the relative coordinates of the motion about said centre. Now we can use the

Hamilton equations which provide the equations of motion from the Hamiltonian,

˙̂
ζ = −ωcη̂ , ˙̂η = ωcζ̂, (2.6)

such that ωc = eB/m is the cyclotron frequency with respect to (ζ̂, η̂).

One can now re-write the Hamiltonian in equation (2.4) into in terms of

(ζ̂, η̂), which reduces to the familiar harmonic oscillator form,

H =
~ωc
2l2B

(
ζ̂2 + η̂2

)
, (2.7)

such that lB =
√

~/eB is the so-called cyclotron radius and defines the magnetic

length scale. This is now simply a harmonic oscillator which is easy to solve for the

eigen energies using the Schrodinger equation. We have thus described the so-called

Landau quantisation of a free electron moving in a magnetic field and in 2D one
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observes discretised eigen energies called Landau Levels (LL),

EN = (N +
1

2
)~ωc, (2.8)

where N ≥ 0 is the LL index and corresponds to the plateaus observed by experi-

ment.

We may now consider the differences between this model and the simple har-

monic oscillator (SHO). We begin by noting that the values of (ζ̂, η̂) are accompanied

by an uncertainty appearing due to the commutation relation,

[
ζ̂, η̂
]

= −il2B. (2.9)

Moreover, in contrast to the SHO, the Landau energy levels are degenerate. The

degeneracy is physically due to electron motion at each (ζ̂, η̂) being bound to a

radius, lB, implying that there exists various (X̂, Ŷ ) at each particular eigen energy,

since their orbits do not overlap.

The degeneracy of the LL’s can be quantified by a constant, NL, which

depends on lB as well as the size Lx × Ly of the sample under consideration,

NL =
LxLy
2πl2B

. (2.10)

It then follows that using NL, one can write down the filling factor, which is defined

as

f = 2πl2Bne = 2π
~
eB

ne. (2.11)

By definition of f , it is a dimensionless quantity that has the power to describe

two experimental situations; one being the change of electron density, ne, through

varying the gate voltage and magnetic field; f , on the other hand, is expressible

as the ratio of the number of electrons and the number of flux quanta, h/e, in the
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sample of study. Thus, f provides one with an indication of the filling of each LL,

for example, if f = 2, this corresponds to the lowest two levels being occupied.

The quantised energy spectrum explains the IQH transition points, but it

fails to describe the regime between transition points. More specifically, why the

transition between plateaus in ρxy (and consequently σxy) are observed nor the

curiosity that in the same regime one observes ρxx (σxx) tend to zero. The imme-

diate conclusion is that this model is too simplistic and one of the most significant

differences between our idealised situation and reality is disorder in the sample of

electrons, so maybe incorporating it will explain these phenomena.

As a result of disorder in the model, it has been shown that the LL’s broaden

to Landau bands (LB) as illustrated in Figure 2.1. Furthermore, another Nobel

Prize winning electron model which exhibited the importance of disorder called the

Anderson model of localisation [3] provides insight into the fact that not all states

in each LB are extended. As is illustrated in Figure 2.1 disorder causes the states in

the tails of the bands to be localised which implies that they can not contribute to

charge transport. Thus, the IQH effect is comprehensible as a series of localisation-

delocalisation (LD) transitions. One can note that the peak point in σxx occurs at

the integer, f , where the EF passes the extended states which lie at the centre of

LB. Between the centres of the LB’s states are localised and thus it must be the

case that σxx = 0. On the other hand, σxy is constant while EF is in the range of

localised states and increases by e2/h onto the next plateau after crossing the centre

of an LB.

One should note that although this phenomenological approach which as-

sumes an LD transition is highly instructive, there exist many more sophisticated

theories which consider gauge invariance [51], topological quantisation [59], scatter-

ing as well as field-theoretical approaches [72] which we will be discussing further in

the upcoming sections. However, until now we have not been able to write down a

full description, with a Hamiltonian, which describes the IQHE in its entirety and

10



Figure 2.1: The IQH effect presented by a set of localisation-delocalisation tran-

sitions. In finite-size systems, the width of the extended states about each band

centre of the Landau levels, broadened by disorder, is finite [13].

thus we must consider less straight forward but more physically realistic approaches

like the CC model, which we will introduce in the next section.

2.2 The Chalker-Coddington Network Model

In our study, we will be working with and modifying a semi-classical approach to

model the IQH transition. Chalker and Coddington first suggested this model in

1988 [17]. It is described by a random network and is based on the high-field model

(HFM) [88]. As we previously alluded to, the CC network model is a prolifically

employed tool in various studies of the IQH effect and in particular those studies

11



(a) (b)

Figure 2.2: (a) A 3D representation of a weakly varying random potential V with

equipotential lines at 〈V 〉 and 〈V 〉±∆E. In a strong magnetic field, B, the electron

motion is separable, illustrated by the black orbit in (b), into both cyclotron and

guiding centre motion along equipotentials [13].

aiming to extract the critical exponent [38, 36, 37, 54, 39, 13, 78, 55, 79, 62, 63, 1, 60].

To incorporate the LD transitions into the HFM model two postulates are needed:

firstly, the electrons do not interact with each other and instead interact through

a smoothly varying potential landscape, V (r), in 2D and secondly, the external

perpendicular B field is very strong, see Figure 2.2 for an illustration. Whence, the

B field forces the electron into a cyclotron orbit with radius, lB, that is much smaller

than the fluctuations of the potential [17]. Hence, one may separate the cyclic from

the equipotential guiding centre motion. This cyclotronic motion leads to the desired

quantisation into discrete LL’s while its influence on the motion along the potential

surface is negligible [88]. The model contains no explicit dependence on the magnetic

field as it only contributes to the electron’s phase, and thus electron transport

is dictated by the height of the saddle points (SP) in V (r) [13], as illustrated in

Figure 2.3. The CC network model introduced quantum corrections - tunnelling

and interference - to the HFM. From a semi-classical perspective, tunnelling takes

place when electron cyclotron orbits overlap due to being too near to one another

which by inspection of Figure 2.3 occurs at the SP’s. This means that the SP’s can

be seen as quantum scatterers are describable by a unitary matrix, S, defined as

12



Figure 2.3: The equipotentials provide one with the SP’s as indicated in this dia-

gram. A single SP acts as an electron scattering point linking two incoming, (I, I∗),

with two outgoing, (O,O∗), channels [13].

follows,

 O

O∗

 = S

 I

I∗

 =

 t r

−r t


 I

I∗

 . (2.12)

Thus, two incoming and two outgoing channels are connected by the scattering

matrix, S. We assume the potential is symmetric at each SP and the scattering

rates are provided by complex transmission, t, and reflection, r, coefficients. It is

clear that t and r must be dependent on the potential energy at an SP, moreover, by

the unitarity of S, the following must hold, |t|2 + |r|2 = 1. Gruzberg et al. showed

in Ref. [31] that one can parameterise the coefficients as follows,

t =

(
1

ez + 1

) 1
2

, r =

(
1

e−z + 1

) 1
2

, (2.13)

such that z is the dimensionless difference of the electron energy, εe, and the SP

potential [31]. Without loss of generality, one generally takes 〈V 〉 = 0, which means

that in the case of εe = 0, the value of z will be identical to the height of the SP.

From these considerations one can then construct a network of SP’s such that the

SP’s and equipotentials map to nodes and directed links, respectively, on a planar,

regular, directed square lattice in 2D (see Figure 2.4). One more point to consider

13



Figure 2.4: A diagram of the CC network achieved by mapping SPs to nodes and

equipotentials to directed links of a regular 2D square lattice.

is that while an electron moves along an equipotential, it must pick up a phase, Φ,

to model the effects of an assumed random magnetic field. The corresponding phase

factor, eiΦ, can be included in the matrix, S, [13] or taken into account by including

factors of extra diagonal matrices at each link. The CC network model , analogous

to the HFM, describes a single IQH transition solely with one extended state in the

centre of the LB at εe = 0. One can then extract critical properties in said transition

such as the critical exponent of the CC model, νcc, and check if the result aligns

with experiment values of the IQH transition. More specifically, The CC model is

a chiral version (due to the strong magnetic field) of a general network model [17],

and may be applied to study systems lying in different so-called universality classes

to investigate their LD transitions [9, 65]. Albeit the great success of the CC model,

it is still a very simplified picture of the real world, and it is surprising that it can

predict experimental results. The reason behind this immense predicting power is

14



based on a hypothesis called universality.

Phase transitions, such as that which is exhibited in the IQH transition, are

characterised by a type of critical behaviour, for example, the emergence of length

scale, lB, which is quantifiable by a set of corresponding critical parameters. The

term universality in this context is used to describe the assumption that these critical

parameters are not specific to a sample in an experiment or even a theoretical model.

He showed the first case of demonstrable universality in Ref. [86] with the study

of statistics of nuclear spectra. Wigner found that instead of employing experimen-

tally observed energy levels, the correlations in the spectra are reproducible as the

eigenvalues of some randomly chosen matrices according to a Gaussian distribution.

With universality one then expects the quantities deemed to be universal,

to be the same across a variety of systems which are similar only in their dimen-

sionality and underlying symmetries which may be argued on physical grounds or

by inspection of the Hamiltonian if one exists. In general, the symmetry classes

expressed by the Hamiltonian are the Gaussian ensembles (GE) [5] which are sepa-

rable into the following classes: orthogonal (GOE) with time-reversal and rotational

symmetry, unitary (GUE) with intact rotational symmetry but broken time-reversal

symmetry and symplectic (GSE) with time-reversal symmetry but broken rotational

symmetry. In the CC model which is chiral, the strong B field breaks time-reversal

symmetry, and thus it is classifiable as GUE [31].

To conclude this section, we re-iterate further that the CC model has turned

out to be incredibly more useful than first expected and applies to a range of critical

phenomena aside from the IQH transition. This is mainly due to its correspondence

(which we will be investigating further in Section 3) with field theory and Dirac

fermion models which were first demonstrated in Refs. [53, 57].
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2.3 Percolation Theory and the RG Approach

In this section, we will discover that one can relate the CC model to classical per-

colation in a 2D square lattice. This is achieved by mapping each SP to a so-called

bond in percolation theory [74]. To connect to the physical perspective, one consid-

ers a bond to be connected solely when the potential at the SP in question is less

than or equal to the potential energy of the electron, εe at that SP.

Once this mapping to a percolation problem is achieved we will be employing

an RG technique to study the CC model’s critical properties. RG is one of many

powerful tools to study phase transitions [87]. The first overarching quality of RG

approaches is their elimination of irrelevant short range or high-frequency degrees of

freedom. These quantities can be restored post calculation by some appropriately

chosen scale transformation - thus the system is left with the same structure as the

original one albeit with the values of its parameters (coupling constants for example)

renormalised. Secondly, the RG approach is based on iteration until convergence,

each iteration is called an RG step, and once convergence to the desired accuracy is

attained one can extract critical properties of a transition of interest.

We will be employing the real space RG (or RSRG) approach [74] and thus

will omit a discussion of field-theoretical RG techniques (for a review see Ref. [89]).

RSRG is best illustrated by example, and we will consider the case of bond percola-

tion on a 2D square lattice whose network is based on links (bonds) between nearest

neighbour nodes. One then assigns a probability, p ∈ [0, 1], to the likelihood of

bonds existing between nodes which is identical throughout the network, see Figure

2.5 for an illustration of three percolation networks with different values of p. One

always begins with an empty network (no bonds p = 0) of some size, L × L, and

as one increases p, more bonds are likely to appear between nodes. As p gets large,

the network starts to form percolating clusters which are connected nodes which

exhibit one or more unbroken paths between two opposite network borders. When
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Figure 2.5: Diagrams of bond percolation networks on a 2D square lattice for various

increasing bond probabilities from left to right. Black dots represent bonds and the

diagram on the far right illustrates a percolating cluster which manages to connect

two borders of the sample [18].

a cluster percolates we have reached a threshold probability, pc(L), and this prob-

ability defines a percolating cluster. The values of pc will depend on the random

realisation of a particular network and in the limit, L → ∞, pc attains a unique

value which is sample independent with respect to a particular type of network. To

obtain a high-level approximation to pc thus seems to be a brute force, daunting,

computational task but fortunately, there is another way.

The RSRG approach has been shown to allow one to approximate pc in a

computationally non-intensive way [74]. The main assumption behind the RSRG

method is that a certain section of the network under consideration, called the RG

unit, sufficiently represents the essential qualities of the whole network. The RG

unit consists of a small number of bonds, and the RSRG approach dictates an RG

transformation to replace the RG unit in the network by a so-called super bond with

new probability, R(p), determined by the probabilities, p, of the bonds it consists of

(see Figure 2.6 for an illustration). From the super bonds, with probabilities, R(p),

one can then construct an analogous percolation network which is renormalised

identically to the original network. Repeating the transformation (RG steps) allows

one to obtain an accurate approximation for large samples since after each step

the effective sample size grows by a factor pre-determined by the geometry of the
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Figure 2.6: Illustration of the RG approach to the 2D bond percolation where the

black lines and empty circles represent bonds and lattice sites, respectively. A five-

bond RG unit (Left) is mapped onto a single super bond (Right).

Table 2.1: A table of the set of configurations of a 2D bond RG unit labelled by the

probability of them occurring [18].

original RG unit selected. Consider the example of a super bond consisting of five

bonds forming the shape illustrated in Figure 2.6. The super bond probability, R(p),

is then found by the sum over all configurations which connect the left to the right

end of the chosen RG unit, as illustrated in Table 2.1 . Thus, the probability of a

single configuration is the product over five bond probabilities such that a bond and

a lack thereof contributes probability, p and 1 − p, respectively. We are therefore

left with the following simple expression for R(p),

R(p) = p5 + 5p4(1− p) + 8p3(1− p)2 + 2p2(1− p)3. (2.14)
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To approximate the threshold percolation probability, pc, one requiresR(p) = p = pc

to hold. This is called the fixed-point (FP) condition in the context of RSRG [74].

One can immediately spot trivial solutions to the FP relation, pc = 1, 0, while the

sole non-trivial one is pc = 1/2. One can then employ this non-trivial solution to

estimate the critical exponent νperc, of the correlation length of a such a percolation

transition, defining a characteristic length,

ξ = a(pc − p)−νperc , (2.15)

such that a is the lattice constant of the original network under consideration. The

super network must exhibit analogous behaviour but in our example of a five bond

super cell it is clear that its lattice constant, a′ = 2a, by the size of the RG unit. We

can now equate the characteristic length scales, ξ′ = ξ, to approximate νperc using

pc = 1/2, whence, from Eq. (2.15),

νperc =
log 2

log dR(p)/dp

∣∣∣∣
p=pc=1/2

≈ 1.43, (2.16)

which deviates from the exact value of νperc = 4/3 by a mere 7%, an impressive

result for a deceivingly simple back of the envelope calculation. The subtlety in

this result lies in the choice of RG unit cell and how well it describes the original

network. To re-iterate, this method is by no means exact due to the full connectivity

of the original network being lost, and thus the accuracy of the result must still be

checked rigorously.

Next we will discuss our application of RSRG to the CC model with its

quantum effects. We will see that the bond percolation example we considered here

will have many similarities.
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2.4 Quantum RSRG Approach

The RSRG approach applies to the CC model in an analogous fashion to its use in

bond percolation. In the case of the CC model, the SP’s of the network take the

place of the bonds in the RG unit. The RG transformation, on the other hand,

differs in that it must relate the S matrices of each SP to the S matrices of the

super SP.

Figure 2.7: A CC network on a square lattice with nodes (circles) and links (arrows).

The RG unit depicted consists of five nodes (full circles) and neglects some connec-

tivity (dashed circles). The arrows in the diagram illustrate whether the channels

are incoming or outgoing. The phases, Φ1, ...,Φ4, are acquired by an electron along

the loops with orientation following the arrows. The wave function amplitudes,

Ψ1, ...,Ψ4, are also labelled in the diagram and the curved dashed lines on the cor-

ners illustrate the chosen boundary conditions.
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The super SP we will employ to illustrate the procedure, will consist of five SP’s

of the original network, similarly to the five bond unit studied in the percolation

example studied previously. The super-SP structure to be considered is displayed

in Figure 2.7, where the circles represent SP’s and the lines map to links in the

network. By inspection of figure 2.7, the loss of connectivity is clear when working

with the super SP instead of the original network, i.e. the four edge nodes within a

3× 3 section of the network are taken to be open (their bonds are neglected). This

super SP structure leaves us with an identical amount of incoming and outgoing

channels as each SP on the original CC square lattice. In a further analogy to the

bond percolation example studied, by inspection, the size of the RG unit is 2a as

well, where a is the lattice constant that represents a unit of lattice spacing.

In the RSRG approach, an electron travels along equipotential lines between

SP’s of a specific RG unit, accumulating a phase as in the original network. The

phases are uncorrelated, this is meant to represent the randomness of the original

potential landscape. Each SP is describable by an S matrix providing simultaneous

equations that relate amplitudes of the wave function of incoming and outgoing

channels, (Ii, I
∗
i ) and (Oi, O

∗
i ), respectively.

Every incoming channel, (Ii, I
∗
i ), besides the external inwardly directed chan-

nels, (I1, I
∗
4 ), are expressible in terms of outwardly directed channels, (Oi, O

∗
i ) using

the phases, Φi. For example, I5 = eiΦ15O1, where Φ15 is the phase shift along the

link between SPs I and V. The scattering equations which result from these rela-

tions (of which there are ten in our example) can be solved linearly to obtain the

transmission coefficient of our super SP, more explicitly,

Ax = b, (2.17)
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such that,

A =



1 0 0 0 0 −eiφ31r1 0 0 0 0

0 1 0 0 0 eiφ31 t1 0 0 0 0

0 −eiφ12 t2 1 0 0 0 0 −eiφ42r2 0 0

0 −eiφ12r2 0 1 0 0 0 eiφ42 t2 0 0

0 0 −eiφ23r3 0 1 0 0 0 0 −eiφ53 t3

0 0 eiφ23 t3 0 0 1 0 0 0 −eiφ53r3

0 0 0 0 eiφ34 t4 0 1 0 0 0

0 0 0 0 −eiφ34r4 0 0 1 0 0

−eiφ15 t5 0 0 0 0 0 −eiφ45r5 0 1 0

−eiφ15r5 0 0 0 0 0 eiφ45 t5 0 0 1


,

x = {O1 O∗1 O2 O∗2 O3 O∗3 O4 O∗4 O5 O∗5},

b = {t1 I1 0 0 0 0 r4I
∗
4 t4I

∗
4 0 0}. (2.18)

One can then relate the amplitudes on the external links with the amplitudes of the

super SP; let I1 = I ′ and O5 = O′, thus implying I∗4 = I
′∗ and O∗2 = O

′∗. Without

loss of generality, one can choose the incoming links of the super SP to be I ′ = 1

and I
′∗ = 0, then the transmission coefficient, t′ of the super-SP, is obtainable, since

O′ = t′I ′ = t′1 = t′.

Solving the matrix Eq. (2.17) yields the following expression for the super

SP transmission coefficient [13],

t′ =
∣∣∣ t1t5(r2r3r4eiΦ3−1)+t2t4ei(Φ1+Φ4)(r1r3r5e−iΦ2−1)+t3(t2t5eiΦ1+t1t4eiΦ4 )

(r3−r2r4eiΦ3 )(r3−r1r5eiΦ2 )+(t3−t4t5eiΦ4 )(t3−t1t2eiΦ1 )

∣∣∣.
(2.19)

Now one may employ Eq. (2.19) as our RG transformation, allowing one to generate

a distribution of transmission coefficients of the super SP’s, P (t′), averaged over the

summed phases Φj . More specifically, each Φj represents the sum over three random

phases forming a particular closed loop within an RG unit. The distribution, P (t′),

is generated using the renormalised distribution of the transmission coefficients of

the original SP’s, P (t).

However, recall that our original SP’s transmission coefficients depend on

electron energy, εe. Since delocalisation occurs at ε = 0, this implies that there
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exists a distribution, Pc(t), and Pc(t
2) is symmetric with respect to t2 = 1/2 = t2c

which we can call the fixed point (FP) distribution. The distribution, Pc(t
2) = Pc(G)

(where G = t2 is called the dimensionless conductance) can be related to Pc(t), by

definition of G, as follows,

Pc(G) ≡
∣∣∣∣ dtdG

∣∣∣∣Pc(t) =
1

2t
Pc(t). (2.20)

To obtain the critical exponent of the CC model from the above distribu-

tion, we must first use the relation between the transmission coefficient, ti, and the

dimensionless SP heights, zi, in Eq. (2.13). The relation also holds for the trans-

mission coefficient of the super SP, t′, providing one with its height, z′. Thus one

may generate a distribution, Q(z), of the SP heights which can be related to P (G)

as follows,

Q(z) = P (G)

∣∣∣∣dGdz
∣∣∣∣ =

1

4
cosh z/2−2P [(ez + 1)−1]. (2.21)

Q(z) represents a parametrisation of the conductance distribution which, as we will

show, provides a simple way to extract an approximation of the critical exponent of

the CC model, νcc.

Let us begin with some initial distribution, Q0(z) = Qc(z − z0), which is

shifted by z0 ∝ εe from the critical distribution, Qc(z). This shift in SP height can

be seen as a consequence of a small increase in electron energy, as measured from

the LB centre. Since the IQH transition is asymptotically peaked at z0 = 0, this

implies that for all z0 6= 0, each RG step will drive the initial distribution, Q0(z),

further from the FP. If we take the shift to be small, z0 � 1, the first RG step would

result in the distribution, Qc(z − τz0), for some τ ∈ R independent of z0. After n

RG steps, the centre of the distribution will be shifted by zmax,n = τnz0, and the

sample size will be increase by sn, such that s is the size of the RG unit (called the

scale factor), and s = 2 for the five SP RG unit. There exists a certain number, N ,
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of steps at which the shift will reach,

zmax,N = τNz0 ∼ 1, (2.22)

at which point a given SP is unlikely to transmit by inspection of the relation (2.13).

At this point, the localisation length, ξ, will be equivalent to the size of the system,

sNa, such that a is the usual lattice constant of the original network, hence we can

rewrite the above relation,

(ξ/a)(log τ/ log 2)z0 ∼ 1, (2.23)

and thus ξ will diverge as follows,

ξ ∼ az−(log τ/ log 2)
0 = az−νcc0 ⇒ νcc = log s/ log τ. (2.24)

We identify log 2/logτ = νcc above by comparison with definition of the localisation

length, ξ, at the IQH critical point energy, Ec, which has the following relation [82],

ξ ∼ |E − Ec|−ν . (2.25)

Re-arranging Eq. (2.24), one obtains a formula for the critical exponent with respect

to zmax,n,

νcc =
log sn

log
zmax,n
z0

. (2.26)

Lastly, when carrying out this procedure one should to make sure that z0 is suffi-

ciently small such that zmax,n ∝ z0 for n large enough.

In the upcoming section we will introduce the last ounce of background

theory before discussing our methods and results; specifically, we discuss an analytic

formulation of the IQH transition and its link to 2D QG.
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Chapter 3

Analytical Formulation and 2D

Quantum Gravity

The main purpose of this section is to argue that an ensemble of random networks

(RN’s) is, in the continuum limit, equivalent to a system of free Dirac fermions

coupled to random potentials - analogous to the CC model - as well as 2D QG.

The coupling to 2D QG has been shown to modify the critical exponents of well-

known statistical mechanics models [29, 67, 69]. The suggestion is that a similar

modification will happen for RN’s, which can be constructed from the CC network

model with an appropriate modification. This CC network modification is done by

incorporating a new type of disorder called geometric disorder (GD), which can then

be simulated numerically. One can study varying amounts of GD with various super

cell structures to find a value for the critical exponent that matches experiment.

3.1 Random Networks

Rigorously, the RN’s of interest to us are built on planar directed graphs in which

every vertex has two incoming and two outgoing edges. The edges (links) of the

network alternate as one goes around a vertex (node). The graphs of RN’s divide
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Figure 3.1: (Left) Diagram of a 2D RN and its dual. (Right) RN and its percolation

lattice [30].

the plane into two sets of polygonal faces with opposite orientations of their edges

as depicted by green arrows in Figure 3.1. We can represent a state of a random

graph by a complex vector, Z ∈ CN , such that N is the number of edges of said

graph. Each component of Z, ze, represents the channel between a pair of nodes

of an edge, e. The network model includes random scattering matrices connecting

incoming, (z1, z1′), and outgoing, (z2, z2′), channels placed at the vertices. Focusing

on the CC network model, one can write the familiar S matrix equation with our

newly introduced notation, as illustrated in Figure 3.2,

 z2

z2′

 = S

 z1

z1′

 =

teiγ reiγ
′

reiγ −teiγ
′


 z1

z1′

 , (3.1)

The scattering amplitudes satisfy t2 + r2 = 1, and the scattering phases, (γ, γ′), are

random.

The evolution of such a network in discrete time steps is specified by a N×N

unitary matrix, U , composed of all node scattering matrices [16]. In the Feynman

path integral approach to quantum mechanics [28], the Green’s function of a system

of interest is expressible in the supersymmetric (SUSY) formalism of random matrix
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Figure 3.2: (Left) we have a diagrammatic representation of an S matrix and (Right)

its corresponding R matrix.

theory as the following super integral [32],

G(e1, e2; η) =

∫
DΨΨe1Ψe2 exp

∑
e,e′

Ψe(e
−ηU − 1)ee′Ψ

′
e, (3.2)

where the e1,...,N are the usual graph edge labels and Ψe = (φe, ψe) consist of bosonic

and fermionic variables assigned to the edge labelled e (hence the SUSY moniker),

as shown in Figure 3.2. The use of bosonic and fermionic variables is standard in

the SUSY method and is necessary to perform disorder averages, see Ref. [44] for

a review. One is free to choose the gauge parameter, η, without loss of generality,

hence for the derivation that follows it is simplest to pick η = 0. One can now

imagine recasting the network into a lattice by connecting the midpoint of each

edge, e, ‘forward’ to two other midpoints by two vectors, ξe. These vectors form the

so-called ‘medial lattice’ (ML) of the original random network, as shown in Figure

3.3. Whence a scattering node is replaced by a rectangle, and we get an alternative

representation of the random network as a random medial lattice. By inspection of

the Green’s function and the unitarity of U , the action for the random network can

be written as,

S =
∑
e

ΨeΨe −
∑
e,ve

te,vee
iγeΨe+veΨe, (3.3)

which represents the hopping of fermions and bosons on the random ML, and the

hopping amplitudes take values r and ±t depending on the vector, ve. The standard
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Figure 3.3: (Left) A graphical representation of a random network. (Right) The

corresponding random medial lattice of the original network [30].

SUSY method is only suitable for single particle problems [43]. To this end it is

necessary to use second quantisation, in which the scattering matrices at the nodes

are promoted to R matrices (see Figure 3.2). These R matrices act on the Fock

spaces attached to edges of the network. Given a random ML, we represent the R

matrices by quadrangular faces surrounding the scattering nodes, see Figure 3.3.

The trace of the product of the R matrices over all nodes of the network

provides one with the partition function [44]. In the most general case of interacting

electrons, the SUSY method is no longer applicable [31]. However, in this study

along with all others which attempted to find the critical exponent, we do not include

such interactions and thus may continue to explore the SUSY interpretation. Thus,

writing the trace of the product of the R matrices in the basis of (super) coherent

states for each of the (super) Fock spaces on the edges, one obtains an identical

action, S, as the previously found one in Eq. (3.5) [44].

3.2 Continuum Limits

In the case of the CC network, the ML is the square lattice with vertices labelled

by some set of Cartesian coordinates, xa ∈ R2, as shown in Figure 3.4. The vectors,
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ξe, are ±εx̂a such that x̂a are unit vectors and hence ε must be the lattice spacing.

Near the critical point of the CC model, tc = rc = 1/
√

2 [17], the variations of the

phases, γe, and the fields, Ψe, are slow, and one can cross to the continuum limit,

ε→ 0, by simply expanding the fields,

Ψe+εx̂a → Ψ(x) + ε∂aΨ(x). (3.4)

Moreover, re-scaling the fields in the continuum, one obtains, as in [35], the contin-

uum action of the fields,

S =

∫
d2xΨ

[
σµ
(
i
↔
∂ µ +Aµ

)
+mσ3 + V

]
Ψ, (3.5)

such that σµ=1,2,3 are the usual Pauli spinors, and the symbol,
↔
∂ = (

←
∂ −

→
∂ )/2,

the arrow on top of the partial indicates the direction of action, i.e. the right (left)

arrow implies the operator acts on what lies to the right (left) of it. The mass term,

m ∝ r − rc, σµ ,and the random gauge, Aµ(x) and scalar, V (x), potentials arise as

certain combinations of the random phases, eiγe [35].

One can now consider the random ML that is close to the square lattice as is

shown in Figure 3.4. Its faces remain quadrangles, furthermore, one can introduce

(curvilinear) coordinates, ξµ ∈ R2, with respect to the vectors, ve, in a natural

way. Since physics is independent of coordinate choice, one can use either ξµ or

xa, as long as one remains consistent. Using the frame formalism from differential

geometry to relate bases of vectors x̂a = Eµa ∂/∂ξµ and 1-forms, dxa = Eaµdξµ and

hence the volume element is simply, d2x = Ed2ξ such that E ≡ det Eaµ. The action,

which is invariant under coordinate exchange can thus be re-written under change

of coordinates as,

S =

∫
d2ξ EΨ

[
σbeµb

(
i
↔
∂ µ +Aµ

)
+mσ3 + V

]
Ψ. (3.6)
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Figure 3.4: Graphical representation of weakly random medial lattice. The vertices

of the original and weakly random ML are labelled by vectors, x and ξ, respectively

[31].

This action is nearly identical to the previous one except now all terms including

the mass term have a factor of E , making the mass random as well. This term

represents the now random geometry (Euclidean gravity) of the lattice. In the

weakly deformed limit the random coordinate transformation matrix E is close to

identity, implying the actions in Eq. (3.5) and Eq. (3.6) are nearly equivalent.

The idea that Gruzberg et al. [30] propose is that random coordinate frames can

account for more complicated situations as well, such as situations which correspond

to curved surfaces represented by random graphs.

For discrete random networks in 2D, a non-zero curvature is defined by the

presence of polygons with the number of sides, n 6= 4. We can see this simply by

imagining the random quadrangulation of the plane dual to a given random network

(see Figure 3.1 for illustration) and consider some n-gon within the random network

which corresponds to n quadrangles meeting at a vertex of the dual quadrangulation.
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Now if we try to map all quadrangles into equal squares with π/2 angles at all four

corners then it is clear that connecting n such squares at a vertex creates a deficit

angle of (4 − n)π/2, distorting the surface of the network into a ‘cone’ (positive

curvature) if n < 4 or a ‘saddle point’ (negative curvature) if n > 4.

In the continuum, on a curved surface, one defines frames and coordinates

locally on a specific chart (see Ref. [58] for a review on differential geometry). When

charts overlap, different coordinate systems overlap resulting in different expressions

for the action. However, as we mentioned earlier, the action is always invariant under

any coordinate transformations, ξ̃ = fa(ξ
1, ξ2). Hence, either way, the action is given

by Eq. (3.6), but now we must consider arbitrary frame configurations and average

over them. The measure on such random surfaces is assumed to be determined

uniquely by the requirements of conformal and diffeomorphic invariance, see Ref.

[66] for more details.

One then needs to average observables over the random geometry which

can be considered as a coupling to quenched QG [50]. It is well-known that 2D

QG modifies critical exponents of a conformal field theory (CFT) located on a

fluctuating surface, an overview is or in Ref. [21]. This modification, which is given

by Knizhnik-Polyakov-Zamolodchikov (KPZ) relations [50], occurs because models

coupled to gravity have larger coordinate re-parametrisation symmetry than models

in flat space [58]. When the central charge, c = 0 [23], in for example, the Anderson

transitions and critical percolation (present case) [6], the relation is as follows,

∆′ =
1

2
(
√

1 + 12∆0 − 1), (3.7)

such that ∆0 and ∆ are scaling dimensions of operators on a flat and fluctuating

surface, respectively. By replacing ∆0 with νcc in Eq. (3.7) one can see that the

RHS is smaller and to be more specific, since the most accurate recent studies found

νcc ∼ 2.58−2.6, then the RHS gives ν ′ ∼ 2.32−2.34 which is very close to νexp ∼ 2.3.
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However, whether the KPZ relation is either partially or fully complicit in explaining

the difference between the simulated and experimentally observed values of the

exponent has yet to be proven.

3.3 The KPZ Relation

Although we have mentioned the KPZ relation, it is useful to derive it providing us

more context on its strength as well as limitations. Although we will be presenting

a physicists derivation of the geometrically well-defined relation, there exist many

other ways to produce it, and we refer the reader to Refs. [23, 50, 2].

The KPZ equations demonstrate a deep relationship between the conformal

weights of field operators, ∆0, in a given 2D CFT to the scaling dimensions, ∆, of

said operators when the CFT has been coupled to 2D QG. The complete relations

are as follows,

∆0 = ∆ +
γ2

4
∆(∆− 1) , γ =

√
25− c

6
−
√

1− c
6

. (3.8)

The first derivation of the KPZ relations by Khizhnik et al.[50] was done in a geomet-

ric framework by performing 2D QG in a well-chosen gauge. The scaling dimensions,

∆, then arise as weights of the SL(2,R) when the study was done in an effective

theory framework [23].

More specifically, one must consider the scaling behaviour of correlation func-

tions in the quantum CFT plus gravity to obtain ∆. Many CFT’s can be constructed

from 2D statistical mechanics models when they are expressed as random geometri-

cal objects on the plane and the scaling limit is taken [41]. This has been achieved

for random walk models with interactions [24], percolation clusters [15], interface

models [40], travelling salesman problems [42] and so on [41]. The scaling operators

have physical meaning and are viewable as geometrical objects arising in physical

models (cluster boundaries or defect lines for example). Conformal weights, ∆0, on
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the other hand, can be related to the multi-fractal dimensions of said geometrical

objects [23]. The statistical models can, in general, be constructed on a random

lattice, where ∆ is associated with the scaling dimension of the geometrical objects

expressed in this random geometry. Before we begin the derivation, it is important

to note that this is the most physically based, least rigorous derivation of the KPZ

relations [19]; however, it will still employ CFT techniques which requires intro-

ductory knowledge in quantum field theory (QFT), basic differential geometry and

measure theory.

We begin the derivation in the complex plane with a fractal set, X, with

fractal dimension, dH = 2 − 2x, for some x � 1. As in many QFT problems, we

must incorporate a large distance infrared (IR) regulator, to be able to do so we let

X lie in a compact domain, D ⊂ R2. Next, we consider a flat measure, dµ(z) = dz,

on R2 which induces a measure on X, dµX(z), with dimension, dH . One constructs

this measure by approximating X with some large covering, Xε, made up of circles

of radius ε. One then defines dµX to be the limit of the flat measure confined to Xε

and rescaled by a factor, ε−dH . Thus, if one picks a point, z0 ∈ X, then measures

the volume of X in a disc of radius, r, centred at z0, this volume scales, if r � 1,

as,

VX(z0, r) =

∫
|z−z0|≤r

dµX(z) ≈ (r2)1−x. (3.9)

Let us then be practical and work with the setup of a smooth conformal Riemannian

metric, g(z) = eγφ0(z)12×2, in a 2D plane, such that φ0(z) is a continuous function

and γ > 0. The measure on said plane is dµφ0(z) = dzeγφ0(z) and thus, the induced

measure on X, the fractal set, is,

dµφ0

X (z) = dµX(z)eγ(1−x)φ0(z). (3.10)

The measure remains local and thus the metric can be taken to be (locally) constant

and the scaling of volume as shown in Eq. (3.9) will of course remain valid. We
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may now extend the above setup to the quantum scenario in which the metric, g(z),

is promoted to a random variable. The metric will retain the form, eγφ(z), with

the requirement that φ(z) is no longer constant, but a random free field that is

massless. Moreover, the measure, dµφX(z), is upgraded to a random measure with

support on X, and our goal is to calculate this measure and its quantum dimension,

dQH = 2 − 2∆, where ∆ will surely differ from the classical value of x. The smooth

function, φ(z), is taken to fluctuate at some small distance scale, a � ε, which is

much smaller than the regulator ε used to define the measure and its dimension, so

the limit to take will be, a→ 0, first and then ε→ 0. Thus, our quantum measure

which has scaling dimension ∆, given that it remains local, will be,

dµφX(z) ∝ dµX(z)eγ(1−∆)φ(z). (3.11)

Thus, we have an ansatz and which we can employ to find ∆, we will achieve this

with a self-consistency scaling argument. We begin by extending the scaling for

the volume of X in a disk of radius, r, as expressed in Eq. (3.9), and replace the

exponent, dH = 2 − 2x, by dQH = 2 − 2∆. Moreover, we must provide a covariant

definition of a disk of size r around z0, specifically we must consider the geodesic

disk, Bz0,r = {z; dφ0(z, z0) ≤ r} where dφ0(z, z0) is the geodesic distance on our

non-constant metric, g. This definition is troubling in our case as our metric is

random, to use this definition we must further define a neighbourhood of z0 as a

domain which is filled by some diffusion process at ‘time’, t = r2. This is achievable

by the use of a heat kernel in our random metric, g.

Let us begin our calculation, as usual, by looking at the simple classical case

of a (non-fluctuating) smooth metric, and hence a smooth field, φ0(z). The heat

kernel, Kφ0(z, z0; t), is then defined as the kernel of the exponentiated Laplacian,

Kφ0(z, z′; t) = 〈z| et∆φ0 |z′〉 , (3.12)
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such that ∆φ0
z is the so-called Laplace-beltrami operator [41], in our metric, g,

∆φ0
z = e−γφ0(z)∆z , ∆z = 4

∂

∂z

∂

∂z
. (3.13)

Now, Kφ0(z, z0; t), is a function of z whose image, at short times, t, lies in a region

of size r =
√
t, about z0. In flat space, φ0(z) = 0, the heat kernel is simply,

K0(z, z′; t) =
1

4πt
exp

(
−|z − z

′|2

4t

)
. (3.14)

We now consider the behaviour of the fractal measure, dµφ0

X , at short dis-

tances by studying its convolution with our heat kernel, i.e. we take the average

integral,

Bφ0

X (z0, t) =

∫
D
dµφ0

X (z)Kφ0(z, z0; t), (3.15)

where, as one can recall, D is some large subset of the plane. It is now appropriate to

employ a Mellin-Barnes (MB) transform [64] of BX , to study its small t behaviour,

Mφ0

X (z0, s) =

∫ ∞
0

dtts−1Bφ0

X (z0, t) =

∫
D
dµφ0

X (z)Mφ0(z, z0; s), (3.16)

with Mφ0(z, z0; s) the MB transform of the heat kernel, Kφ0(z, z0; t),

Mφ0(z, z′; s) = Γ(s) 〈z| (−1/∆φ0
z )s |z′〉 . (3.17)

Thus, at short distances on a smooth metric, Mφ0(z, z′; s) will behave as in the flat

space case,

lim
z→z′

Mφ0(z, z′; s) ≈M0(z − z′; s) = Γ(s) 〈z| (−1/∆φ0
z )s |z′〉 ≈ |z − z′|2s−2. (3.18)
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Hence, the MB transform of Eq. (3.16) behaves at small distances, z → z0, as

∫
dµX(z)|z − z0|2s−2. (3.19)

Moreover, the fractal measure’s short distance behaviour, dµX , given by the vol-

ume, (3.9), implies that the MB transform will be convergent for s > x, and thus,

Mφ0

X (z0, s) will be holomorphic for <(s) > x. There also exists a pole (or singular-

ity) at s = x. One can then employ the inverse MB transform [64] to obtain the

original function as t→ 0 which is,

Bφ0

X (z0, t) ≈ t−x, (3.20)

as expected and as occurs in the case of flat space.

We may once again extend our above arguments to the more nuanced quan-

tum case in which φ(z) is a random free field, which corresponds to the so-called

Louiville model [23]. One can consider Hamilton’s action for φ which is normalised

for convenience,

S =
1

4π

∫
dz(∇φ(z))2. (3.21)

Hence the covariance matrix (or propagator) at short distances is simply,

〈φ(z)φ(z′)〉 = G0(z, z′) ≈ − log |z − z′|, (3.22)

and γ, the coupling constant in our random metric, g = eγφ0z12×2 is 0 ≤ γ ≤ 2.

There will exist an ultraviolet (UV) - or short distance - divergence in calculations

employing such a metric [19]. The divergences of the metric and measures can be

dealt with by multiplicative renormalisation in the usual fashion [2].

As previously argued, our measure, dµφX(z), on the fractal set, X, will be

a random measure, locally correlated with φ, and be of the form of Eq. (3.11).
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The measure’s dimension is then modified by the fluctuations of the metric at short

distance and thus as we previously claimed, ∆ 6= x. The quantum φ average of our

fractal measure around z0 is then defined as,

BQ
X(z0, t) =

〈∫
D
dµφX(z)Kφ(z, z0; t)

〉
φ

, (3.23)

which is performed in practice trivially by empoying Wick’s Theorem [41]. We may

find the quantum scaling exponent, ∆, for X by perceiving that BQ
X will approxi-

mately obey the short time, t→ 0, self-consistent scaling,

BQ
X(z0, t) ≈ t−∆. (3.24)

As before we take the MB transform of BQ
X(z0, t), which reads,

MQ
X (z0, s) =

〈∫
D
dµφX(z)Mφ(z, z0; s)

〉
φ

= Γ(s)

∫
D
dµX(z)〈eγ(1−∆)φ(z)Mφ(z, z0; s)〉φ.

(3.25)

Where Γ(s) is some continuous function but there exists a pole in s arising from

the UV behaviour of our integrand. One can then make the following claim for the

form of the integrand,

〈eγ(1−∆)φ(z)Mφ(z, z0; s)〉φ ∝ |z − z0|2s−2+(γ2/2)(s−1)(2∆−s). (3.26)

To show that the integrand indeed has this form, we begin with the following, one

can write,

eγ)(1−∆)φ(z)Mφ(z, z0; s) = eγ(1−∆)φ(z) 〈z|
(
−1

∆φ
z

)s
|z0〉 . (3.27)

Thus one can employ the standard replica trick [41] from CFT to obtain Eq. (3.26).

More specifically, we study Eq. (3.27) at s > 0 and analytically continue to 0 < s <

1. Assuming s ∈ Z we use Eq. (3.27) to write the covariance matrix (the Laplacian’s
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inverse) as (−∆φ
z )−1 = (−∆z)

−1eγφ allowing us to re-write the RHS of Eq. (3.27)

as,

∫ ∫
dz1 · · · dzs−1e

γ(1−∆z)φ(z) 〈z| −1

∆z
|zs−1〉 eγφ(zs−1) · · · eγφ(z1) 〈z1|

−1

∆z
|z0〉 , (3.28)

such that 〈z| (−∆z)
−1 |z′〉 is the massless covariance matrix in flat space. One can

then perform the quantum φ average which reads - at short distances - as,

〈eγ(1−∆)φ(z)eγφ(zs−1) · · · eγφ(z1)〉 ∝
∏
j

= 1s−1|z − zj |−γ
2(1−∆)

∏
0<i<j<s

|z − zj |−γ
2
.

(3.29)

We need to understand the singular part in the z → z0 expansion of Eq. (3.28) which

originates from the regime where all |zj−z0| are of the order |z−z0| since this provides

us with, post analytic continuation to 0 < s < 1, the dominant contribution. The

RHS of Eq. (3.29) is of z-dimension, −γ2[(1 − ∆)(s − 1) + (s − 1)(s − 2)/2],and

by counting powers one obtains Eq. (3.26), as required. Moreover, the logarithms

appearing in the covariance matrix do not alter this scaling, and solely provide a

global factor, log |z − z0| for s ∈ Z [41].

Now, by inspection, if one compares Eqs. (3.26) and (3.18) as well as Eqs.

(3.25) and (3.19), it is clear that the first singularity of MQ
X (z0, s) occurs at sc and

is given by,

2x− 2 = 2sc − 2 +
γ2

2
(sc − 1)(2∆− sc). (3.30)

Lastly, the consistency condition, sc = ∆ implies,

x = ∆ +
γ2

4
∆(∆− 1). (3.31)

As required, we derived the KPZ relation employed in our study following the pre-

sentation in [19]. We employed heat kernel methods [22] which are natural as the

heat kernel is the solution of a diffusion equation whose properties are simple under
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conformal transformations. In particular, the heat kernel’s short distance and time

behaviours are connected to the spectral dimension, ds, of the space under consider-

ation, which for 2D QG, is known to be ds = 2 [23]. The situation is thought to be

very curious when dealing with intrinsic quantum Hausdorff dimension [2], which is

known to be dQH = 4 in the case of c = 0 (γ = 8/3), but in the general case is very

difficult to study.

It is worth emphasising that although our derivation was not rigorous, the

KPZ relations have been derived in various ways and are known geometrically true,

moreover they have been applied to various exactly solvable statistical mechanics

models [23]. In our case with the CC model, we take the central charge to be c = 0,

as in the case for the Anderson transition [2] and there exist arguments as to why

this may be the case, see Ref. [7] for such an argument.
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Chapter 4

Algorithm and Numerical

Techniques

In this chapter, we will be discussing the numerical techniques used in our and other

studies applied to the CC random network model. We begin by briefly reviewing

the often used TM method which was employed by many authors who attempt to

extract the critical exponent of the IQH. This includes Gruzberg et al. in their initial

study of the effect of GD on the said exponent. We will then go on to describe the

numerical technique we used in our study, the RSRG approach, and provide a small

introduction into percolation theory as it is the basis of this approach.

4.1 Geometric Disorder Algorithm

To simulate random networks numerically, instead of simply employing the CC

model, we begin with the regular CC network and then modify it geometrically by

focusing on each node and setting t = 0 with probability, p0, t = 1 with probability,

p1, and leaving the node unchanged with probability p = 1− p0 − p1. The modified

nodes with t = 0 (t = 1) are open in the horizontal (vertical) direction, and opening a

node changes its corresponding four adjacent square faces into two triangles and one
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(a) (b)

Figure 4.1: (a) Modified CC network with two ‘open’ nodes in both the horizontal

and vertical directions, respectively. The labels R indicate the resulting R matrices

from the network. (b) The corresponding ML of the modified CC network in (a).

The labels t and r are the transmission and reflection coefficients at each node which

will be modified by the GD [30].

hexagon as illustrated in Figure 4.1 (a) and the corresponding ML in (b). Repeated

opening of nodes can produce tilings of the plane by polygons with arbitrary numbers

of sides which is precisely what we define as geometric disorder. At the same time,

this construction still allows for the use of the RSRG and TM methods of the CC

model, but with modified t and r amplitudes. To maintain statistical isotropy of

the model, i.e. an equal number on average of closed and open nodes, one sets

p0 = p1 = pc. Then one expects that the critical point is still given by the value

t∗2 = 1/2 for the unaltered nodes. On the other hand, the investigation of the

critical exponent with broken statistical isotropy is achieved in two ways. The first

method is by setting one of the p0,1 to be zero and varying the other. The second is

letting p0 = p1 = pc but investigating RG cell structures with a significant number

of open nodes per cell.
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4.2 Geometric Disorder in 2D Percolation

As the CC model is derivable as a semi-classical extension of bond percolation theory

(BPT) on a 2D square lattice [17], it is useful to consider the effect of the proposed

GD modification on the critical exponents of BPT and compare it to the effect

on our transmission coefficients, t′. As we previously mentioned, the KPZ relation

applies to classical percolation theory as well and thus we will observe how the value

of the critical exponent shifts.

When it comes to picking super RG cells in classical BPT and comparing

critical exponents, the best approximation obtained thus far for the BPT critical

exponent, ν = 4/3, is given by the symmetric five bond result [20], ν5 = 1.427,

which maps to the five SP structure we discussed previously for the CC model. If

one increases the size of the unit cell from five bonds in classical BPT this will result

in poorer approximations to the actual exponent as opposed to site percolation [11],

in which the opposite is true. Moreover, the trend for RG cell size is non-monotonic

but fluctuates significantly as can be seen in [74].

As we discussed previously in section 2.3, the way one calculates the critical

exponent in classical BPT with the RSRG approach is by exploring all the possible

ways through the superstructure with every possible number of open and closed

bonds [34], this then provides one with a unique characteristic polynomial for each

RG structure. In the five bond example, we expand the polynomial in Eq. (2.14)

for R(p),

R(p) = 2p5 − 5p4 + 2p3 + 2p2, (4.1)

such that p ∈ [0, 1]. From this polynomial one can obtain the critical exponent

in two simple steps, the expression for the critical exponent in classical BPT is as

follows,

ν =
log(s)

log
(
dR(p)
dp |p=p∗

) , (4.2)
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where s is the usual scale factor and s = 2 for the 5 bond cell, p∗ is the critical

probability obtained from equating the characteristic polynomial, R(p), to p and

finding the non-trivial, p∗ 6= {0, 1}, real solutions. In our example, we have shown

in section 2.3 that p∗ = 1/2 and dR(p)
dp |p=p∗=1/2 = 13/8⇒ ν = 4/3.

Now we can modify the network geometrically in the same way as the CC

network. Let us begin by defining a modified R,

Rmod(p, r; l0,1) =


0, 0 ≤ r < l0

1, l0 ≤ r < l1

R(p), l1 ≤ r < 1

, (4.3)

where r ∈ [0, 1] is a uniformly distributed random variable, l0,1 ∈ [0, 1] is a cho-

sen parameter which corresponds to p0,1 in the CC model (with no imposition of

statistical isotropy), and θ is the Heaviside function. It then follows that,

Rmod = τ0 +R(p)τ1 :


τ0 = θ(r − l0)− θ(r − l1)

τ1 = θ(r − l1)− θ(r − 1)

, (4.4)

Now, the critical probability, p∗ = (0, 1, 1/2), is re-writable for clarity as, p∗ = x+ y
2 ,

for some (x, y) ∈ {0, 1}. Plugging p∗ into dRmod
dp , one obtains νmod,

dRmod

dp
|p=p∗ =

13

8
τ1 ⇒ νmod =

log(2)

log(13/8) + log(τ1)
. (4.5)

Hence, τ0 is cancelled from the expression and one is left with τ1 = {0, 1}, by

definition, and log(τ1) = {−∞, 0}. Thus, if one increases the role played by l0,1, this

will trivially increase the number of times y = 0 on average and thus the number of

times νmod = 0. Hence, if we consider the mean value of νmod to be an approximation

of the critical exponent for the case of BPT with geometric disorder, it is clear that

〈νmod〉 < ν.
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It is worth noting that x is eliminated with every unit cell structure and

corresponding characteristic polynomial we have attempted, and we postulate that

it is always the case in BPT. On the other hand, although in classical BPT the

above result indicates an overall decrease in νmod, one can also employ the same

analytical procedure for the super transmission coefficients, t′, in the CC model. By

mapping the arguments, ti 7→ τ0 + τ1ti, of the coefficients, t′(ti), one finds that in

our analytic expressions for t′, that firstly, τ0 does not cancel, and secondly, there

are a large number of different phase factors remaining when τ1 = 0. Hence, the

situation is not as clear, and one cannot claim which way the exponent goes when

p0,1 > 0. Instead we are forced to compute the results numerically as we have done

in our study.

4.3 Transfer Matrix Method

The most recent and extensive study applying the TM numerical method [79], ar-

rived at a value of νcc ≈ 2.6 which is significantly different from νexp ∼ 2.3. This

motivates the inclusion of structural disorder which was also done using the TM

method in the original GD study [30]. The TM formalism, first developed in Ref.

[56] requires one to construct a regular 2D lattice out of the SP’s of the network

model. From there one cuts the 2D plane into 1D slices of length, L, with the asso-

ciated scattering matrices transformed into so-called transfer matrices, TL [81]. To

illustrate, let us consider the calculation of the critical exponent of the CC model.

One begins by computing the product,

TL =
L∏
j=1

M1U1jM2U2J , (4.6)
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of layers of transfer matrices, M1U1jM2U2J rcorresponding to two columns, M1 and

M2, of vertical 2× 2 scattering nodes,

M1 =


B1

. . .

B1

 , M2 =



B2
22 0 0 · · · B2

21

0 B2 0 · · · 0

...
...

. . .
...

...

0 · · · 0 B2 0

B2
12 0 · · · 0 B2

11


.

such that the elements, B1,2, are defined as follows,

B1 =

1/t r/t

r/t 1/t

 and B2 =

1/r t/r

t/r 1/r

 , (4.7)

and the U -matrices have a simple diagonal form with independent phase factors,

Unm = eiαnδnm. The phases, αn, are uniformly distributed random variables in the

range, [0, 2π), reflecting the fact that the phase of an electron approaching a saddle

point of the random potential is arbitrary. The scaling behaviour of the Lyapunov

exponent [45], γ, near the critical point should have a finite size dependence,

γM = Γ(M1/νu0,M
yu1), (4.8)

where Γ is the scaling function defined in [45], M is the number of 2×2 blocks in the

transfer matrices, u0(x) and u1(x) are the relevant and irrelevant fields, respectively.

The left hand side is found numerically since the Lyapunov exponent is the smallest

positive eigenvalue of the following [45],

lim
L→∞

log TLT
†
L

2L
. (4.9)
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On the other hand, the right-hand side is expanded as a power series in x and

powers of the lattice width, M . Re-arranging the left and right-hand side results in

the critical exponent, ν [78].

4.4 Numerical RSRG implementation

We will now discuss our implementation of the RSRG approach for a range of RG

unit cells. The super SP structure in Figure 4.2 (a) is our familiar example of such

a unit and consists of five original connected SP’s. We also illustrate the larger RG

units employed in our investigations in Figure 4.2 (b). Recall that for any chosen

RG unit we must first find the fixed point distribution, Pc(t). In order to do so,

in practice, the RG is initialised with some starting distribution (e.g. uniform or

Gaussian) of transmission coefficients, P0(t). From P0(t), the ti, i = 1, .., 5, are

obtained and substituted into the RG transformation. The phases, φj , j = 1, .., 4,

Figure 4.2: (Left) The familiar RG unit from Figure 2.7 with the dashed red lines

used as an extra simplified indication of which nodes are left open. (Right) The five

main RG cells investigated are represented in this diagram with the saddle point

structure of each cell enclosed by its corresponding coloured line analogous to the

example on the (Left) diagram.
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are also selected randomly from a uniform distribution with range, [0, 2π).

In this way, a large number of super transmission coefficients, t′, are gen-

erated, using the equivalent of Eq. (2.19) for the respective super-cell structure.

In practice, one decreass statistical fluctuations of the resulting histogram, P1(t),

by smoothing using a Savitzky-Golay filter, [75]. At the next step the proce-

dure is repeated using P1(t) as the initial distribution, and so on until conver-

gence of the iteration process is close. I.e. when the mean-square deviation,

R =
∫
dt[Pn(t) − Pn−1(t)]2, of the distribution Pn(t) and its predecessor deviate

by less than a chosen tolerance which varies with RG structure due to numerical in-

stabilities. Since the transmission and reflection coefficients, ti and ri, respectively,

are related to the SP heights, zi,

t =

(
1

1 + ez

) 1
2

, r =

(
1

1 + e−z

) 1
2

, (4.10)

as we previously discussed, we reformulate P (t) as a distribution with respect to z,

which we callQ(z). However, the range of z is all R, hence we must use cutoff heights,

when doing the numerics to avoid numerical errors caused by the computation of

our super transmission coefficients, t′ = t′(ti : i = 1, .., 5), for very small and large ti.

We select the same cut-offs as Gruzberg et al. in [30] to maintain consistency and

tested the robustness of our critical exponents to varying said cut-offs. Specifically,

we worked with ti > ε = 10−6 ⇒ zi > −35 and found the robustness claimed in Ref.

[30] for ε ∈ [10−5, 10−7], as the same issue occurs in the TM method by inspection

of the matrices in the previous section. Once ε is taken outside this range in either

direction numerical errors became prevalent which express themselves as an over

abundance of t′ generated near the cut-off.

In finding a convergent fixed point distribution (see Figure 4.3), Qf (z), we

employ the procedure discussed in Section 2.4, some of which are plotted in Figure

4.3.
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(a) (b)

(c) (d)

Figure 4.3: The effect on the initial distribution, Q0(z), (empty circle) once it goes

through its RG steps for 5 SP, it is numbered by n with n = 6, 12, 18, 24. The four

plots show the difference in the FP distributions with respect to various amounts of

GD. The vertical dashed line indicates the average of the FP distribution, Qf (z),

(n = 1 in all cases studied here). The distribution remains nearly fixed in these

cases up until n = 12 where it begins to shift.

The working formula for the critical exponent we will be employing is the one derived

in Section 2.4,

ν =
n log s

log
zmax,n

z0

, (4.11)

As we have previously shown, zmax,n depends linearly on z0, which is illustrated on

the RHS of Figure 4.4 for a number of RG steps, n. The leftmost Q(z) in each of the

distributions plotted in Figure 4.4 is the fixed point distribution of the respective

saddle point structure shifted by z0 = 0.1. The maxima of the distributions, zmax,n,

result in the vertical line of points illustrated by the larger data points in each of

the linear plots.
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(a)

(b)

(c)

Figure 4.4: The distributions plotted on the left side are of Qf (z) shifted by z0 = 0.1

ran through a certain number of RG steps, n, for the 5, 13 and 25 SP RG cells which

are shown in figures (a), (b) and (c), respectively. The plots on the right side provide

ν through the dependence of the zmax,n of Qn(z) on a small initial shift z0. Each

gradient line fit indicates an RG step for a particular value of z0, following the

example provided by the plots on the left.
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If one inspects the linear fits on the right handed plots of Figure 4.4, ν is determined

by the dependence of the zmax,n of Qn(z) on a small initial shift z0. Each gradient

line fit indicates an RG step for a particular value of z0, following the example on

each main plot. The dashed and solid lines are employed for readability. The dashed

inset lines map to the dashed (or faded in the case of 61 SP) distributions in the

main plot.

The critical coefficient plot is found from the gradients of zmax,n(z0), since

Eq. (4.11) can be reformulated to the following,

ν =
n

lns
dzmax,n

dz0

. (4.12)

The value obtained in this work from the converging slope above for the aforemen-

tioned five SP structure example coincides well with the experimentally discovered

value. We note that it is clear that the distributions shift further after each RG step

for larger super-cells. It is fortunate that this is the case since ν should remain O(1)

for us to consider our model to be accurate and map to other studies of the CC

network as well as experiment. The scale factor, s, maintains this balance when one

increases with the number of SP’s per RG unit, s increases and if the shift size did

not increase appropriately as well then the ν would be wildly different for different

super SP’s even though they maintain the same structure, which would not make

physical sense.

On the other hand, a more notable point can be critiqued in the plots of

larger SP structures such as 25 and 41 SP supercells (see Figures 4.4 (c) and (d)).

It is clear from the first data points in the inset plots linear fits that they shift

quickly away from zmax,n = 0 which should not be the case as these are the FP

distributions and they should only shift away from zero at large n; otherwise these

distributions cannot be considered fixed. This means that these larger SP structures

are not as reliable in the output of their values of the critical exponent as they do

50



not fulfil the requirements of the RSRG approach. Of course one may follow with

the question of why invest the computational effort to study said structures, the

answer is simple, when we employ GD in our modified CC network, this has the

effect of reducing the shift after every RG step - the larger the GD the smaller the

shift (and the more fixed the initial distribution). Thus, it was vital for us to check

how strongly the shift is affected, and thus the critical exponent varied, even for the

most rapidly shifting super SP.

We studied nine different saddle point structures, the main five of interest,

however, are shown in Figure 4.2 (b). In all the cases we studied, as is always the

case, no Coulomb interaction between electrons is taken into account; hence it may

not be describing the physics entirely.
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Chapter 5

Results and Discussion

The original RSRG result by Cain and Römer in Ref. [13] was based on the standard

CC network and hence did not involve the open-closed nodes modification. More-

over, as we mentioned earlier, they focused their study on 4 and 5 SP RG units and

found that 5 RG units produced results closest to νexp. This lacked a systematic

study of various RG cell structures as well as the GD modification we employed

here.

Figure 5.1: We compare 5 SP and 13 SP supercells, (Left) and (Right), respectively,

for the difference in the number of active and passive open (dashed) and closed (red)

nodes in each cell structure studied.
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It is well known that the RSRG approach applied to asymmetric unit cell structures

is unreliable, since the input and output symmetry is necessary [74]. An output

symmetric cell contains an equal probability for transmission or reflection and hence

a symmetric P (t2) distribution. Input symmetry is necessary since the cell must

hold its self-similarity during renormalisation which biases the distribution towards

a transmission coefficient.

(a) (b)

(c) (d)

Figure 5.2: Diagrams of the alternative RG cells studied, included in table5.1. (a),

(b), (c) and (d) are diagrammatic representations of the 9, 21, 25(alt.) and 33 SP

structures, respectively.
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The RG units ability to accurately predict the critical exponent depends on four

major properties: significant cell boundary representation, high density of SP’s in

the same configuration as the CC model, the symmetry of the inputs and outputs

and the density of SP’s within the cell. The differences between RG cell structures

at the SP level need to be outlined to be able to produce deductions based on the

structural variants. For example, in Figure 5.1, one can compare the 5 SP structure

with the 13 SP structure. The full circles represent active nodes in the square lattice,

the dashed circles represent open nodes, and the red circles represent nodes that are

left out (effectively closed) from the supercells at each RG step. In our work, we

focused on five supercells which satisfied the symmetry requirements, with 5, 13, 25,

41 and 61 SP’s and a corresponding scale factor, s, of 2, 4, 6, 8 and 10, respectively

(see Figure 4.2 (b)). These were decidedly the most reliable structures to consider

since they have the maximum ratio of ‘active’ to ‘passive’ nodes with respect to their

size as, quantified by the scale factor, s, as well as being maximally symmetric. We

also included our results for less reliable supercells (illustrated in Figure 5.2) of the

same size for comparison.

5.1 Hypotheses and Statistical Analysis

Although recent work was solved entirely numerically [31, 73, 79], we reduced sta-

tistical errors when possible (for the 5 and 13 SP structures) by mimicking the

semi-analytical method in Ref. [13]. I.e. we employ the analytic expression for the

super transmission coefficient rather than numerically solving the set of equations

the coefficient arises from, see Eq. 2.19 for the 5 SP case and although the expres-

sion for the 13 SP case is too large to present here it is found analogously to the 5

SP case by solving the system of linear equations. To maximise precision, we gen-

erate up to 1011 transmission coefficients, N , to obtain our exponents in each case.

We also compared our exponents produced with exponents obtained with smaller
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Figure 5.3: The critical exponents of the 5 SP cell, for the values of pc investigated,

with respect to sn such that n is the number of RG steps and s = 2. The horizontal

lines indicate our quoted critical exponents in Table 5.1 post-fitting for large n.

N = 107,9. It is clear from Figure 5.3 that little accuracy improvement is obtained

when increasing the number TC’s in obtaining the critical exponent for p0,1 = 0;

however, the results differ more significantly when p0,1 > 0 and thus it is more valu-

able to consider large N as we have done. In each plot of Figure 5.3 one can see

that increasing the number of transmission coefficients, N , used in the calculation

of ν does little to improve accuracy for lower values of pc, shifting them down by

O(10−4) (see figures (a) and (b)). The shifts, and thus improvements in accuracy,

become relevant in this, as well as other RG structures from pc = 1/20 (see figures

(c) and (d)) onwards.

We will now discuss our results when maintaining the symmetry of statistical

isotropy as well as the results when one breaks this symmetry. In both cases, we

obtain a set of critical exponents for different RG structures. Before showing the
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results, we will tie up any statistical loose ends and explain how the results are more

accurate than previously obtained results in the RSRG approach to attaining the

critical exponents. Firstly, as we previously mentioned, the number of transmission

coefficients used to calculate the critical exponents is two orders of magnitude larger

than previous studies. Secondly, in previous work, the authors took the critical

exponent of the last RG step, n, generated to be their quoted critical exponent.

Although this is a reasonable estimate, it is by no means optimal since the true

exponent lies in the large n limit by definition of the RSRG approach [8]. To remain

true to this, we employed a weighted fitting procedure to the critical exponents we

generated at each step. The function, ν(n) = ν
(
n,

dzmax,n

dz0

)
, needs to be found in the

large n limit, at which point ν converges to a constant value. Thus by rearranging

Eq. (4.11),

log
dzmax,n

dz0
=

log s

ν
n+ δ, (5.1)

where we added a small constant δ as a secondary fit parameter to improve the

gradient fit (this is necessary due to the limited number of data points, since the

maximum n we have is n = 8). We can ignore δ once we take the large n limit. Let

us now define log s/ν = α, where α is a constant and
dzmax,n

dz0
= A(n) in the limit.

Thus, we commit to a linear regression, two parameter, (α, δ), fit to accomplish in

finding the final value of the critical exponent,

ν =
n log s

logA(n)
=
n log s

αn+ δ
, (5.2)

We display the linear fits along with the fits of the corresponding Eq. (5.2) in Figure

5.4. As is clear from the linear fits of Figure 5.4, the values for δ are indeed small, of

O(10−2) or less, because logA(n) exhibits its linear nature early on, which is ideal.

Thus, once α is obtained along with its confidence interval, the critical exponent is
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Figure 5.4: (Left) The plots of ν versus n generated from N = 1011 transmission

coefficients for various values of pc. The number of RG steps along with their fits

are obtained from the gradients of the inset plot. (Right) the lines one obtains from

the gradients, A(n), for various pc used in the final calculations of ν.

easily found by taking the large n limit of Eq. (5.2),

νcc =
ln s

α
(5.3)

It is also useful to note that since we reduced the problem to a linear fit, the mea-

sures of goodness of fit generated illustrated excellent agreement with the data, for

instance, the adjusted R2 [14] was consistently found to be 98% or higher - for com-

parison a value of 90% or higher means that the fit explains all the variability of the

data around its mean. On the other hand, the precision of our exponents, described

by the 95% confidence intervals presented in Table 5.1, starts to get challenged due

to numerical errors at larger values of GD as well as for RG cell structures which

take into account more SP’s as we will see in the upcoming sections.

Lastly, we should make a note on the skewness of the distributions, Q(z),

generated to find zmax,n, which is a well-known measure of the true randomness of

a given distribution [47]. The skewness is plotted in Figure 5.5 for the main RG

structures studied. It is clear from the plots that the 5SP structure exhibits the

smallest shift in skewness, γ, as z0 and n increase. Moreover, it maintains a low
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Figure 5.5: Plots of the skewness, γ, of the main RG structures for varying SP

height shift, z0, and RG steps, n.

value of γ throughout which decreases as n increases. As for the larger structures,

γ is initially large but shift downwards significantly as n increases. However, at

larger values of n where the skewness is small, numerical instability we discussed

previously starts to come into play due to the higher proportion of transmission

coefficients generated near cut-off; thus the 5 SP structure remains the most reliable

in its exhibition of randomness.

5.2 Unbroken Statistical Isotropy

We begin by considering the case when p0 = p1 = pc from zero upwards. We find

that past pc = 3/20, the precision of our result begins to become compromised in

some cell structures due to the decrease of data points near the maximum of the Q(z)

distribution. A clear trend is visible which remains valid in all cell structures we

examined, there is a clear upwards shift of the critical exponent, ν, as pc increased.
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Figure 5.6: Critical exponents obtained for RSRG method applied to the modified

CC network with the five main RG cells. It is clear that for each RG cell modelled

the curves have a positive divergence.

The results we obtained for ν with respect to sn, where s is the scale factor and

n is the number of RG steps, are plotted in Figure 5.6. By inspection of Figure

5.6, it is clear that for each RG cell structure, the critical exponents do not overlap.

Thus, we found a line of critical exponents as a function of pc for each RG super

cell studied. The final numerical values of the critical exponents obtained are also

present in Table 5.1, where we include more modified critical exponents, νcc,mod, for

the less reliable RG cell structures (exhibited in Figure 5.2) as well as higher values

of pc, in the cases where numerically induced uncertainties were small. If one reads

across Table 5.1, there is a clear trend towards lower values (modulo fluctuations

which occur in classical BPT as well) of the critical exponent. Hence, one can

conclude that increasing the number of SP’s per RG cell decreases the effective

critical exponent. Another observation one may make from looking down Table 5.1

is that the larger the RG cell, when GD is increased, the change in ν, ∆ν, decreases.
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Thus, it is clear from this monotonic decrease that the larger the number of SP’s in

the primary structures we are investigating, the more robust the critical exponent

is to GD. The reasoning behind this will be analysed and further discussed in the

upcoming section.

5.3 Broken Statistical Isotropy

We now consider the statistically anisotropic case when p0 6= p1, and thus the

number of active and passive nodes caused by GD are not equal on average in this

case. We focused on the bimodal result in which p0 = 0, p1 = 1 and vice versa, this

was done to extremise the asymmetry. In each of these cases, as in the isotropic case,

we found that past a certain amount of GD, specifically, p0,1 = 1/5, the precision of

our result began to become compromised due to numerical instabilities in the cell

structures studied. Once more, we maintained the same cut-off value of ε = 10−6

and found the same robustness in the values for the critical exponent were exhibited

as in the isotropic case.

The values for the critical exponents we obtained for four of the main saddle

point structures are plotted in Figure 5.7. The critical exponents for the 61 SP

structure were left out due to their unreliability caused by the substantial effects

of numerical errors on larger RG cells in the anisotropic cases. By inspection of

the plots in Figure 5.7, the trend is less obvious, and the numerical errors are more

prevalent for larger RG structures. As we mentioned in the previous section, one

can view the full set of exponents as they are presented in Table 5.1. One can see

from Table 5.1 that the trend of the critical exponents in the case where p1 = 0 and

p0 > 0 (increasing the number of passive closed nodes per RG unit) is decreasing

as p0 unanimously across the different SP structures. Furthermore, the robustness

seen in the isotropic case across larger structures is conserved. On the other hand,

in the converse case when one solely increases the number of open nodes the critical
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Figure 5.7: Critical exponents obtained for RSRG method applied to the anisotropic

modified CC network with four of the main RG cells studied. (Left) illustrates the

case (p1 > 0, p0 = 0) and (Right) the converse case where (p0 > 0, p1 = 0).

exponents no longer vary monotonically in the mid-sized structures. In particular,

with regards to the 13 SP structure, one can see that the critical exponent appears

to be decreasing from the value at p0 = p1 = 0, except for the upwards shift near

p1 = 3/20. Similarly, with the 25 SP structure, the critical exponent climbs up until

around p1 = 1/10 and then starts to decrease. As for the 5 and 41 SP structures,

the exponents are monotonically decreasing and increasing, respectively.

5 SP 13 SP 25 SP 41 SP 61 SP 9 SP 21 SP 25 SP (alt.) 33 SP
Active 5 13 25 41 61 9 21 25 33

Passive Open 4 8 12 16 20 4 16 24 32
Passive Closed 0 4 12 24 40 12 12 32 16

pc = 0 2.33(1) 2.82(3) 1.61(32) 1.99(14) 1.68(46) 4.41(2) 5.49(5) 6.05(5) 3.13(19)
pc = 1/50 2.50(3) 2.93(3) 1.69(37) 2.06(16) 1.75(55) 4.69(4) 5.74(5) 6.39(3) 3.58(78)
pc = 1/20 2.85(6) 3.14(2) 1.83(50) 2.19(18) 1.82(55) 5.23(9) 6.37(10) 7.09(29) 3.17(38)
pc = 1/10 3.97(16) 3.63(2) 2.05(45) 2.43(15) 2.07(76) 6.73(22) 6.74(60) 8.60(13) 3.66(45)
pc = 3/20 8.92(70) 4.55(4) 2.53(71) 2.84(94) 2.33(71) 11.2(7) 11.1(9) 11.8(2) 3.59(50)
pc = 1/5 6.83(8) 3.12(1.09) 3.23(1.25) 2.78(93) 22.8(1.4) 5.65(1.39)
pc = 1/3 23.5(7.1)

p0 = 1/50, p1 = 0 2.09(20) 2.929(4) 1.56(41) 1.99(72)
p0 = 1/20, p1 = 0 1.61(21) 2.72(22) 1.59(37) 1.96(59)
p0 = 1/10, p1 = 0 1.33(16) 2.42(33) 1.47(62) 1.90(47)
p0 = 3/20, p1 = 0 1.20(7) 2.04(6) 1.39(81) 1.88(19)
p1 = 1/50, p0 = 0 2.35(08) 2.815(1) 1.86(48) 2.07(23)
p1 = 1/50, p0 = 0 1.65(20) 2.50(34) 2.39(93) 2.23(27)
p1 = 1/10, p0 = 0 1.25(12) 2.18(30) 4.10(21) 2.65(34)
p1 = 3/20, p0 = 0 1.17(11) 2.10(16) 3.51(78) 3.40(60)
p1 = 1/5, p0 = 0 2.27(15) 2.48(51) 4.72(58)

Table 5.1: Statically isotropic and anisotropic critical exponents for the RG cells

studied with indications of their node structure.
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5.4 Discussion

For the discussion of our results we will use Table 5.1 as a reference, which displays

the number of active and passive nodes in the various RG cells we studied. It is clear

from the table that as was previously stated, solely the main five RG structures have

more active than passive nodes (one more to be exact), the alternative structures

with more passive to active are shown in Figure 5.2. It is clear, by inspection, that

the five SP structure has the largest ratio of active to passive nodes. Moreover, this

ratio tends closer to one as the cells get larger; it is thus useful to study the larger

structures in the modified case. The GD modification involves imposing a change

from active to passive (equal number of open and closed in the isotropic case and

conversely in the anisotropic case).

Our results raise some intriguing questions; for example, it would seem to

be the case that the GD employed is highly dependent on the initial SP structure,

in the CC model it is always a regular square lattice - which is well represented in

the TM method. However, in the RSRG method the SP cells approximate a regular

lattice to zeroth order (with a scale factor), the structure is fundamentally different.

This is clear by inspection of the tunability of the critical exponents as the GD is

varied for a particular base SP structure.
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Chapter 6

Summary and Outlook

It is important to investigate further symmetry classes to gain a foothold on the

utility of our results. One can construct network models for all ten symmetry

classes of disordered systems, which can be found in Refs. [71]. In particular,

superconductors with broken time-reversal invariance in two dimensions can exhibit

QH transitions where the spin (SQH - symmetry class C) [76] and thermal (TQH -

symmetry class D) [49] conductivities jump in quantised units. The ideas developed

can surely be extended to particular network models of these and other elusive

transitions. Besides, both the SQH and TQH are more straightforward in many

ways to study than the IQH since a large number of their properties are determinable

by mapping to well-understood classical models.

For example, the regular network in symmetry class C was linked to classical

bond percolation on a simple square lattice [48, 66]. Many exact results are known

for classical percolation; therefore, the mapping has led to a range of exact critical

properties at the SQH transition. Moreover, said mapping was extended to network

models in class C for arbitrary graphs [85]. The graphs relevant for our study are

shown in Figure 3.1. For a given RN we draw the dual bipartite graph with dots on

the shaded faces and crosses on the blank faces of the original RN. The dual graph

forms a random quadrangulation of the plane. We now dissect all quadrangles by
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diagonals connecting the dots and remove the crosses and all edges connected to

them. This results in a lattice (Figure 3.1, right) on which the classical bond perco-

lation should be considered. Critical bond percolation on random quadrangulations

(or their dual network - Figure 3.1, right) was considered in Ref. [46], and it was

shown that the KPZ relations are valid in this case. We believe that the SQH tran-

sition on RNs lies in the same universality class and that KPZ can be applied to all

critical exponents obtained in Refs. [25, 6, 66, 48]. This includes, in particular, the

dimension of the two-leg operator that determines the localisation length exponent,

ν, as well as a few MF exponents.

The TQH transition can also be described and simulated by a network model

[77, 61]. Its effective field theory (without GD) is given by the Majorana fermions

with random mass, the same theory that describes the critical Ising model with a

weak bond disorder [49, 31]. The random mass is a marginally irrelevant perturba-

tion, and critical exponents at the transition are given by their Ising model values.

When the model is coupled to 2D QG, we still should consider the quenched situa-

tion, and the critical exponents should be modified according to the KPZ relations,

see [4] and references therein. The geometric disorder that we simulated in our

work by a modified CC model can be viewed as randomness in the heights, V , of

the saddle points in the disorder potential. It is well known that (at electron energy,

εe = 0) t2 = (1 + eV )1 [27]. The t we have chosen in our modified CC model is

described by the tri-modal distribution,

P (V ) = p0δ(V − 2 log ε) + pcδ(V ) + p1δ(V + 2 log ε) (6.1)

Previous studies of random V [93, 94] focused instead on the uniform distribution

(or regular CC network) in the interval V ∈ [W,W ] or the bi-modal distribution,

P (V ) = [δ(V −W ) + δ(V +W )]/2. (6.2)
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However, no choice of W mimics our type of randomness when pc > 0. On the other

hand, for pc = 0, our distribution becomes bi-modal, and describes a classical 2D

percolation model with ν = 4/3. The other extreme, pc = 1, gives the regular CC

model.

Since previous work by Gruzberg et al. only simulated the point pc = 1/3

with poor statistics, they could not distinguish between the following three possibil-

ities: a novel fixed point at a finite pc, a crossover from percolation to CC criticality

or a line of fixed points. In our work, we studied a range of values of pc < 1/3 with

the RSRG approach at very high precision and determined a line of fixed points

exist independent of the RG unit being employed, as long as said unit captures the

physics of the underlying original network faithfully. It is crucial now to start to

simulate RN’s in classes C and D and try to solve the classical percolation problem

on relevant graphs using matrix models techniques. Moreover, one must further

study the problem of Dirac fermions in an Abelian random gauge potential coupled

to 2D QG, to determine the multifractality spectrum of the wave functions in order

to test the validity of applying the KPZ relation to each case.

In summary, the existence of a new type of geometric disorder was proposed

and, we tested in a novel and broad fashion not previously achieved by the original

authors. We have determined that GD allows one to tune critical exponents depend-

ing on how it is applied independently of the RG unit cell chosen if one employs the

RSRG method. We have thus determined that GD changes the universality class

of the model it is applied to - in our case the CC model and our numerical results

support this claim. We have also reiterated the possibility that 2D QG coupled to

matter fields provide the proper framework for a field-theoretic description of this

type of disorder. These ideas can be further applied to other 2D Anderson-type

transitions, and it would be intriguing to see how they alter the playing field.
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