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Abstract

After more than 40 years since its discovery, the quantum Hall effect remains a cor-

nerstone of modern condensed matter physics. The Chalker-Coddington network

model depicts the phase transition between quantum Hall plateaux. The model

has been utilised to great success in accurately predicting the macroscopic phe-

nomena associated with the transition. However, precise calculation of the critical

exponents based on the Chalker-Coddington model remains challenging. The val-

ues of critical exponents are vital in the context of universality, wherein critical

exponents are fixed constants representative of a broader universality class, defined

via symmetries present in the model. In particular, the critical exponent governing

the localisation length, ν has received much attention, with numerous estimations

being made. Many of the estimations based on computational and theoretical mod-

els find differing values of ν which collectively do not coincide with experimental

findings. Thus, in this thesis we investigate this discrepancy by using a real-space

renormalisation group technique to calculate ν. In addition, the role of geomet-

ric disorder is considered via its implementation into the renormalisation scheme.

We vary the amount of geometric disorder in the Chalker-Coddington model and

study the effects on ν, comparing our numerical results against previous literature.

The Chalker-Coddington model is then extended to a time-reversal invariant regime

which describes the quantum spin-Hall effect and a renormalisation group transfor-

mation is successfully found.
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Chapter 1

Introduction

In this chapter, we introduce the relevant Hall phenomena investigated throughout

this thesis, joined with the background material required to give context and further

understanding of the results discussed in later sections. We start with a brief primer

on the classical Hall effect, which sets the foundations for the measured quantities

in the classical regime. Immediately after, we take two separate approaches to the

quantum Hall effect and provide an explanation for the most striking of phenomena

subsequently found. We link a straightforward model describing the motion of an

electron within the formalism of quantum mechanics to the degeneracy found at the

resistivity plateaus. Secondly, we explore the role of topology in condensed matter

physics, linking the Berry phase to the Chern number before discussing what it

represents from the mathematical perspective. We find a form of the quantum Hall

conductivity in terms of the Chern number, thereby linking the two. Time-reversal

symmetry is additionally considered to provide a background for what will later be

used in this thesis. We conclude by discussing critical exponents, universality and

the success of renormalisation techniques in condensed matter physics.
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1.1 A Brief Introduction to the Classical Hall Effect

To emphasise the unconventional properties of the quantum Hall effect and give the

relevant experimental variables a clear introduction, we shall first consider the clas-

sical Hall effect. In his famous volumes on electromagnetism, Maxwell claimed that

when exposed to a magnetic field, it is not the electrical current which experiences

a resulting force, but the current-carrying conductor as a whole [1]. Upon reading

this, Edwin H. Hall disputed Maxwell’s claim and sought to investigate whether it

was accurate. To do so, Hall designed an experiment involving a thin strip current-

carrying conductor and a perpendicular magnetic field penetrating the sample [2].

Hall found that within the sample, the path of current flowing through the conduc-

tor is altered by the presence of the magnetic field, thus confirming his claim over

Maxwell’s. Furthermore, a potential transverse to the sample was detected. This

transverse potential is dubbed the Hall potential.

To understand the origin of this potential we can first consider free electrons

with mass m and charge e as kinetic point particles moving at velocity v. When

subjected to a magnetic field B, the motion of a point negative charges follow

m
dv

dt
= −ev ×B, (1.1)

where t denotes time. For a constant magnetic field in a single direction, this

differential equation is immediately solvable and solutions are found to be circular

and exhibit typical cyclotron motion with angular frequency [3]

ω =
eB

m
. (1.2)

Building on this, we append the relevant terms relating to the Hall experiment.

Hence, consider both a driving electric field E along the sample and a Drude term

[4] owing to the approximation of electrons scattering to 0 momentum after a char-

acteristic τ scattering time [5]. The E field contributes −eE to the force, while

Drude theory provides the scattering term mv
τ [4]. With this in mind, the equation

of motion of electrons within the hall sample becomes

m
dv

dt
= −e(E+ v ×B)− mv

τ
. (1.3)

The solutions to this equation no longer exhibit simple cyclotron motion due to

the additional terms. Instead, we find that the Lorentz force = q(E + v × B)

originating in the interaction between the magnetic and electric fields results in an

2
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Figure 1.1: A diagram of a rectangular 2D Hall sample with E field pointing along
the sample in the positive x direction and B field perpendicular to the sample in
the positive z direction.

initial bias of electrons to one side of the sample. In effect, the sample experiences

an initial accumulation of negative charge on one side and thus a net positive charge

along the other. An attractive electric field Eb is produced between the two sides

which counteracts the Lorentz force and in equilibrium, these two fields cancel out.

Additionally, in equilibrium we must have dv
dt = 0 and further, the component of

the velocity transverse to the sample, vy = 0. If otherwise vy ̸= 0 in equilibrium,

electrons would be continually leaving the sample. Because the B = (0, 0, B) field

only acts in one direction, we can simplify the vector expression in terms of vector

components to

mvx
τ

= −eEx − evyB, (1.4a)

mvy
τ

= −eEy + evxB. (1.4b)

We can rearrange these two equations in terms of vx and vy so that

vx = −eτEx
m

− ωvyτ = −eτEx
m

, (1.5a)

vy = −eτEy
m

+ ωvxτ = 0. (1.5b)

Now due to the simplifications present in our system, we have gone from two coupled

equations in 1.4 to a more straightforward relation. We can rearrange in terms of

the transverse electric field Ey to see that

Ey =
mωvx
e

, (1.6)

3



and so naturally we can evaluate a transverse potential difference as

VH = −
∫ w

0
Ey dy =

mωvxw

e
, (1.7)

where w is the width of the sample. While this gives ample explanation for the exis-

tence of transverse potential as originally detected by Hall, it is not the property we

will be most interested in when moving to the quantum analogue of the classical Hall

effect. In the quantum regime it is not the Hall potential which features the most

striking properties, but the values of resistance measured both along and across the

sample when varying the penetrating B field. We will thus identify the resistance

for the classical case, before moving onto the quantum case.

Our first step is to start with an expression for the current density J in terms

of the single electron velocity v

J = −neev, (1.8)

where ne is the number of electrons flowing through the sample. While Drude theory

is derived for the scenario of a single electron, it may seem odd to simply multiply

the velocity of a single electron by how many electrons there are, as surely v is

not entirely uniform across every electron. We can resolve the issue presented by

noticing we can replace the v of a single electron with the group velocity of the

whole Fermi sea where Drude theory still applies, albeit in a different frame [5].

From now on v will refer precisely to the group velocity. Additionally, we will use

m∗, the effective mass, in place of the electron mass. If we rearrange (1.4) to

m∗

τ
vx + eBvy = −eEx, (1.9a)

m∗

τ
vy − eBvx = −eEy, (1.9b)

we can express the system in matrix form,(
m∗

τ eB

−eB m∗

τ

)
v = −eE. (1.10)

If we bring all the constants to one side we see that

m∗

e2neτ

(
1 eBτ

m∗

− eBτ
m∗ 1

)
J = E. (1.11)

4



Now we consider Ohm’s law J = σE, where σ represents the conductivity. What

we seek with this derivation is the resistivity ρ = σ−1 and so we have

ρ =
m∗

e2neτ

(
1 eBτ

m∗

− eBτ
m∗ 1

)
. (1.12)

What this means is the longitudinal resistivity is

ρxx =
m∗

e2neτ
, (1.13)

while the transverse, or Hall resistivity becomes

ρxy =
B

ene
. (1.14)

What we have shown is that the Hall resistivity is linear in magnetic field, showing

the penetratingB field incites transverse motion in the electrons [4]. For completion,

we will additionally derive forms for the conductivity in terms of the resistivity as

they make future derivations clearer. To arrive at the conductivity as σ = ρ−1 we

can simply matrix invert to find

σ =
1

ρ2xx + ρ2xy

(
ρxx −ρxy
ρxy ρxx

)
. (1.15)

1.2 The Quantum Hall Effect

With this knowledge of classical Hall resistivity measurements in mind, we can move

onto discussing the quantum Hall effect. As with many interesting phenomena within

condensed matter physics, the propensity for a sample to exhibit effects inexplica-

ble by classical physics increases at lower temperatures [6]. At temperatures close

to zero, dephasing of the microscopic wavefunction becomes negligible, allowing for

a coherent wavefunction to exhibit phenomena particular to the quantum regime

[7]. The quantum Hall effect is no exception. With a sample cooled to around 1K

and the B field in the order of 10T, in 1980, Klaus von Klitzing et al [8] discov-

ered behaviour of the sample resistivity to deviate from what was previously found

classically. With a sample prepared as described, instead of a linear relationship

between magnetic field strength and transverse Hall resistivity, a full quantization

was observed in units of e
2

h , see figure 1.2. More precisely this effect may be referred

to as the integer quantum Hall effect as the quantisation is limited to integers. The

fractional quantum Hall effect is briefly discussed in section 1.5 however henceforth,

5



when referring to the quantum Hall effect, we only consider the integer effect. As a

consequence of the quantisation, the observations by von Klitzing allowed for an ac-

curate calculation of the fine structure constant α = e2

2ϵ0ch
. An astounding property

of the quantisation of resistivity is that weak disorder manifested through either

geometric, electric or material impurities has no bearing on the precision of the

quantisation. In fact, weak disorder present in the sample generates more states for

electrons to localise to (see section 1.2.2), and results in broader observed plateaux

(within reason) [9]. The effect on the plateaux width is shown in figure 1.3. The

particular protection from weak disorder inherent to the quantum Hall effect will

be explored later in this project with the introduction of geometric disorder to the

model. The counterintuitive nature of the quantum Hall effect does not end there;

unlike many other examples in quantum mechanics where quantisation is a direct

result of symmetry, the quantisation of the quantum Hall effect arises due to topo-

logical effects [10]. Before we examine the topological aspects of the quantum Hall

effect, we shall first give a strictly quantum mechanical argument behind the bulk

phenomena.

1.2.1 Quantum Mechanical Approach

The Drude model as posed before will not suffice in the following derivation. We

will be considering the quantised energy levels available to the electrons which the

Drude model cannot account for. We will thus use a quantum Hamiltonian H to

describe the dynamics of the electron. In a B field we can write H in terms of the

momentum and vector potential operators, p̂ and Â respectively. In SI units with

c being the speed of light we write the Hamiltonian as [14]

Ĥ =
1

2m
(p̂+

e

c
Â)2, (1.16)

from which we will derive solutions to the corresponding time-independent Schrödinger

equation for wavefunctions |ψ⟩ and eigenenergies E,

Ĥ|ψ⟩ = E|ψ⟩. (1.17)

In this scenario, it is most useful to take the Landau gauge: Â = xBŷ, with x

denoting the distance along the sample in the direction of the E field. We can now

give more detail to our Hamiltonian by writing in terms of the operator components

6



Figure 1.2: Experimental measurements of the longitudinal resistivity ρxx and the
transverse resistivity ρxy taken from a quantum Hall sample against a varying B
field between 0 and 6T. Taken from reference [11].

p̂x and p̂y, neglecting p̂z as the electrons lie within two dimensions only, so that

Ĥ =
1

2m

[
p̂2x + (p̂y +

eB

c
x̂)2
]
. (1.18)

We suppose a translational symmetry in the y direction (by wrapping the sample

into a cylinder) and so we are at liberty to apply a separation of variables solution.

If we take the step to write our wavefunction as

ψk(x, y) = eikyfk(x), (1.19)

for some wavenumber k, then our wavefunction is an eigenstate of the momentum in

the y direction. When substituted back into the Hamiltonian, we recast the problem

as finding a solution for x given k as

hkfk(x) =
1

2me

[
p̂2x + (ℏk − eB

c
x)2
]
fk(x) = Ekfk(x), (1.20)

7



Figure 1.3: Theoretical predictions of the ρxy against B curve for different levels of
impurity-driven disorder. The lines are indexed by α, with a larger index indicating
a smaller presence of disorder. Image taken from [12]. Experimental observation of
this phenomenon is detailed in [13].

where hk refers to the Hamiltonian acting only on the x dependent part of ψ. From

here we can spot the similarity with the quantum harmonic oscillator [15], especially

as we can group constants together and see that

hk =
p̂2x
2me

+
1

2
meω

2
c (x− kℓ2)2, (1.21)

where we have introduced the cyclotron frequency ωc =
eB
cm and the magnetic length

ℓ =
√

ℏc
eB to further clarify the harmonic oscillator form of hk. For any k, we then

specify a guiding centre for which there exists a set of harmonic oscillator energy

eigenvalues

EnL = ℏωc
(
nL +

1

2

)
, (1.22)

and our eigenfunctions will be composed of the plane wave in the y direction, as

well as typical Hermite polynomials together with a Gaussian in the x direction [15].

Explicitly the unnormalized eigenfunction will be

ψnLk(x, y) = eikyHnL

(x
ℓ
− kℓ

)
exp[− 1

2ℓ2
(x− kℓ2)2]. (1.23)

8



Thanks to the rather strongly converging Gaussian in (1.23), these wavefunctions

are quite severely localised, and thus each nL energy level holds a rather large

degeneracy. If the wavefunctions were not localised, the Pauli exclusion principle

would prohibit the electrons from inhabiting the same energy level, but due to the

localisation, multiple wavefunctions can exist in separate areas of the sample at

the same energy level, while being unaffected by Pauli exclusion. In fact, for each

energy level there exists N = eBA
2πℏ degenerate states [6], where A denotes the area

of the sample. These degenerate energy levels are called Landau levels [16] and

these describe the energies associated with each resistivity plateau. While we have

imposed a significant amount of simplifications upon the system, even with only a

few simple considerations, we have uncovered the sharp quantisation of the energy

levels of the electrons.

1.2.2 Disorder

It would be remiss not to appreciate the role of disorder in the manifestation of

the quantum Hall effect. Indeed the Chalker-Coddington model (2) which we ex-

tensively use throughout this thesis is in essence an abstraction of a disordered 2D

potential. In many quantum systems, the impact of disorder can become an obsta-

cle to any particular phenomena being realised in an experimental setup. Examples

including background noise affecting resistance measurements and impurities di-

minishing the ability for a sample to superconduct [17] all point to the profound

importance of disorder. However, disorder is not only a mechanism of obfuscating

certain phenomena; disorder can become a necessity in the manifestation of quan-

tum phenomena, such as the quantum Hall effect. As discussed in the beginning of

1.2, it is the disorder throughout the system which drives the localisation of elec-

trons and permits the large degeneracy needed for stable Hall plateaux. Prior to

the discovery of the quantum Hall effect, in a widely influential paper by Anderson

[18], the localisation effect of 2D disorder was examined and thereafter thoroughly

studied by many others [19]. Named after the author, the theory of Anderson local-

isation is a cornerstone upon which the theory of the integer quantum Hall effect

rests. When considering the scaling phenomena, and ultimately deriving the criti-

cal exponent ν from the Chalker-Coddington model, the application of the disorder

driven Anderson localisation transition forms the foundation of our analysis.
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1.3 Origin of Topology in Physical Systems

In this section we will give an introduction to the role of topology within the quantum

Hall effect, and how it can give a satisfactory explanation for the strict quantisation

observed in the quantum Hall effect, how topology can relate the phenomena of the

bulk of the sample to the edge and how related ideas can explain the existence of

a quantum Hall effect in the absence of a magnetic field. In the broader context of

physics in general, concepts of symmetry provide us myriad of phenomena [20–23].

From conservation of angular momenta leading to quantisation in small quantum

systems [15], to spontaneous U(1) symmetry breaking leading to the ferromagnetic

phase transition [24], an understanding of symmetry underpins a thorough under-

standing to a startling amount of physics. Despite this, there are some ideas in

physics more satisfactorily explained by ideas from topology, not symmetry [25].

In this section, we introduce the Berry phase, a consequence of the adiabatic the-

orem, and what it can tell us about the system considered. We will then link the

Berry phase to the Chern number, a topological invariant which takes integer val-

ues depending on the values of the Berry phase. Our next step will be to link the

Chern number to the conductance of our quantum Hall system, thereby closing the

loop and providing us with a topological explanation for the quantisation of Hall

resistivity. It is interesting to note that the first topological explanation given for

the quantum Hall effect made no use of Chern numbers or Berry phases. Instead,

Thouless, Kohmoto, Nightingale and den Nijs considered solutions to Harper’s equa-

tion for rational flux quanta per unit cell [26]. These solutions were found to be

restricted to a Diophantine equation dependent only on the topology of the sample,

which specified the Hall conductance at integer values. At the end of this section

we will introduce the Time-Reversal Invariant (TRI) extension of the quantum Hall

effect, in which the magnetic field is absent, yet interactions between spins form the

basis of a quantum spin Hall effect.

1.3.1 All Things Berry

In standard treatments of simple quantum mechanical systems, we are given a

Hamiltonian which acts on a wavefunction which is itself parameterised by a set

of coordinates (such as position, momentum or time). In this formalism, the Hamil-

tonian itself is not considered to change. Here we are describing the Schrödinger

picture which makes our argument clearer, but what follows is equally true for the

Heisenberg picture. The invariance of the Hamiltonian is based upon variables la-

tent to the system, although external variables such as experimental details may
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still vary the Hamiltonian, irrespective of the Schrödinger or Heisenberg picture.

So in addition to the collection of wavefunctions being drawn from Hilbert space,

we can specify a parametrisation of the Hamiltonian which may produce a slightly

varying set of eigenstates depending on the parameters. Let us propose that we pos-

sess a Hamiltonian which is specified by external parameters R(t) which themselves

depend on time t. We denote the Hamiltonian

H = H[R(t)]. (1.24)

Now we consider the eigenstates of such a Hamiltonian as R varies. As previously

mentioned, the parameters specifying the Hamiltonian may indeed alter the set of

eigenstates. Following from this, we have the parameterised Schrödinger equation

H[R(t)]|n[R(t)]⟩ = En[R(t)]|n[R(t)]⟩, (1.25)

where |n⟩ are the n eigenstate solutions to the Hamiltonian. What the adiabatic

theorem tells us about these eigenstates is that eigenstates from one Hamiltonian

specified by R(t1) will be mapped to the corresponding eigenstate from the Hamilto-

nian specified by R(t2), as long as the Hamiltonian varies between R(t1) and R(t2)

sufficiently slowly [27]. After this transformation, while we know what eigenstate we

may be in, it is prudent to remember that the evolution in a particular eigenstate

requires only that |ψ(t2)|2 = |ψ(t1)|2. Consequently, there exists a gauge freedom

of some phase, as of yet undetermined [28]. As the energy eigenvalues themselves

also depend on R, we can expect to gain a dynamical phase [6]. Surprisingly, that

is not the only factor, as the resulting phase is derived from both the dynamical

phase and a separate quantity known as a geometric phase [29]. Intuitively, the

geometric phase represents how much a vector ‘twists’ as it evolves along a closed

path via parallel transport [30]. This is purely geometric and depends on the shape

of the parameter space R(t) specifying the Hamiltonian for any t. To see this we can

explicitly take a wavefunction |ψ(t)⟩ = e−iθ(t)|n[R(t)]⟩ to have the phase accounted

for, and apply this form to the Schrödinger equation

H[R(t)]e−iθ(t)|n[R(t)]⟩ = iℏ
d

dt

{
e−iθ(t)|n[R(t)]⟩

}
, (1.26)

which with a modest application of the product rule leaves us with

e−iθ(t)En[R(t)]|n[R(t)]⟩ = iℏe−iθ(t)
{
dθ(t)

dt
|n[R(t)]⟩+ d

dt
|n[R(t)]⟩

}
. (1.27)
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By multiplying with ⟨n(R(t)| and simplifying we then see that

En[R(t)] = iℏ⟨n[R(t)]| d
dt

|n[R(t)]⟩+ ℏ
dθ(t)

dt
. (1.28)

All we have to do here is rearrange for θ(t) and find

θ(t) =
1

ℏ

∫ t′

0
En[R(t)] dt− i

∫ t′

0
⟨n[R(t)]| d

dt
|n[R(t)]⟩ dt, (1.29)

which as previously mentioned, contains the dynamical phase generated from the

energy eigenvalues, alongside a geometric term. Taking advantage of the geometric

origin, we can release ourselves from strict dependence on time as the parameters R

already have a time dependence. Hence, by a change of coordinates (and a change

from a regular integral to a line integral in parameter space) we define the Berry

phase as [29]

ζn = i

∫
C
⟨n(R)|∇R|n(R)⟩dR. (1.30)

This definition can be used to additionally define the Berry connection [31], which

is simply the integrand of the Berry phase in (1.30) and can be thought of as our

means of parallel transport along parameter space, as mentioned earlier. Thus, the

Berry connection is

An = i⟨n(R)| ∂
∂R

|n(R)⟩. (1.31)

Directly from this definition, we can introduce the Berry curvature, which is the

curvature form for the parameter space we are working in. This status as a curvature

form will be crucial in the next section. We define it as

Ωn = ∇R ×An(R). (1.32)

While not explicitly seen in the derivation, it is still valuable to point out the gauge-

dependent properties of these three quantities. When integrated over a closed path,

the Berry phase is gauge independent and thus manifests in physical phenomena. In

contrast, the Berry connection at any particular point (or along any open path) is

gauge dependent and so of no meaning to us alone. The Berry curvature is another

method of eliminating the gauge dependence of the Berry connection, similar to how

the magnetic vector potential loses its gauge dependence upon the curl operator

being applied [32].
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1.3.2 The First Chern Number

So far what we have seen is securely rooted in physics, but now we will see the

link to why the word ‘topological’ is used to describe these quantum Hall states.

What follows is a discussion of mathematical ideas, albeit far removed from rigour

in an effort to convey the necessary ideas for a motivated explanation for quantum

Hall physics. In a study of complex vector bundles, Chern found multiple ways of

expressing a topological invariant which grouped the complex vector bundles into

characteristic classes [33]. In the broader field of topology, a topological invariant

is any quantity or Boolean property that can be found for a particular topological

space, which characterises and classifies that particular topological space in distinc-

tion with others [34]. In our context, a vector bundle is composed of any general

space which at each point is equipped with a vector space [35]. A complex vector

bundle is precisely a vector bundle for which the vector spaces are defined over the

complex numbers. This mathematical construct is exactly what we started with

in the previous section! Our general space is the parameter space specifying the

Hamiltonian, with each Hamiltonian equipped with slightly differing vector spaces

of wavefunctions. This is the crucial link which allowed for the application of Chern’s

work to condensed matter systems. Chern created characteristic classes which act

as topological invariants for complex vector bundles. Out of the numerous formu-

lations of the Chern classes [33], the implementation most accessible to us is via

differential geometry. In terms of differential forms on the manifold, the ncth Chern

class can be computed via an expression involving the curvature form of the vector

bundle [35]. Now there are a couple of important facts before we bring this back to

the physics. Firstly, in all situations useful to us, all Chern classes above the first

vanish[35]. Secondly, the top Chern class is equivalent to the Euler class for the un-

derlying real vector bundle [36]. The Euler class is a separate topological invariant

defined only on real vector bundles, but the equivalence in this situation is what

will allow us direct computation of the Chern number. To finally form an expres-

sion from the preceeding arguments we use the Chern-Gauss-Bonnet theorem. The

Gauss-Bonnet theorem links the curvature of a 2 dimensional compact manifold to

the Euler characteristic χ. Chern generalised the theorem to a much broader class

of manifolds, although more importantly for our situation derived a particular form

relating the Euler class e to χ [37]. Explicitly, the theorem states that

χ(M) =

∫
M

e(Ω), (1.33)
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where M denotes the manifold and Ω denotes the curvature form defined on the

manifold. The Euler class, e(Ω) is separately evaluated as

e(Ω) =
1

(2π)
m
2

Pf(Ω). (1.34)

where Pf(Ω) is the Pfaffian of the curvature form [38]. Once again things can simplify

since we will be working only in 2 dimensions. The Pfaffian of the most general skew-

symmetric matrix in 2 dimensions is merely the single degree of freedom permitted

and so it simplifies to Ω. With m = 2 we find that

χ(M) =
1

2π

∫
M

Ω. (1.35)

Due to the equivalence particular to our situation between the Euler class and the

top Chern class, we can also call the Euler characteristic the Chern number. As we

set out to find, the Chern number is a topological invariant and more importantly,

because of the Chern-Gauss-Bonnet theorem, is strictly an integer.

1.3.3 The Chern Number and the Quantum Hall Conductivity

Now that we have clarified the mathematical perspective, we have found a formula

for a topological invariant quantised to integer values in terms of an integral over

a curvature form. Now we shall apply this to the quantum Hall effect. In place

of the general curvature form Ω we place our Berry curvature (1.32), and for our

manifold we have a 2-dimensional Brillouin zone in terms of kx and ky. We then

make the further clarification that in the following expressions, the Berry connection

is automatically summed across all filled bands. We define the Berry curvature on

each band in the Brillouin zone, as can be noted from the eigenstate dependence of

the Berry connection (1.31). We find an expression for the Chern number describing

the topology of the first Brillouin zone in terms of the Berry curvature

χ = C =
1

2π

∫∫
k∈1BZ

Ωdkxdky. (1.36)

Because of our restriction to 2 dimensions, the Berry curvature itself simplifies to

Ω(k) =
∂Ay(k)

∂kx
− ∂Ax(k)

∂ky
. (1.37)

We are yet to make the connection from any of the above expressions to the quan-

tum Hall conductivity. To begin making the connection we start by once again
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considering the time independent Schrödinger equation

H(k)|n(k)⟩ = En(k)|n(k)⟩. (1.38)

We take the derivative with respect to kx, so that

∂

∂kx

[
H(k)|n(k)⟩

]
=

∂

∂kx

[
En(k)|n(k)⟩

]
, (1.39)

which expands to

∂H(k)

∂kx
|n(k)⟩+H(k)

∂

∂kx
|n(k)⟩ = ∂En(k)

∂kx
|n(k)⟩+ En(k)

∂

∂kx
|n(k)⟩. (1.40)

From here we can take the inner product with the state ⟨n′(k)| so that

⟨n′(k)|∂H(k)

∂kx
|n(k)⟩ = En(k)⟨n′(k)|

∂

∂kx
|n(k)⟩ − ⟨n′(k)|H(k)

∂

∂kx
|n(k)⟩, (1.41a)

= [En(k)− En′(k)]⟨n′(k)| ∂
∂kx

|n(k)⟩. (1.41b)

In finding (1.41a) from (1.40) we note that ∂En(k
∂kx

⟨n′(k)|n(k)⟩ = 0. With an identical

derivation, we can find the following expression involving ky,

⟨n(k)|∂H(k)

∂ky
|n′(k)⟩ = [En(k)− En′(k)]⟨ ∂

∂ky
n(k)|n′(k)⟩. (1.42)

We then multiply these expressions together to find

⟨n(k)|∂H(k)

∂ky
|n′(k)⟩⟨n′(k)|∂H(k)

∂kx
|n(k), (1.43)

= [En(k)− En′(k)]2⟨n(k)| ∂
∂ky

|n′(k)⟩⟨n′(k)| ∂
∂kx

|n(k)⟩.

If we rearrange the expression and sum over the n′ index and note the resolution of

the identity
∑

n′ |n′(k)⟩⟨n′(k)| = I then we can see that

∑
n̸=n′

⟨n(k)|∂H(k)
∂ky

|n′(k)⟩⟨n′(k)|∂H(k)
∂kx

|n(k)⟩
[En(k)− En′(k)]2

=
∑
n̸=n′

⟨ ∂

∂ky
n′(k)|n′(k)⟩⟨n′(k)| ∂

∂kx
n′(k)⟩

(1.44a)

=
∑
n′

⟨ ∂

∂ky
n′(k)| ∂

∂kx
n′(k)⟩. (1.44b)
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Our goal in this derivation is to link the Berry curvature to the Hall conductivity

and so far we have an expression which has linked to neither. From here we will

link one side to the Chern number and the other to the Hall conductivity, thereby

bridging the gap. The link to the Berry curvature (1.37) arrives swiftly when we

see from the RHS of (1.44b) that

∑
n′

⟨ ∂

∂ky
n′(k)| ∂

∂kx
n′(k)⟩ = ∂

∂ky
⟨n′(k)| ∂

∂kx
|n′(k)⟩ = 1

i

∂Ax
∂ky

. (1.45)

By taking the complex conjugate of the expression, we retrieve something similar

involving
∂Ay

kx
and by combining those expressions we find the Berry curvature (1.37)

Ω(k) = i
∑
n̸=n′

⟨n(k)|∂H(k)
∂ky

|n′(k)⟩⟨n′(k)|∂H(k)
∂kx

|n(k)⟩ − c.c.

[En(k)− En′(k)]2
. (1.46)

Now the last step is to link this to the Hall conductivity. From linear response

theory, the Kubo formula can be derived for the quantum Hall conductivity σxy

[26]. It is shown to take the form

σxy =
ie2

ℏ
∑
k

∑
n̸=n′

⟨n(k)|∂H(k)
∂ky

|n′(k)⟩⟨n′(k)|∂H(k)
∂kx

|n(k)⟩ − c.c.

[En(k)− En′(k)]2
. (1.47)

The substitution required is clear from inspection and so finally, we identify

σxy =
e2

ℏ
1

(2π)2

∫∫
k∈1BZ

Ω(k),dkxdky, (1.48)

and

σxy =
e2

h
C. (1.49)

We have completed the link from Berry phase to Hall conductivity. This is why the

transverse conductivity of the quantum Hall effect is strictly quantised to integer

multiples of e2

h . Going between sections, we have switched from talking about the

resistivity ρxy to the conductivity σxy. As we showed in equation (1.15), these are

related by σxy =
ρxy

ρ2xx+ρxy
2 . At each plateaus, ρxx = 0, as is experimentally verified,

leaving us with σxy = 1
ρxy

. We can conclude that our demonstration of conduc-

tivity quantisation implies resistivity quantisation. As we have found topological

properties derived from the band structure of the system, the quantum Hall sample

may be referred to as a topological insulator, due to its insulating bulk [39]. Specif-

ically, as we use the Chern number as the topological invariant, we may also refer
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to the quantum Hall sample as simply a Chern insulator. This nomenclature is not

reflexive, as not all Chern insulators will necessarily be quantum Hall samples [40].

1.3.4 Edge States and the Bulk-Boundary Correspondence

Equation (1.23) tells us that the wavefunctions of the quantum Hall effect are lo-

calised in the x direction, but we also know that we have non-zero entries in the

conductivity tensor. This would seem to be a contradiction, as localised states would

not be expected to contribute to conductivity. We can reconcile this contradiction

by considering the stark difference between the behaviour of the bulk of the sample

and the edge of the sample. Furthermore, this contrasting phenomenon ties directly

into the topological arguments presented thus far. The surprising resolution to this

contradiction is that there exist chiral edge states which carry a current resulting

in non-zero conductivity in spite of an insulating bulk [10]. The existence of such

states is a direct corollary of the topological nature of the band structure. To change

the Chern number of a 2D k torus necessarily means a discontinuous change into

a different part of parameter space that is also insulating in the bulk. To progress

from one insulating phase to another, a band crossing must occur. As the Chern

number of free space is trivially 0, any non-zero Chern number in the bulk of the

sample implies that at the boundary between spaces of differing Chern number,

a band crossing must occur [31]. The amount of band crossings is equal to the

amount of conducting modes at the edge. This in principle is the bulk-boundary

correspondence and remains a hallmark of many topological systems [31]. These

conducting edge states are chiral due to the magnetic field penetrating the sample,

meaning that they all run either clockwise or anti-clockwise around the very edge

of the sample.

1.4 The Quantum Spin Hall Effect

Our derivations so far made full utilisation of the B field as the primary driving force

giving rise to quantum Hall physics. However, in particularly clean samples, it was

predicted and subsequently demonstrated that in HgTe quantum wells, a quantum

Hall state is still observed despite an absence of magnetic field [41–43]. Instead of the

magnetic field, the spin-orbit coupling is responsible for the plateaus in conductivity

[41]. This effect is hence called the quantum spin-Hall effect, although it may also be

referred to as a TRI topological insulator, for reasons we will discuss. Throughout

this thesis, the two terms are used interchangeably. Despite this change of driving

force being the only main difference, there are some indirect consequences of which
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an understanding will be useful to us later in this thesis.

1.4.1 Time-Reversal Symmetry

A natural consequence of the presence of a B field in the quantum Hall sample is the

breaking of time-reversal symmetry. Time-reversal symmetry is a discrete symmetry

such that the system maintains the same state under a reversal of time t 7→ −t. In
the context of observables relating to the Hamiltonian, the position is unchanged

x 7→ x while the momentum flips its sign p 7→ −p. If we applied a transformation

that did just that and nothing more, the canonical commutation relation between

x and p would no longer hold. To remedy this, we impose the additional condition

that i 7→ −i, i.e. complex conjugation. In mathematical terms, the time-reversal

operator T is anti-unitary [44]. We can thus decompose T into

T = UK, (1.50)

where U represents a unitary operator, and K represents complex conjugation. We

then can see that

T 2 = UKUK = UU∗ = eiϕI, (1.51)

as we retain gauge freedom when applying any unitary operator to our wavefunc-

tions. This implies that

U = eiϕUeiϕ, (1.52)

which gives us the necessary condition that eiϕ = ±1 which further implies that

T 2 = ±1. In physical systems, due to how representations of the time-reversal

operator form in conjunction with spin, particles of half-odd-integer spin exhibit

T 2 = −1 symmetry while particles of integer spin exhibit T 2 = 1 [45]. This leads to

the rather interesting result that for a fermion, one has to apply the time reversal

operator 4 times in order to attain the original state. When we take T 2 = −1, non-

trivial consequences involving the eigenstate spectrum occur. Consider two separate

eigenstates |φ⟩ and |ψ⟩, we find that

⟨T φ|T ψ⟩ = (U |φ⟩∗)†U |ψ∗⟩ = |φ∗⟩†U †U |ψ∗⟩ = ⟨φ∗|ψ∗⟩ = ⟨φ|ψ⟩∗. (1.53)

Now if we take |φ⟩ = T |ψ⟩ and apply the reverse of this equality we can find that:

⟨T ψ|ψ⟩∗ = ⟨T 2ψ|T ψ⟩ = −⟨ψ|T ψ⟩ = −⟨T ψ|ψ⟩∗. (1.54)
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This necessarily means that ⟨T ψ|ψ⟩ = −⟨T ψ|ψ⟩, i.e. both |ψ⟩ and |T ψ⟩ are orthog-
onal to each other while attaining the same energy eigenvalue. For a Hamiltonian

possessing time-reversal symmetry while acting on fermions, a two-fold degeneracy

will appear, corresponding to how each eigenstate has a time-reversed partner of

equal eigenenergy. This is called a Kramer’s degeneracy and is integral to our for-

mulation of time-reversal symmetry in the model used within this thesis [45]. If

instead we had specified T 2 = 1, as is the case for bosons, no such degeneracy

occurs. Following this, instead of chiral edge states running along the edge of the

sample, a TR-invariant topological insulator has time-reversed copies running in

opposite chirality of the normal time edge states. Similarly to the quantum Hall

effect, a topological invariant can be derived. In the quantum spin Hall effect, this

topological invariant is no longer any integer, instead it lies in Z2 and corresponds

directly to the number of Kramer’s pairs [31]. In other words, successive addition of

Kramer’s pairs changes the sample from being topologically trivial, to non-trivial,

back to trivial and so on.

1.5 The Fractional Quantum Hall Effect

While this project is concerned with non-interacting models of the quantum Hall

and quantum spin Hall effect, it would not be a complete presentation of quan-

tum Hall effects without acknowledgement of the fractional case. Whilst for dirty

samples in the range of up to 10T, the conductance plateaus are strictly quantised

to integer multiples of e2

h , this does not complete the entire picture of what can

happen inside a quantum Hall sample. In 1982 Tsui et al found that in very clean

samples, specifically at B > 10T, additional plateau started appearing [46]. Fur-

thermore, the additional plateaux take on very specific rational, non-integer values,

such as 1
3 and 2

5 [47]. These fractional states can only be explained by including

interactions between electrons and result in predictions of corresponding fractionally

charged electrons [48]. As exciting as this prospect may seem, theories explaining

such states are far removed from the topic of this project and will no further be

discussed.

1.6 The Critical Exponent

When one phase of matter changes into another, it is described as undergoing a

phase transition [49]. One familiar example would be that of an Ising ferromagnet
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in a 2-dimensional square lattice. The model was originally believed to be not

analytically solvable. However, in 1944, Onsager published a stunning paper doing

just that (for vanishing external field) [50]. This achievement is considered one of

the biggest breakthroughs in statistical physics [51]. For a 2D Ising ferromagnet,

we can slowly vary the temperature T , which at some critical threshold Tc abruptly

alters the macroscopic properties of the system, changing between paramagnetic and

ferromagnetic phases. On the microscopic level, this transition to the ferromagnetic

phase from the paramagnetic phase is induced by a spontaneous uniform aligning of

site spins, thus manifesting long range order. The origin of spontaneous alignment in

2D Ising electrons comes from a minimising of the coulomb and exchange interaction

energies. To quantify how one phase shifts to another we can introduce an order

parameter. By definition, an order parameter is simply any quantity η such that

in the disordered phase η = 0 and in the ordered phase η > 0. In this case, the

overall magnetisation of the sample suffices as an order parameter of the system as

a function of temperature [24]. When measuring the order parameter over a range

of values of T , one will find that that the net magnetisation follows

M ∼ (Tc − T )β, (1.55)

where the value β is a critical exponent [52]. Such a value characterises the strength

of the phase transition and furthermore, classifies it [53]. To clarify, any system as

long as it is described by a general 2D Ising Hamiltonian, no matter the microscopic

properties will exhibit a critical exponent of β when we are sufficiently within the

thermodynamic limit. This phenomenon is encapsulated with the term universality,

which is the concept that statistical models are classified by their symmetries from

which a critical exponent common to all models within that symmetry class can be

derived.

These concepts are similarly valid for the quantum Hall effect, as the bulk

of an integer quantum Hall sample exhibits a phase transition between each of the

plateaus. It is strongly believed that the transition is an Anderson-type localisation-

delocalisation transition and thus has a scaling behaviour linking the correlation

length ξ to a critical exponent denoted ν as [10]

ξ ∼ |z − zc|−ν , (1.56)

where z is a parameter varied through the plateau transition. The correlation length

ξ is a characteristic length scale over which the wavefunctions of single electrons are

correlated spatially throughout the system. In the localised phase ξ must be finite
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and as we move into the delocalised phase ξ becomes divergent. The rate at which

the divergence occurs is quantified by ν, as expressed in equation (1.56). As with the

magnetic transition, ν is believed to be characteristic of a class of phase transitions,

according to universality. This means that while the critical exponent could be

derived from any particular model, as long as that model is within some universality

class, it ought to be the same as any other critical exponent calculated from any

other models within the same universality class [54]. This is why seemingly different

Hamiltonians can derive an identical critical exponent, as long as they possess the

same fundamental symmetries.

Unfortunately, while the central physics of the integer quantum Hall effect

is largely understood, there still remain questions surrounding the exact value of ν

and a consensus on the exact value derived from theory has not been reached [9].

Immediately after the quantum Hall effect was physically realised [11], a plethora of

physical theories and numerical simulations were proposed and tested [14, 55–58].

Relevant to our work, methods such as transfer matrix scaling [59], monte carlo

simulation [60] and recursive Green functions [61] have been applied to models of

the quantum Hall effect to derive a value of ν. From those studies, a value around

2 ≤ ν ≤ 2.5 was found. A review of the numerous approaches to this very problem

is detailed in ref [9]. At the time, the numerical and theoretical predictions agreed

with experimental observation, from which a value of ν = 2.38 has been found

[62]. With the advance of time, higher precision estimates via numerical simulation

have been used to evaluate the critical exponent at ν = 2.593+0.005
−0.006 [63], drifting

away from the experimental values found. Recent theoretical studies into Wess-

Zumino-Witten models being used to represent the quantum Hall transition have

been shown to predict a critical exponent following 1
ν = 0, i.e., the critical exponent

is not well defined [64]. This is simply not consistent with the idea of universality

described in the last paragraph and requires further investigation to reach a broader

understanding of not only the theory of the integer quantum Hall effect, but the

broader implications onto universality within physics.

This lack of consensus sufficiently motivates our ambitions in investigating plateau

transitions and contributing to the discussion.

1.6.1 Renormalisation in Condensed Matter Physics

When a model exhibits a phase transition, a central goal of understanding the model

naturally leads to making accurate quantifiable predictions of the phase transition.

This turns into an effort to calculate the critical exponents, the values of which

determine the universality class and general behaviour of that particular class of
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models. Typical techniques to explore the dynamics of physical models revolve

around mean-field theory [65], in which a characteristic average is taken over mul-

tiple dynamical degrees of freedom to factor out the microscopic complications and

reveal the broader macroscopic phenomena. However, it is exactly the fluctuations

factored out by mean-field theory which become increasingly important closer to

the critical transition point [49]. A simple example of this is the Landau theory

of ferromagnetism which provides a clear and intuitive depiction of the ferromag-

netic transition, while failing to find the correct critical exponent for that same

transition [49]. Alternatively one may seek to simulate a system of non-interacting

particles directly, in the image of our quantum-mechanical treatment in section

1.2. An immediate drawback is seen as the dynamics which we seek to investigate

are most prominent in the thermodynamic limit, at infinite volume. We thus seek a

method which allows us to disregard computationally expensive microscopic degrees

of freedom, while still taking into consideration the divergent properties of the phase

transition. While many methods exist satisfying these criteria, in our work we will

use a Renormalisation Group (RG) approach. It is ‘renormalisation’ as we will be

renormalising as we move across length scales and it is a ‘group’ as the transforma-

tions form a semi-group. The difference between a group and a semi-group being

the latter’s lack of element inverses. Each RG element filters out degrees of freedom,

removing the possibility of inverses [48]. RG methods have been utilised with great

success across many branches of theoretical physics [66–69]. Here we specifically use

a Real-Space Renormalisation Group (RSRG), meaning a group of transformations

which are coupled to the space coordinates of the model. The applicability of this

procedure rests on the idea that statistical physics at phase transitions is scale in-

variant. In certain models, the scale invariance extends to conformal invariance, a

much stricter symmetry class which allows for the study via conformal field theory

[70]. Before introducing our implementation of the RG, we provide a historical ex-

ample of Kadanoff’s block spin approach [71] to clarify the ideas behind the RG,

specifically in real space.

1.6.2 Kadanoff’s Block Spin Approach

We start with a simple 2D Ising spin model on a square lattice consisting of sites

with spin Si, with the index notating the site. Nearest neighbour spins interact with

one another leading to a Hamiltonian H which takes the form

βTH = −K
∑
⟨ij⟩

SiSj − h
∑
i

Si, (1.57)
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Figure 1.4: Multiple steps of a block spin renormalisation transformation. Dots
represent individual spins, coloured either blue or brown. In the top left spins are
grouped into 2 × 2 clusters and an average over this cell determines the colour of
the transformed system. Consecutive iterations are shown by following the arrows,
starting in the top left and ending in the bottom right. Each transformation doubles
the characteristic length scale and halves the correlation length for the new Hamil-
tonian. Smaller length scales are progressively filtered out in real space to facilitate
the determination of scaling properties.

with βT = 1
kBT

, h represents an applied magnetic field interacting with individual

spin sites, and K denotes the strength of nearest neighbour interaction. The sum

index ⟨ij⟩ is a shorthand for a sum over nearest neighbour sites i and j only. Due to

the nearest-neighbour interactions, spins are correlated to some length dependent

on temperature ξ(T ). If we are close enough to the critical point, where correlation

length diverges, then low multiples of the lattice spacing fall well below this corre-

lation length, and hence we assume that clusters of spins on this length scale can

be treated as a singular unit [49]. We directly exploit our assumption by taking a

l× l block such that if we denote the lattice spacing a, then la≪ ξ(T ). Using these

blocks, we wish to reformulate the Hamiltonian treating the blocks as the original
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(1.57) treats individual spin sites. Our central assumption here is that in doing so,

the l× l blocks interact with other blocks just as individual spins interact with one

another. Doing so we can define the block spin SI which describes the average spin

over the constituents of that block.

SI =
1

4|ms|
∑
i∈I

Si. (1.58)

In this equation, ms denotes the average magnetisation over the block,

ms =
1

4

∑
i∈I

⟨Si⟩. (1.59)

Our assumption brings us to a similar Hamiltonian for the system of 2 × 2 blocks,

namely

βTHl = Kl

N/l2∑
⟨IJ⟩

SISJ + hl

N/l2∑
I

SI . (1.60)

The transformation from sites to blocks, to blocks of blocks etc. is depicted in 1.4 for

a 2× 2 block transformation. In performing this reformulation of the Hamiltonian,

the absolute correlation length ξ(T ) remains unchanged, while the new Hamiltonian

is defined on a length scale twice that of the original Hamiltonian. This results in

the effective correlation length of the new Hamiltonian being 1
l that of the original.

This signifies a Hamiltonian further from criticality and thus compared to the orig-

inal reduced temperature τ = T−Tc
Tc

, the new Hamiltonian obtains a new reduced

temperature τl. If we consider the free energy per spin of the system fs(τ, h), the

fact that the block Hamiltonian is of the same form as the original with different

parameters allows for the relation

fs(τl, hl) = l2fs(τ, h). (1.61)

To deduce the critical properties of this model we assume that the parameters of

the block Hamiltonian take the form

τl = τ lλτ , (1.62a)

hl = hlλh , (1.62b)

and we additionally assume both λτ and λh to be positive. This is a fairly strong

assumption and in Kadanoff’s original work, a clear justification of these assump-

tions had not been found. Shortly after in a series of papers by Wilson [69], the
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conditions under which these assumptions are valid were expounded and clarified.

Once substituted into (1.61) our assumptions lead us to an alternate expression of

the free energy as

fs(τ, h) =
1

l2
fs(τ l

λτ , hlλh). (1.63)

Now we are free to choose a value of l such that lλτ |τ | = 1. Taking this into account,

we can rewrite equation (1.63) as

fs(τ, h) = |τ |
2
λτ fs

(
1,

h

|τ |
λh
λτ

)
. (1.64)

We have successfully derived a scaling relation for the free energy density, in terms

of a single parameter functional taking the form of the original Hamiltonian, and a

scaling factor defined in terms of exponents; critical exponents. This brief derivation

shows us the power behind a selective reduction of degrees of freedom, specifically

in terms of spatial coordinates across multiple length scales. This is the focal idea

behind the RG and a similar derivation is used in section 2.2.3 to determine a value

of ν.
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Chapter 2

The Chalker-Coddington Model

and Real-Space Renormalisation

2.1 Introduction to the Model

While previously we have rather rapidly produced a working model describing the

plateaux of the quantum Hall effect, our models tell us nothing about the transition

between the plateaux and more specifically the critical point. We thus turn to a

different model, which can more accurately predict the physics of this transition. As

we are only interested in the behaviour of the system as a whole at the transition

point, we forgo the desire for a truly microscopic model and turn to a model which

focuses solely on the transition phenomena and the critical properties thereof. As

is seen from the experimental data, the bulk of the quantum Hall sample is in-

sulating at plateaux. Additionally, while transitioning from plateau to plateau, a

quantum Hall sample will briefly exhibit non-zero longitudinal resistivity as seen in

figure 1.2 [11]. We thus want a model which undergoes a localisation-delocalisation-

localisation transition.

Shortly after the experimental realisation of the quantum hall effect, such a model

was introduced by Chalker and Coddington which describes the motion of non-

interacting electrons along a disordered potential in the form of a network [58].

The Chalker-Coddington network model neatly links ideas from percolation theory

and Anderson localisation to the quantum Hall effect. The model consists of nodes

which signify saddle points in a disordered, slowly varying 2D potential, and links

between nodes which signify equipotentials between saddle points. The 2D potential

manifests the weak disorder discussed in section 1.2.2 which evokes the bulk local-

isation characteristic of the quantum Hall effect. The electrons are bound to these
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equipotentials until they approach the neighbourhood of a saddle point. In this

situation, there exists a probability amplitude associated with the electrons quan-

tum tunnelling through the potential barrier imposed by the saddle point. Naturally,

there is a reciprocal probability amplitude with the electron simply continuing along

its present equipotential. From the perspective of an electron travelling along an

equipotential at one side of the sample, with successive transmissions past saddle

points, it may pass through and reach the other side of the sample. When an electron

exhibits traversal across the entire network, it is said to percolate, with the overall

phenomenon referred to as percolation. When the heights of the saddle points are

modified within the potential landscape, particularly when the heights are brought

close to the electron potential (set uniformly to 0 without loss of generality), the

probability amplitude of tunnelling increases. The relationship between probability

amplitude and saddle point height is not linear and will be explored further later in

the chapter. When the saddle point heights of the entire system are altered, one can

see how this affects the localisation of the electrons within the system. At a partic-

ular distribution(which must be centred at 0) of saddle point heights, the electrons

can percolate throughout the entire lattice. At the percolating limit, the electrons

are delocalised and the distribution representing the electrons is referred to as the

critical Fixed Point (FP) distribution. In general, an FP distribution represents a

configuration of the model which is scale invariant [52]. Due to the landscape being

constructed from saddle points, which can be both raised and lowered to inhibit

quantum tunnelling, there is not one localised phase, but two, separated by the crit-

ical FP distribution. We can clearly link the behaviour of the model described to

the physics of the plateau to plateau transition in the quantum Hall regime, where

the bulk exhibits delocalised behaviour at criticality, but localised behaviour at the

higher and lower plateaux between which the critical point resides.

To describe our previous discussion more explicitly, we can take the assumption of a

regular square lattice on which the saddle points and equipotentials sit. Each node

is thus equipped with 4 connecting edges, which form the incoming and outgoing

equipotentials on either side of the saddle point. A linear combination of incom-

ing electrons wavefunctions will form the wavefunctions of outgoing electrons. This

is simply because the outgoing magnitude on either side will be composed of the

reflected electrons on the same equipotential together with the tunnelled electrons

from the opposing equipotential. Thus, the saddle point can be described as a ma-

trix relating the incoming electrons to the outgoing electrons. This will be a 2 × 2

square matrix, and from considering charge conservation, the matrix must be uni-

tary such that the overall magnitude of the incoming wavefunction does not change.
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We thus seek the most general U(2) matrix. To derive our sought after matrix we

begin with the most general 2× 2 matrix

U =

[
a b

c d

]
. (2.1)

From which we know that UU † = I and that UU−1 = I via the unitary condition.

This implies that U † = U−1, i.e.,[
a∗ c∗

b∗ d∗

]
=

1

detU

[
d −b
−c a

]
. (2.2)

We can read off from this that d∗ detU = a and a∗ detU = d, which means that

|detU |2a = a. This implies that either a = 0 or

detU = ad− bc = eiϕ. (2.3)

We can take this condition to find d = a∗eiϕ and c = −b∗eiϕ such that the original

matrix is

U =

[
a b

−eiϕb∗ eiϕa∗

]
. (2.4)

When we take the determinant we find the additional restriction |a|2 + |b|2 = 1. As

desired, equation (2.4) defines the most general 2× 2 unitary matrix from which we

can describe the nodes in the Chalker-Coddington model.

To link our matrix to the Chalker-Coddington model we relate the incoming and

outgoing electrons from a saddle point with[
I

I∗

][
a b

−eiϕb∗ eiϕa∗

]
=

[
O

O∗

]
, (2.5)

where I, I∗ represent incoming electron channels and O, O∗ represent outgoing

electron channels. Without loss of unitarity we can set ϕ = π such that

U =

[
a b

b∗ −a∗

]
. (2.6)
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Finally, we rename our variables a and b as they represent the probability amplitudes

of transmission and reflection. We thus write

U =

[
t r

r −t

]
, (2.7)

where from our model we take the probability amplitudes to be real, since |t|2+|r|2 =
1 is still satisfied. A node represented by this matrix is depicted in figure 2.3.

As previously pointed out, for any saddle point there is a direct link between the

transmission amplitude t and the saddle point height, which we denote z. It has

been shown [72] that the transmission probability, which is directly related to the

conductance g = |t|2 in a quadratic saddle point is related to z as

g =
1

1 + ez
. (2.8)

In our particular method, the distribution of z will be important in both calculating

the critical exponent and relating the numerical results to the physical model. From

individual nodes, we can construct the model by tiling the nodes in a 2D square

lattice such that the directed edges line up as shown in figure 2.1. While the figure

shows a segment of an infinite sample, the Chalker-Coddington model still achieves

accurate results in the finite regime. If a finite system is constructed, there neces-

sarily exists a boundary, for which nodes along the edge will not have endpoints for

two of the node’s edges. In this case, the ‘loose’ edges are directed into the following

node along the boundary. Our decision to do so allows for a more accurate depiction

of the quantum Hall effect, particularly in the demonstration of edge states. To see

this we increase the saddle point heights z of each node, so every node exists with

t = 1, r = 0. Such a scenario is depicted in figure 2.2. The figure shows an entirely

localised bulk, but transport via an equipotential around the very edge of the sam-

ple. A similar scenario occurs upon lowering, instead of raising, the saddle point

heights. These two extremes exhibit the two bulk localised phases of the upper and

lower plateaux. It follows that between these extremes, for a particular distribution

of saddle point heights, there exists a system which is not localised in the bulk. The

next section develops the tools needed to find this distribution.

2.2 Real-Space Renormalisation Approach

In applying an RSRG approach in a very physical and analytical way to the plateaus

transition, we can demonstrate the localisation transition and find the critical expo-
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Figure 2.1: A 2D lattice consisting of Chalker-Coddington type nodes. Directly
neighbouring nodes are rotated by π

2 such that the directed edges are consistent.
Taken From [73].

nent. As an overall outline of how we apply the RSRG to the Chalker-Coddington

model, we start by finding a renormalisation transformation which amplifies the

length scale of the system, much like Kadanoff’s procedure in section 1.6.2. Upon

finding the transformation, we will repeatedly apply the transformation to the sys-

tem while keeping the distribution of z values symmetric and centred upon 0, in

order to determine the FP distribution at criticality. Once we have ascertained that

the system is in criticality, we repeatedly apply the transformation once more, mov-

ing the system out of criticality as described in section 1.6.2. As the system moves

out of criticality, we can directly measure the strength of the diverging correlation

length, which allows for numerical approximation of the critical exponent, as will

be derived in section 2.2.3.

2.2.1 Deriving the Renormalisation Transformation

To begin deriving the renormalisation transformation we start by constructing a

unit cell from our previously discussed scattering nodes. The only restriction on the

creation of a unit cell is that it possesses the same number of connecting edges as

the individual nodes and that it resembles the structure of the underlying lattice

being investigated. This allows for an iterative ‘coarse graining’ procedure which

effectively builds a large system size, without incurring the extensive computational
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Figure 2.2: A rectangular finite size sample of the Chalker-Coddington model. All
saddle point heights are taken to the extreme positive limit such that all equipo-
tentials in the bulk form small loops, while a single equipotential spans the edge,
facilitating conduction. It represents the quantum Hall system in a conductivity
plateau. Taken from [58].

burden of simulating each individual lattice site. The enlarging effect of this proce-

dure on this model also allows us to analyse the scaling behaviour, i.e. the critical

exponent, in a straightforward manner. Previously multiple different unit cells have

been constructed on the square lattice, of which the unit cell consisting of 5 nodes

has been shown to most accurately reproduce the physics at the transition [74]. This

unit cell is shown in figure 2.4

The renormalisation procedure consists of finding a matrix S′ of the same

form as the individual S which describes the scattering properties of the entire unit

cell. To this end, we endeavour to explicitly write out the linear equations governing

the inputs and outputs of each node within the unit cell. One singular node and its

connecting nodes can thus be described

S

[
I

I∗

]
=

[
t r

r −t

][
I

I∗

]
=

[
O

O∗

]
. (2.9)

In this equation we are neglecting the phase accrued across equipotentials, these are

explicitly included in the following calculations.

We then use the connections between nodes to eliminate extraneous variables within

the equations and we find the following relation pertaining to the inputs and outputs

of all nodes within the unit cell,

Ax = b, (2.10)
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Figure 2.3: Diagram of a single saddle point represented by the node S. Edges
adjoining S are directed according to arrows. Each edge is labelled O, I∗, O∗, I with
respect to the node. Dashed arrows represent possible trajectories across the saddle
point, with accompanying labels describing the probability amplitude of that trajec-
tory. Dashed arrows are coloured depending on whether they represent transmission
(blue), or reflection (red).

with

A =



1 0 0 0 0 −r1eiϕ31 0 0 0 0

0 1 0 0 0 t1e
iϕ31 0 0 0 0

0 −t2eiϕ12 1 0 0 0 0 −r2eiϕ420 0

0 −r2eiϕ12 0 1 0 0 0 t2e
iϕ42 0 0

0 0 −r3eiϕ230 1 0 0 0 0−t3eiϕ53

0 0 t3e
iϕ23 0 0 1 0 0 0−r3eiϕ53

0 0 0 0 t4e
iϕ34 0 1 0 0 0

0 0 0 0−r4eiϕ34 0 0 1 0 0

−t5eiϕ15 0 0 0 0 0 −r5eiϕ45 0 1 0

−r5eiϕ15 0 0 0 0 0 t5e
iϕ45 0 0 1


(2.11a)

x =
[
O1, O

∗
1, O2, O

∗
2, O3, O

∗
3, O4, O

∗
4, O5, O

∗
5

]T
(2.11b)

b =
[
t1I1, r1I1, 0, 0, 0, 0, r4I

∗
4 , t4I

∗
4 , 0, 0

]T
. (2.11c)
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Figure 2.4: An RSRG unit cell. Consisting of 5 saddle points, it is the smallest
such construction which satisfies self-similarity with respect to edges. Nodes within
the unit cell are labelled with Roman numerals. Phases exist along each edge of
the network, although in calculations these simplify to the four phases ϕ1, ϕ2, ϕ3, ϕ4
representing the phase accumulated upon traversing the edges associated with the
dashed loop surrounding the label.

In this expression eiϕαβ refers to the phase accrued across the edge going from node

indexed α to node indexed β. Each parameter is indexed with reference to the node

it belongs to within the unit cell, as are the inputs and outputs. We can invert this

matrix and after some algebra, we find a renormalised t′ coefficient as

t′ = | −ei(ϕ1+ϕ4−ϕ2)r1r3r5t2t4 + ei(ϕ1+ϕ4)t2t4
− eiϕ4t1t3t4 + eiϕ3r2r3r4t1t5 − eiϕ1t2t3t5

−1− eiϕ3r2r3r4 + eiϕ2r1r3r5 + ei(ϕ2+ϕ3)r1r2r4r5
+ eiϕ1t1t2t3 − ei(ϕ1+ϕ4)t1t2t4t5 + eiϕ4t3t4t5

|. (2.12)

This renormalised coefficient represents the transmission amplitude of the entire
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unit cell, i.e., the probability amplitude that the equipotential inbound at node I1

leaves via node O2.

There is a slight caveat to this derivation. When we formed the unit cell,

the outermost four saddle points within the cell all lie in the same orientation while

the central saddle point lies in a different orientation. Furthermore, there are two

distinct ways to place the central saddle point, either rotated 90◦ clockwise from

the outer saddle points, or 90◦ anti-clockwise. What we have derived so far stems

from a clockwise rotation of the central saddle point. But to show consistency

within the model, we have also derived the renormalisation transformation from a

counter-clockwise rotated central saddle point. The connections between the nodes

are altered slightly by this different geometry. The result is a modified expression

for the renormalised t′,

t′ = | −t1t5 + ei(ϕ1+ϕ4−ϕ2)r1r3r5t2t4 +−ei(ϕ1+ϕ4)t2t4
− eiϕ4t1t3t4 − eiϕ3r2r3r4t1t5 + eiϕ1t2t3t5

−1− eiϕ3r2r3r4 + eiϕ2r1r3r5 + ei(ϕ2+ϕ3)r1r2r4r5
+ eiϕ1t1t2t3 − ei(ϕ1+ϕ4)t1t2t4t5 + eiϕ4t3t4t5

|. (2.13)

As is shown in 2.5, the two transformations have identical outcomes along the range

of t. We will use equation (2.12) henceforth.

2.2.2 Determination of the Critical Fixed Point Distribution

To implement the RG transformation, first an initial distribution of coefficients must

be created artificially. Subsequently, the transformation is applied to this distribu-

tion from which a new distribution of renormalised coefficients is generated. The

initial distribution of t values, P (t) used is made so that t2 is symmetric about

0.5. We start with this particular distribution as it lies closer to the critical FP

distribution - which we seek to determine - than the trivial FP distributions. Dif-

ferent starting distributions, such as a P (t) with t symmetric about 0.5, have been

implemented to more limited success [74]. Each subsequent P (t) of renormalised

coefficients is generated from the last via equation (2.12). Unless otherwise stated,

in this project we used 109 coefficients to generate the succeeding distribution. This

amount of coefficients is an improvement upon previous studies [74], and can result

in a more robust numerical approximation of ν, as will be discussed later. After

successive applications of the renormalisation procedure, the distribution of coeffi-

cients begins to converge upon an FP distribution. Within the Chalker-Coddington

model, there are three FP distributions, 2 trivial fixed points located around t = 1

and t = 0, and another for which the distribution in terms of z is centred around
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Figure 2.5: The P (t) distributions after four renormalisation steps for 100000 sam-
ples. Orange squares signify the P (t) distribution under the transformation defined
in equation (2.12) and blue circles signify the P (t) distribution under the alternate
transformation defined in equation (2.13). For the latter, only every 5th data point
is shown for visual clarity.

0. In terms of t, it refers to the value of t = 1
2 . The latter distribution is the

distribution of fixed points at criticality, in the percolating limit. As the renormali-

sation transformation would typically push the system further out of criticality, to

avoid the convergence to the trivial fixed points t = 1 and t = 0, we symmetrise

the distribution of z values, henceforth Q(z), around 0 after every renormalisation

step. The resulting Q(z) is approximately Gaussian. The effect of successive ap-

plication of our described procedure upon P (t), the conductance distribution G(g)

and Q(z) is shown in figs. 2.6 to 2.8. After starting with an artificial P (t) which

is linear in t, the distribution can be seen to rapidly converge to the FP distribution.

2.2.3 Critical Exponent obtained from the Model

Now we have numerically converged upon a distribution of saddle point heights

which represents the system in criticality. To investigate the properties of the model

at criticality, we shift the entire Q(z) distribution out of criticality by a predeter-

mined value, z0, after which the RG transformation is again repeatedly applied

to the distribution without symmetrising. An exaggerated representation of this
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Figure 2.6: The P (t) distribution after multiple renormalisation steps. Red squares
signify the initial fabricated distribution, blue triangles signify P (t) after a single
renormalisation step and orange circles signify P (t) after 12 renormalisation steps.

procedure is shown in figure 2.9, while data used for the calculation of ν in this

thesis is shown in figure 2.10. As the distribution naturally drifts away from the FP

distribution and towards the trivial fixed point, critical properties can be deduced

from the rate at which the FP distribution shifts away from its original point. Such

an analysis is called an RG flow. In particular, as z can be directly linked to the

correlation length, the maxima of successive Q(z) distributions will be used in the

following section to directly calculate the critical exponent ν. Due to numerical

fluctuations commonly occurring in the calculation of Q(z) distributions, it is im-

portant not to take the largest value from the distribution as the maximum, as it

may not represent the most accurate maximum for that distribution. Instead, to

ensure higher accuracy, we assume a Gaussian form to the tip of the z distribution.

By fitting a Gaussian curve to the top 5% of the Q(z) distribution, the value found

for the mean serves as an accurate estimate for the maximum. To further improve

numerical stability in the calculated maximum, we split the dataset into 10 smaller

subsets, and estimate the maxima of each via the outlined Gaussian approximation.

The arithmetic mean is taken of the 10 maxima, thereby landing upon the value for

Q(z) maxima which we will henceforth use in determining ν.

When a renormalisation transformation is applied to the model, the physical
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Figure 2.7: The P (g) = P (t2) distribution after multiple renormalisation steps.
Similarly to figure 2.6, red squares signify the initial distribution, blue triangles
signify P (g) after a single renormalisation step and orange circles signify P (g) after
12 renormalisation steps.

value of the correlation length does not change. However, as mentioned previously

in section 1.6.2, at each iteration our length scale changes along with the renormal-

isation transformation. In our case, the renormalisation transformation the ‘length’

of a single node is two edges, whereas the ‘length’ of a renormalised unit cell is four

edges. We therefore scale the system by a factor of 2 and so our effective correlation

length changes according to

ξ′ =
ξ

2
. (2.14)

In terms of the initial distribution shift value z0 and each subsequent maxima of the

Q(z) distribution, zn, we can thus define the relation

ξ(zn) =
ξ(z0)

2n
. (2.15)

In contrast, the maxima of the saddle point height distribution scales with an un-

known quantity. It is the comparison of these two scaling factors which will result

in the critical exponent for the correlation length. For small values of initial bias

z0 ≪ 1 The resulting maxima zn have an approximately linear relationship to the

original z0 value. Thus the maxima of consecutive RG flow distributions is linked
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Figure 2.8: The Q(z) distribution after multiple RG steps. The main figure shows
the distribution for −5 ≤ z ≤ 5 for visual clarity with the inset plot showing the
distributions for the entire range of z. Similarly to figure 2.6, red squares signify the
initial distribution, blue triangles signify Q(z) after a single renormalisation step
and orange circles signify Q(z) after 12 renormalisation steps.

to z0 as

zn = (2ε)nz0. (2.16)

In this relation, ε is a variable determined by the data. Consequently, whatever

we exponentiate with ε can be chosen freely, we choose 2ε as it reminds us of the

real-space scaling factor we are working with throughout the derivation. Our choice

will also allow for simplifications in the final expression used for calculating ν.

It follows from the behaviour of ξ that

ξ(z0) = 2nξ([2ε]nz0) = 2nξ([2n]εz0). (2.17)

We then identify 2n =
(
zn
z0

) 1
ε such that

ξ(z) =

(
zn
z0

)ε
ξ

{[(
zn
z0

)ε] 1
ε

z0

}
=

(
zn
z0

)ε
ξ(zn). (2.18)

Now here we need that ξ(zn) ∼ 1 which requires us to apply the renormalisation

transformation enough times such that we are far away from criticality. With this
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Figure 2.9: For z0 = 0.5, four successive Q(z) distributions after each application of
the renormalisation transformation are shown. While in our determination of ν, we
use much smaller z0 values, this plot demonstrates how the distribution shifts away
from the FP distribution (centred on z = 0) and towards the trivial fixed points.

satisfied we have

ξ ∼ z−ε0 , (2.19)

which will make it clear now that ε is the critical exponent ν that we are looking

for. To find the value for ν we return to our earlier equation

2n =
(zn
z0

)ν
, (2.20)

and joyfully rearrange to find

ν =
ln 2n

ln
(
zn
z0

) . (2.21)

This is the equation we shall use to calculate the critical exponent, given large

enough n. In implementation, what this means is we numerically calculate the zn

for multiple values of z0. After doing so we fit a line to the resulting data for each

RG step as shown in figure 2.11. The gradient of this line is what we use for the

value zn
z0

in equation (2.21).
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Figure 2.10: For z0 = 0.007,The FP Q(z) distribution in blue is compared with the
distribution after 7 renormalisation steps, in brown. Both distributions are averaged
over 10 separate instances of the entire procedure. Only values−1 ≤ z ≤ 1 are shown
for visual clarity.

2.3 Stability of the Fixed Point Distribution

Naturally, when undertaking any numerical work the primary goal is to ensure any

results are as precise as is feasibly possible. In this section, we review our methodol-

ogy in order to achieve this. In previous literature, 107 scattering matrix coefficients

were used to calculate successive renormalisation steps [75]. To improve upon this,

in our work we use 109 coefficients in our calculation of the quantum Hall critical

exponent. In later sections, this is lowered to 108 due to the additional parameters

being concurrently studied. To make sure we were using the most accurate repre-

sentation of the FP distribution, we iterated the RG procedure until fluctuations of

the mean-square deviation ∆n = 1
N

∫ √
Qn+1(z)2 −Qn(z)2 between iterations fell

below 10−3. Figure 2.12 displays our results showing the rapid convergence as ∆

approaches 0. We also show that the standard deviation of the resulting FP distri-

bution converges to 2.171. The standard deviation σz as a function of RG step is

shown in figure 2.13 and the derivative σ′z =
dσz
dstep at those points (based on splines

interpolating the points) is shown in figure 2.14. The FP distribution was evaluated

a total of 10 times. Our results on the FP distribution are consistent with what was

previously found.
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Figure 2.11: A plot of initial z0 values compared with the maxima value zn after
each consecutive RG step away from the FP distribution. Each RG step increases
the gradient of the plotted rays and is represented by a different colour. What is
shown is an average over 10 instances of the renormalisation procedure, to limit the
amount of data points shown.
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Figure 2.12: Mean square deviation (∆n = 1
N

∫ √
Qn+1(z)2 −Qn(z)2) of successive

Q(z) distributions upon repeated application of the renormalisation transformation.

Figure 2.13: Standard deviation of successive Q(z) distributions upon repeated
application of the renormalisation transformation. As the distribution approaches
the FP distribution, the standard deviation converges to a particular 2.171.
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Figure 2.14: The Derivative of the standard deviation of successive Q(z) distri-
butions for increasing renormalisation step. To calculate the values, a pointwise
derivative is taken from an interpolation based on splines using the DerivativeFilter
Mathematica function. The convergence to 0 as the RG step number increases in-
dicates that the distribution is the FP distribution.

43

https://reference.wolfram.com/language/ref/DerivativeFilter.html


Chapter 3

Improvements on the

Real-Space Renormalisation

Group Approach

3.1 Improvement on Previous Results

When the critical exponent ν is calculated from the distributions, an essential linear

approximation is made between the successive saddle point height distribution max-

ima and the initial z0, as was detailed in the previous section. In previous literature,

when calculating the critical exponent, the data did not appear to strictly converge

to a particular value, instead monotonically decreasing slowly as a function of RG

step [75]. Instead, the critical exponent was extracted from the largest RG step at

which it was believed the distribution exited the range of validity of the linear ap-

proximation. The reason for this was to balance accuracy gains and losses between

system size and the linear approximation regime; the critical exponent becomes in-

dependent of system size only in the large system limit, while the critical exponent

becomes less accurate at large system size as it drifts out of the linear approxi-

mation regime. In comparison with previous studies, to allow for more accurate

analysis, we use values of z0 about an order of magnitude smaller than previously

used. This results in data which are comparatively more accurate for the same sys-

tem size. Overall it results in a curve for the critical exponent which converges more

uniformly to a particular value. The result of this modification presents a slightly

higher value of ν than previously reported with the same method, we find ν ≈ 2.51.

Furthermore, this value is in greater accordance with more recent numerical calcu-

lations using transfer matrices [63]. The ν value attained as a function of RG step
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Figure 3.1: A plot of ν as a function of system size, where system size is two to
the power of the number of RG steps performed. RG steps one through seven are
plotted. Each data point represents three values of z0 averaged over 10 instances of
our method, each instance consisting of 5× 108 samples. We find a final value of ν
to be 2.51± 0.11. The dashed red line at 2.39 indicates the result found in [74] and
the dashed and dotted blue line at 2.59 indicates the result found in [63].

is displayed in figure 3.1.

3.2 Analytic Formulation in a Single Parameter Basis

While the matrices we have chosen thus far are quite strongly linked to the physical

intuition of transmitting and reflecting probability amplitudes, we are not necessarily

restricted by constructing a matrix of t or r values. Anything which is in U(2) will

produce the same model, albeit in a different basis. To explore this idea in this

project we tried using a different basis for the scattering matrices to investigate

whether this had any effect on the resultant calculations of the FP distribution

or the speed of such calculations. More importantly, we sought to investigate any

difference in the critical exponent calculated. Namely, we chose a matrix determined

by a single parameter, θ with
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S =

[
i cos θ sin θ

sin θ i cos θ

]
.

One can easily check such a matrix is unitary. Naturally, we can repeat the same

steps as before for this new matrix to find an expression for a renormalised θ. We

start with constructing the 10 × 10 matrix which describes the entire unit cell.

Throughout the following derivation, sin and cos will be abbreviated to S and C

where an index denotes the saddle point of the scattering parameter, such that e.g.

S1 = sin(θ1). We take this abbreviation to compactly express the matrix describing

the RG unit-cell as

Ax = b, (3.1)

where

A =

1 0 0 0 0 −S1e
iϕ31 0 0 0 0

0 1 0 0 0 −iC1e
iϕ31 0 0 0 0

0 −iC2e
iϕ12 1 0 0 0 0 −S2e

iϕ420 0

0 −S2e
iϕ12 0 1 0 0 0 −S2e

iϕ420 0

0 0 −S3e
iϕ23 0 1 0 0 0 0−iC3e

iϕ53

0 0 −iC3e
iϕ230 0 1 0 0 0 −S3e

iϕ53

0 0 0 0−iC4e
iϕ34 0 1 0 0 0

0 0 0 0 −S4e
iϕ34 0 0 1 0 0

−iC5e
iϕ15 0 0 0 0 0 −S5e

iϕ45 0 1 0

−S5e
iϕ15 0 0 0 0 0 −iC5e

iϕ45 0 0 1



,

(3.2a)

x =
[
O1, O

∗
1, O2, O

∗
2, O3, O

∗
3, O4, O

∗
4, O5, O

∗
5

]T
, (3.2b)

b =
[
iC1I1, S1I1, 0, 0, 0, 0, S4I

∗
4 , iC4I

∗
4 , 0, 0

]T
. (3.2c)

Identically to the previous section, we invert the matrix and solve for O5, taking

I1 = 1 and I∗4 = 0. In the previous section, the derivation for the renormalised

coefficients practically stopped here as t′I ′ = O′ so that O5 = t′ and precisely what

we measure is our new coefficient. However, this derivation is not satisfactory in the

θ basis. In the single parameter basis, we instead find

O′ = O5 = i cos(θ′)I1 = i cos(θ′). (3.3)
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So to find the renormalised value of θ′ we additionally have to take

θ′ = arccos |O5|. (3.4)

Upon doing so we can express the relation between the θ coefficients and the renor-

malised θ′ coefficient as

cos θ′ = | − cos θ1
(
eiΦ4 cos θ3 cos θ4 + i cos θ5

(
eiΦ3 sin θ2 sin θ3 sin θ4 − 1

))
− eiΦ1 cos θ2 cos θ3 cos θ5 − iei(Φ1+Φ4) cos θ4 cos θ2

+ iei(Φ1+Φ4−Φ2) cos θ2 cos θ4 sin θ1 sin θ3 sin θ5
eiΦ4 cos θ3 cos θ4 cos θ5 + eiΦ1 cos θ1 cos θ2(cos θ3

+ ieiΦ4 cos θ4 cos θ5 + i(−1 + eiΦ3 sin θ2 sin θ3 sin θ4
+ eiΦ2 sin θ1(sin θ3 − eiΦ3 sin θ2 sin θ4) sin θ5))

|.
(3.5)

3.3 Results upon changing Basis of Scattering Parame-

ters

As was shown in the previous section, by changing the basis of the scattering ma-

trix, we found a much different form for the RG transformation expression for the

scattering coefficients. When compared with results from the original basis, no con-

sistent difference was found between the resulting FP distributions. In either basis,

the Q(z) distribution has a mean of 0 and converges to a standard deviation of

2.171, see figure 3.2. Furthermore, the time taken to perform a renormalisation step

increased upon changing to the single parameter basis. For 100000 samples and 10

RG steps, computing within the t basis took 44.048s while within the θ basis the

computation took 44.795s. We conclude that a change of basis does not affect the

physics of the CC model transition, and after an analysis of calculation times, we

conclude that it does not impact the speed at which one can calculate successive

RG transformations.

3.4 Discussion of Results

Our calculated value of ν via the RSRG method is slightly increased compared with

previously obtained results on the same model [74]. The likely cause of this disparity

lies in the values of z0 used to calculate the renormalisation flow. As we used

a number of configurations two orders of magnitude higher than previous results,

this facilitated a more stable analysis at smaller values of z0 which in turn, more

closely conforms to the linear approximation. We have determined that calculating
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Figure 3.2: The standard deviation of the Q(z) distribution as a function of RG step
for both bases considered in the chapter. The orange squares signify the t basis and
the blue triangles signify the θ basis. Due to differences in how the distributions are
initialised, the standard deviation starts at different values. Upon enough iterations
of the renormalisation transformation with a symmetrisation procedure applied to
the Q(z) distribution, both distributions converge to the same FP distribution, as
is shown by the standard deviations jointly converging to a value of 2.171.

renormalisation transformation using an alternate basis does not have any effect on

the resulting FP distribution and a very minimal effect on the computation time.
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Chapter 4

Introduction of Geometric

Disorder

Following from work detailed in ref. [76], in this section, we wish to structurally

implement so-called geometric disorder into the model. In this context, geometric

disorder takes the form of impurities introduced into the square lattice on which

our model resides. In particular, certain saddle points are randomly set to be either

fully transmitting or fully reflecting. This particular type of disorder breaks the 2D

square lattice symmetry of the system and previously has been associated with a

change in critical exponent [76]. It has been previously suggested that the inclusion

of any geometric disorder changes the universality class of the system. Furthermore,

by using the transfer matrix method, the authors of reference [77] found the crit-

ical exponent to continuously lower to ν ≈ 2.3 when the proportion of disordered

nodes reached 2
3 of the system. Beyond this point, the critical exponent is seen

to smoothly increase seemingly without bound. It is then suggested that the new

universality class including geometric disorder is that which represents the quantum

hall transition more faithfully due to the closer agreement with experiment at the
2
3 disorder proportion level. What is not yet explained is how the critical expo-

nent smoothly varies from one value to another as this runs in contradiction to the

notion of universality classes based on symmetry and topology. This contradiction

motivates the following chapter, in which we apply geometric disorder to the RSRG

technique to gain further insight into this supposed novel universality class. In par-

ticular, we aim to determine whether the continuously changing critical exponent is

unique to the implementation via transfer matrix scaling, by attempting to replicate

a continuously changing critical exponent via the RSRG method.
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4.1 Implementation of Geometric Disorder

In the context of our renormalisation scheme, as before we start with a generated

distribution of transmission amplitudes upon which we apply the renormalisation

transformation. Upon every transformation with a probability pc, each saddle point

in the RG unit cell has the chance to become entirely transmitting (t = 1) or entirely

reflecting (t = 0). This means with probability 1−2pc, the saddle point transmission

amplitude will be randomly picked from the previous distribution, as before. It is

worth noting that we may also refer to the overall geometric disorder proportion

p = 2pc as pc relates the probability of a particular node being set to one of t = 1

and t = 0, not both.

When setting enough t values in the renormalisation transformation to 0, by inspec-

tion of equation 2.12 one can see how singularities may often occur. When the Q(z)

distribution is viewed after a renormalisation transformation including geometric

disorder, discontinuous peaks can be seen far away from the central distribution

representing the accumulation of these singularities, see figure 4.1. These peaks

theoretically should be at ±∞ but due to numerical accuracy, when represented in

terms of z they appear at around ±34. When a subsequent renormalisation step is

taken including these peaks, the peaks themselves do not change under the renormal-

isation transformation. As the peaks do not vanish upon successive renormalisation

steps, they only increase in size until they overwhelmingly interfere with the deter-

mination of the critical FP distribution. Furthermore, a fundamental part of the

scaling hypothesis on which the RG method is based supposes scale invariance of

the Hamiltonian. The presence of the unphysical peaks breaks the scale invariance

as with each renormalisation step, more geometric disorder is effectively added to

the system. It is crucial to eliminate the effects of these peaks. To ensure this, we

remove these discontinuous spikes by modifying the bounds imposed when calculat-

ing the distribution of z values. This results in geometric disorder being distributed

evenly across all length scales, as required. Quantitatively, we set the bounds of

z values between −25 and +25. In terms of t the bounds equate to 1.39 × 10−11

and 1 − 1.39 × 10−11, which justifies our use for such bounds, as they represent a

truly minuscule proportion of the overall data while still effectively blocking out the

unphysical peaks.

With these modifications in place, we find the FP distribution as before. The

consecutive application of the renormalisation transformation and a symmetrisation

procedure between steps indeed results in an FP distribution when varying the value

of p. This is shown by the converging of mean-square deviation between successive
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Figure 4.1: The Q(z) distribution between −50 ≤ z ≤ 0 after a renormalisation
transformation incorporating geometric disorder has been applied. A discontinuous
spike in the distribution is seen at roughly z = −34. When we set the z cutoff such
that |z| ≤ 25, we stop the discontinuous spikes from influencing further distributions,
while still including the part of the distribution which corresponds to the Chalker-
Coddington model.

distributions. The introduction of geometric disorder has no effect on the mean

value of z at the critical fixed point, as the conducting limit is at z = 0. The

introduction of geometric disorder notably increases the number of steps required

to converge upon an FP distribution. This is shown in figure 4.2 with ∆ plotted

against iteration number for varying values of pc =
1
2p. Additionally, the shape of

the FP distribution changes depending on pc, as shown by the change in standard

deviation converged upon for different pc values in figure 4.3. For larger proportions

of geometric disorder, we note a consistent increase in the standard deviation of the

FP distribution.

Once the FP distribution is found, we use our previously deployed method

to estimate the value of the critical exponent. After shifting the FP distribution

of saddle point heights by a value z0 we iterate the RG transformation upon the

resulting distribution and use the maxima to calculate the critical exponent via

equation (2.21).
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Figure 4.2: A Comparison of ∆ (see figure 2.12) values as the number of RG steps
increases, plotted for multiple values of pc as indicated in the legend. For all values of
geometric disorder, the Q(z) distribution converges. As the proportion of geometric
disorder is increased, more renormalisation steps are required for the distribution to
converge.

4.2 Transformation between presented Results and Cur-

rent Literature

When comparing our results with the available literature, there exists a disparity

in not only the form of the resulting curve but additionally the range of values

we obtain. However, as of yet, we have not factored in the simplified geometry of

the RG unit cell. Within the unit cell, there are four nodes which are essentially

‘skipped over’ to maintain self-consistency upon the renormalisation transformation.

Our depiction of the unit cell does not wholly represent a square 2D lattice. Our

interpretation of this is that the unit cell already exhibits geometric disorder with a

proportion of 4
9 as effectively, four of what would be nine nodes comprising a square

unit cell are instead set to either t = 0 or t = 1. The takeaway is that when we

present our results for ’pc = 0’ geometric disorder, in reality, these data represent a

pc =
2
9 proportion of geometric disorder. Thus all data of our must be translated

along the pc axis by
2
9 . To maintain a consistent and physical upper bound, we now

have to apply a scaling factor to ensure that the purely disordered limit coincides

with that of other literature. This must be 5
18 such that p′ ∈ [29 ,

1
2 ]. We then find

that the transformation which satisfies these conditions takes the form

p′ =
5

18
p+

2

9
, (4.1)
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Figure 4.3: A Comparison of σ (see figure 2.13) values as the number of RG steps
increases, plotted for multiple values of pc as indicated in the legend. Increasing the
value of pc appears to increase the value of σ in the corresponding FP distribution.

where p′ is the geometric disorder site probability scaled for easy comparison with

reference [77] and p is the overall proportion of geometric disorder we implement.

Once data have been mapped onto this parameter, we find that our value of ν at

p = 0 maps very close to the value of ν found at pc =
2
9 in external literature. This

gives credence to our determination of the critical exponent at ‘0’ disorder, and our

transformation between the two schemes. Our results with a comparison to the data

found in reference [77] are shown in figure 4.4.

4.3 Alternate Approach accounting for Non-Uniform

Significance of Nodes within the Unit Cell

Due to the stark incompatibility between what was previously found and what was

found using the RSRG technique, we further wish to determine whether alternate

applications of geometric disorder produce differing results. Within the RG unit cell,

a significant determiner of the overall flow within the cell is the central node. When

the central node is randomly assigned to t = 0 or t = 1, it has a much more severe

effect than surrounding nodes on the renormalised parameters. We thus decided to

exclude the central node from the possibility of being affected by geometric disorder.

With this modification, we followed the steps as described before identically. This
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Figure 4.4: As a function of geometric disorder p′, our results for ν displayed in
orange, are compared with the data in [77], in blue. The red dashed line at 2.59
represents the value of ν found in [63], included as a visual guide.

modification also requires a slightly different parameter transformation as now

p′ =
2

9
+ p

2

9
. (4.2)

When transformed, the modification resulted in an even steeper curve for ν than

previously, as shown in figure 4.6, only suggesting that such a modification brings

us further away from the phenomena as described in reference [76]. Our numerical

results for ν both with and without this modification are displayed in table 4.1.

4.4 Continuously changing Critical Exponent

One question not addressed throughout this work is why, when geometric disorder

is added to the model, the critical exponent changes continuously as a function of

disorder proportion. This seems to inherently contradict the idea of universality

and thus in this section, we present a couple of possible explanations as to why a

continuous line of critical exponents may be found.

Primarily, as briefly mentioned before, by using a conformal field theoretic approach,

Zirnbauer in reference [64] argues that the relevant observables have only marginal

perturbative corrections. In principle, this implies that for the conformal field the-
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Figure 4.5: A comparison showing where we have ‘skipped over’ nodes in the for-
mation of the RG unit cell, as depicted in figure 2.4. The left indicates a section of
the infinite 2D lattice, whereas the right shows our representation to be used as an
RG unit cell. Moving from the left to the right, four nodes are not included, which
motivates the transformation represented by equation (4.1).

Without Modification With Modification

p pc p′ ν p pc p′ ν

0 0 0.222 2.51+0.11
−0.11 0 0 0.222 2.51+0.11

−0.11

0.02 0.01 0.225 2.57 +0.05
−0.018 0.2 0.1 0.244 4.2+0.4

−0.4

0.05 0.025 0.229 2.83+0.13
−0.4 0.4 0.2 0.267 11.9+1.2

−1.4

0.15 0.075 0.243 4.1+0.7
−0.4 0.6 0.3 0.289 25+11

−9

0.2 0.1 0.25 4.9+0.6
−0.6

Table 4.1: Table of values attained for the critical exponent ν when introducing
geometric disorder at varying proportion levels p.

oretic model of the quantum Hall transition, the critical exponent governing the

localisation length is not well defined. A further implication of this is a continuous

line of critical exponents forming [78–81]. We suggest that the geometric disorder

may manifest this behaviour.

Alternatively, another scenario resulting in non-universal continuous exponents arises

when two models with distinct scaling behaviour are mixed [82]. This phenomenon

has been found in multiple percolation models [83, 84], which could provide insight

into the Chalker-Coddington quantum percolation model. Indeed when we add ge-

ometric disorder we are changing from a quantum percolation model to a classical

percolation model. The classical extreme of the model has previously received study

[85], although we have not found a satisfactory marriage between the results of the

classical model and our results found here.

55



Figure 4.6: As a function of geometric disorder p′ in our alternate geometric disorder
implementation, values for ν are displayed on a logarithmic scale. The values cal-
culated in this thesis are in orange, compared with the data from [77], in blue. The
red dashed line at ln(2.59) = 0.952 represents the value of ν found in [63], included
as a visual guide.
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Chapter 5

Application to Time-Reversal

Invariant Topological Insulators

To make a model for a TRI topological insulator, we can simply extend the Chalker-

Coddington model. By introducing a time-reversed pathway between each node, we

form the pathways for the Kramer’s pair traversing the network. From our previous

discussion on time-reversal invariance, the existence of Kramer’s pairs is sufficient to

describe the TRI system. In this section we will denote the two species of electron

as electrons with opposite spin, that is ↑ and ↓. Instead of two input edges and

two output edges, there are four, as shown in figure 5.1. When an electron passes

into the node, there are now three different outcomes. The electron can reflect or

transmit through the saddle point as previously seen, or it can additionally flip its

spin and travel directly through the node. These scenarios with their respective

probability amplitudes are displayed in figure 5.2

5.1 Scattering Matrix Representation

Due to the additional connecting edges to and from each node, the scattering matrix

S also will take on a new form, consisting of 4 × 4 entries instead of 2 × 2. Our

new scattering matrix will additionally have to preserve time-reversal invariance, as

well as meet the unitarity conditions previously described. Under these conditions

alone, we would describe nothing more than two Chalker-Coddington models stacked

on top of one another, hence the introduction of a spin mixing term within the

scattering matrix. This allows for the wavefunctions to alter the dynamics of their
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S

IS4↑ O
S
4↓

IS2↑OS2↓

OS1↑

IS1↓

IS3↓

OS3↑

Figure 5.1: A TRI saddle point represented by the node S. Each edge surrounding
the node represents an equipotential with blue edges indicating spin-down equipo-
tentials while pink edges indicate spin-up equipotentials. Each edge is indexed by
the name of the saddle point (upper index), the orientation of the edge in relation
to the saddle point and the spin species of the electrons travelling through (lower
indices). Each side of the node has both incoming and outgoing edges.

time-reversed partners. The resulting matrix takes the form

S =



0 i cos(ϕ) cos(θ) cos(ϕ) sin(θ) sin(θ)

i cos(ϕ) cos(θ) 0 − sin(ϕ) cos(ϕ) sin(θ)

cos(ϕ) sin(θ) sin(ϕ) 0 i cos(ϕ) cos(θ)

− sin(ϕ) cos(ϕ) sin(θ) i cos(ϕ) cos(θ) 0


, (5.1)

where θ is the regular scattering parameter and ϕ is our introduced spin mixing

angle. With reference to figure 5.1, with this scattering matrix, the input and
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O3↑O1↑

O2↓

I4↑

sin(ϕ)I4↑

i cos(ϕ) cos(θ)I4↑ cos(ϕ) sin(θ)I4↑

Figure 5.2: A simplified TRI scattering node showing one incoming edge south of
the node and the three outgoing edges to which amplitude could transfer. The edges
are labelled as in figure 5.1 with the corresponding probability amplitudes of that
particular traversal in terms of the spin mixing angle ϕ and the scattering angle θ.

output edges are related by

0 i cos(ϕ) cos(θ) cos(ϕ) sin(θ) sin(θ)

i cos(ϕ) cos(θ) 0 − sin(ϕ) cos(ϕ) sin(θ)

cos(ϕ) sin(θ) sin(ϕ) 0 i cos(ϕ) cos(θ)

− sin(ϕ) cos(ϕ) sin(θ) i cos(ϕ) cos(θ) 0





I1↓

I4↑

I2↑

I3↓


=



O1↑

O4↓

O2↓

O3↑


.

(5.2)

5.2 Application of the Real-Space Renormalisation Group

As was demonstrated in the regular Chalker-Coddington scenario in section 2.2, we

will attempt an RSRG approach to extract the critical exponent of the localisation

length. We start by constructing our unit cell as before, but with our newly defined

TRI nodes. The result of this is depicted in figure 5.3. It is important to note that

because of time-reversal symmetry, the phase accumulated across any link will be
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equal to the negative of the phase accumulated across the time-reversed link. We

then proceed to build up a system of equations relating the inputs and outputs of

each cell to one another. Because of the time-reversal invariance, we have removed

the potential for different centre orientations and thus can be oriented in any way

to carry out the calculations. The system of equations can be expressed as a ma-

trix equation to solve, as demonstrated in section 2.2. Unfortunately, the resulting

20× 20 matrix is simply too big to display on one page, so it is instead described in

block form in section A. Similarly, the analytic solution to the matrix equation is too

large to fit within this thesis, thus the formula for the exact renormalisation trans-

formation will also be omitted. In reference to the analytic solution, within Math-

ematica, after multiple uses of the Simplify function at different depth levels using

the ParallelMap function, the smallest form for the renormalisation transformation

formula contained 129271 indivisible subexpressions, calculated with the LeafCount

function also within Mathematica. In lieu of a direct expression, we will denote the

transformation F (θI , θII , θIII , θIV , θV , {γ}) where {γ} represents the set of random

phases between links. Instead of using the analytical expression to calculate renor-

malisation steps, we can apply a straightforward approach by randomising the free

parameters within the 20 × 20 matrix and then inverting this matrix numerically

before reading off the desired output measurements. calculating the renormalisation

transformation via inverting the matrix proved much faster than via the analytical

transformation. Doing so was still slower than previous, more simple models and

thus in this section, the data are calculated with 107 samples.

Before performing novel calculations with the inverted matrix, to check we

have found the correct transformation we can simplify the final renormalisation

equation back to the original model and compare it against what was originally

found. We can set all spin mixing angles to ϕ = 0 and additionally set only one

electron species to be flowing through the system. We find the resulting equation to

be of a much simpler form than when calculated in full generality and so can be used

freely to compare to previously derived transformations. We compare the values of

the renormalisation transformations for the original and TRI model by setting all

renormalised parameters {θI , . . . , θV } equal to one another and sweeping through

the domain 0 ≤ θ < π, the results in figure 5.4, showing the exact match between

the two.
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5.3 Corrections to the Renormalisation Transformation

due to Reversed Propagation

What our defined function represents within the unit cell depends on certain initial

conditions and external parameters. In the original Chalker-Coddington case, we

initialise with one input I = 1, I∗ = 0 and collect data from one of the outputs.

Due to the simplicity of the network model, the renormalised parameter t can be

found immediately as O = t′I = t′. When re-parameterising in terms of θ we had

to account for the trigonometric term in this equation and take the inverse cos to

retrieve the renormalised θ′ = arccosO′. In the present case if we measure an output

O4↑, in terms of the larger unit cell,

|O4↑| = | cos(ϕ) sin(θ′)I3↑ + sin(ϕ)I2↓ + i cos(ϕ) cos(θ′)I1↑|. (5.3)

To access the renormalised parameter we need to take a few steps. The first is

setting the correct inputs and taking values from the correct outputs. Here we set

I3↑ → 1 and take values from |Or↑|. From the above equation, one may assume that

we can simplify and find that

θ′ =
arcsin(|O4↑|)

cos(ϕ)
, (5.4)

where ϕ is what we have previously globally set it to. This is unfortunately an

incomplete derivation and results in a distribution of θ values which is not nor-

malisable. The error is due to a slight inconsistency when transforming from the

individual cell to the larger unit cell. In the original node as emphasised before (see

figure 5.2, every input has 3 possible directions to exit away from. In other words,

the input cannot leave through the same direction it came. This is not true for

the larger unit cell. An incoming electron could enter through the ↓ spin channel,

propagate through the unit cell, switch to the ↑ spin channel and subsequently leave

through the same node it entered the system from. Simply stated, unitarity for the

entire unit cell only holds if we take into account the amplitude lost due to this

effect. Put more concretely, for a single node√
|O1↑|2 + |O3↑|2 + |O2↓|2 =

√
|I4↑|2, (5.5)

however for the unit cell,√
|O1↑|2 + |O3↑|2 + |O2↓|2 + |O4↓|2 =

√
|I4↑|2. (5.6)
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This additional factor is not accounted for in the general matrix describing the saddle

points. To account for the additional factor, one solution that provides suitable

results is absorbing it into the |O2↓| term. When a renormalisation transformation

is computed for a particular spin mixing angle ϕ, the effect of the amplitude loss

can be thought of as an ‘effective’ change to ϕ, i.e. if some of the amplitude is lost,

this is equivalent to more electrons switching spins and exiting via the opposite spin

channel. Considering we set Ir↑ → 1, we can determine the effective ϕ, denoted ϕc,

by calculating |O2↓| as for the single node,

|O2↓| = | sin(ϕc)I4↑ | = | sin(ϕc))|. (5.7)

Once we have calculated ϕc for the unit cell, we can subsequently calculate a renor-

malised θ′ via

F (θI , θII , θIII , θIV , θV , {γ}) = θ′ = arcsin
|O4↑|
cos(ϕc)

= arcsin
|O4↑|√

1− |O2↓|2
. (5.8)

We have thus defined the renormalisation transformation from which we can calcu-

late RG steps. We show a familiar form of t distribution in figure 5.5 and we show

how the distribution of θ changes after multiple applications of the transformation

in figure 5.6.

5.4 Discussion

While we have not found an FP distribution from our renormalisation transforma-

tion, we have found that the successive distributions indeed change with varying the

spin mixing parameter ϕ. As we have successfully found a renormalisation trans-

formation for the TRI model, we believe that an FP distribution can also be found.

Once this is achieved, calculating the critical exponent ν will be a matter of routine

as set out in section 2.2.3. There exists extensive literature regarding the quantum

spin-Hall effect, including calculations of ν from which a comparison can be made

to examine the validity of any future results [86, 87].
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II1↑

OI1↓

OIV3↓

IIV3↑

III2↓OII2↑

IV4↓ OV4↑

I

II

III IV
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Γ2

Γ4

Γ1

Γ3

Figure 5.3: The modified RSRG unit cell (see figure 2.4) to satisfy time-reversal
invariance. The unit cell consists of the same form, however, each node is instead a
TRI node. Edges are notated in agreement with figure 5.1, where the upper index
is the Roman numeral of the node that the edge belongs to. Accrued phases along
loops of the unit cell are denoted with Γ.
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Figure 5.4: In orange, the graph of F (θ) in terms of t assuming that ϕ = 0 and all
scattering angles θ are equivalent. In blue, the corresponding data for the transfor-
mation defined by equation (3.5). Plot points are omitted from the latter for visual
clarity.

Figure 5.5: The P (t) = P (cos[θ]) distribution calculated from the approach detailed
in this chapter. The distribution takes a similar form to figure 2.6.
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Figure 5.6: The P (θ) distribution upon the first two applications of the TRI renor-
malisation transformation. The initial distribution(red) is uniform in θ and the two
consecutive renormalisation steps(blue and orange, respectively) form a distribution
centred on π

2 and decreasing full width at half maximum.
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Chapter 6

Conclusion

6.1 Summary of Work

Our work provides a background of the quantum Hall effect, with a small detour

into the topological aspects. In particular, we form the link between a topological

invariant based on the band structure and the transverse conductance in the quan-

tum Hall effect. We present the topological similarities between the quantum Hall

and quantum spin-Hall effect from the perspective of topological invariants. We

cover the broad motivation behind the RG and why it becomes useful for the deter-

mination of critical properties. We explain the particular method used throughout

this thesis, the RSRG and its application to the Chalker-Coddington model. Due

to an increased number of samples used throughout our calculations, we were able

to calculate the RG flow for smaller z0 values. In turn, our results adhere closer to

the linear scaling supposed by the method. We find that in doing so, an elevated

estimate for the critical exponent ν ≈ 2.51 is numerically determined, which is closer

to other numerically determined values of around ν = 2.59. The RSRG method was

modified such that scattering matrices were formed in a different basis, involving

trigonometric terms. Comparisons between the results from both bases indicate

a minimal impact from changing the basis. Additionally, we found that between

both bases, the difference between computing time for a renormalisation step was

negligible. The RSRG method is extended to include so called geometric disorder,

proposed by Gruzberg et al [76], where lattice impurities are manifest across the

system. We find that a straightforward adaptation of the RSRG technique includ-

ing geometric disorder leads to the formation of discontinuous peaks in the Q(z)

distribution. The presence of the peaks within the distribution represents singular-

ities occurring in the renormalisation transformation. We note that these peaks in
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the distribution increase in size under each renormalisation transformation, signify-

ing a break in scale invariance and leading to a trivial distribution upon sufficient

renormalisation steps. To circumvent this issue, we manually restrict the range of

z values. With our implementation of geometric disorder, we successfully find FP

distributions. Furthermore, we find that increasing the proportion of geometric dis-

order within the system is linked to an increase in the standard deviation of the

FP Q(z) distribution. From the FP distributions, we utilise two implementations

of geometric disorder, both of which find a continuously changing critical exponent,

in agreement with reference [77]. Despite this, the precise values of ν found are

shown to differ strongly between our work and that in reference [77]. We suggest

possibilities behind the manifestation of a continuously changing critical exponent.

Namely, we suggest that by including geometric disorder, the model becomes a mix

between two separate percolation models with different critical properties, causing

the blended model to shift between either two. We then extend the RSRG method to

a time-reversal invariant Chalker-Coddington model. We find that compared with

previous variations of the RSRG, an additional correction is needed to derive the

renormalisation transformation. Once the correction is factored in, we successfully

find the real-space renormalisation transformation for the time-reversal invariant

Chalker-Coddington model.

6.2 Further Work

As all work in this thesis was completed within Mathematica, our work could be

extended by using a language such as C++ or Fortran, in which more optimised

code could be made and used to increase the precision of all results. The precise na-

ture of the continuous line of critical exponents seen in the geometrically disordered

Chalker-Coddington model deserves more attention and analysis of the mechanisms

supporting the breakdown of universality. While we have presented potential ex-

planations, none are clearly and exclusively linked to this particular scenario and

thus additional work is required. Furthermore, a stronger analysis of the precise

effect that different implementations of geometric disorder have is required to gain a

greater understanding of the effects of geometric disorder. Due to the time restric-

tion placed upon this work, sufficient analysis of the TRI CC model was not carried

out, although with the formulation of the correct RG transformation, this provides

a direct line of work as a continuation of this thesis. This work also opens up the

avenue of further extension to alternate symmetry classes for the RSRG technique,

although no other such classes have been explored throughout this thesis. A poten-

67



tial extension of our work was identified in a 3D variant of the Chalker-Coddington

model shown to exhibit a strong topological insulator phase [88]. Currently, the

formulation of the RSRG method in this context remains challenging. The renor-

malisation transformation requires the existence of a unit cell which can ‘tile’ to

build up the overall system, whilst being self-similar. The extended 3D model does

not consist of uniform nodes to tile with and thus we are currently working on

alternative implementations which satisfy all imposed restrictions on the unit cell.
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Appendix A

Matrix representing the

Time-Reversal Invariant

Chalker-Coddington Real Space

Renormalisation Group Unit

Cell

In section 5, we considered the TRI Chalker-Coddington model and omitted the

matrix representing the RG unit cell due to space restrictions. Here we describe the

matrix in its entirety. With ψq representing the spin mixing angle for node number q,

θq representing the scattering angle for node number q and ϕrs representing the phase

accrued between node r and s, the matrix representing the time-reversal invariant

Chalker-Coddington real space renormalisation group unit cell can be expressed in

block form

X =

A B

C D

 . (A.1)

In the following, cos(Z) and sin(Z) are abbreviated to CZ and SZ , respectively.

With this in mind, we find
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A =

1 0 0 0 0 0 0 0 −Cψ1Sθ1e
−iϕ13 0

0 1 0 0 0−iCψ1Cθ1e
iϕ21 0 0 Sψ1e

−iϕ13 0

0 0 1 0 0 −Cψ1Sθ1e
iϕ21 0 0 0 0

0 0 0 1 0 Sψ1e
iϕ21 0 0 −iCψ1Cθ1e

−iϕ13 0

−iCψ2Cθ2e
−iϕ21 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

−Sψ2e
−iϕ21 0 0 0 0 0 1 0 0 0

−Cψ2Sθ2e
−iϕ21 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0−Cψ3Sθ3e
−iϕ32 1 0

0 0−iCψ3Cθ3e
iϕ13 0 0 0 0 Sψ3e

−iϕ32 0 1


(A.2)

B =

0 0 0 0 0 0 0 −Sψ1e
iϕ51 0 0

0 0 0 0 0 0 0 −Cψ1Sθ1e
iϕ51 0 0

0 0 0 0 0 0 0 −iCψ1Cθ1e
iϕ51 0 0

0 0 0 0 0 0 0 0 0 0

−Sψ2e
iϕ32 0 −Cψ2Sθ2e

−iϕ24 0 0 0 0 0 0 0

−Cψ2Sθ2e
iϕ32 0 Sψ2e

−iϕ24 0 0 0 0 0 0 0

−iCψ2Cθ2e
iϕ32 0 0 0 0 0 0 0 0 0

0 0−iCψ2Cθ2e
−iϕ24 0 0 0 0 0 0 0

0 0 0 −Sψ3e
iϕ43 0 0−iCψ3Cθ3e

−iϕ35 0 0 0

0 0 0 −Cψ3Sθ3e
iϕ43 0 0 0 0 0 0


(A.3)
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C =

0 0−Cψ3Sθ3e
iϕ13 0 0 0 0 0 0 0

0 0 Sψ3e
iϕ13 0 0 0 0 −iCψ3Cθ3e

−iϕ32 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0−iCψ4Cθ4e
iϕ24 0 0 0

0 0 0 0 0 0 −Cψ4Sθ4e
iϕ24 0 0 0

0 0 0 0 0 0 Sψ4e
iϕ24 0 0 0

0 0 0 −iCψ5Cθ5e
−iϕ51 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0−iCψ5Cθ5e
iϕ35

0 0 0 −Sψ5e
−iϕ51 0 0 0 0 0 −Cψ5Sθ5e

iϕ35

0 0 0 −Cψ5Sθ5e
−iϕ51 0 0 0 0 0 Sψ5e

iϕ35


(A.4)

D =

1 0 0−iCψ3Cθ3e
iϕ43 0 0 −Sψ3e

−iϕ35 0 0 0

0 1 0 0 0 0 −Cψ3Sθ3e
−iϕ35 0 0 0

0−iCψ4Cθ4e
−iϕ43 1 0 0 0 0 0 −Sψ4e

iϕ54 0

0 0 0 1 0 0 0 0 −Cψ4Sθ4e
iϕ54 0

0 −Sψ4e
−iϕ43 0 0 1 0 0 0−iCψ4Cθ4e

iϕ54 0

0 −Cψ4Sθ4e
−iϕ43 0 0 0 1 0 0 0 0

0 0 0 0 0 −Cψ5Sθ5e
−iϕ54 1 0 0 0

0 0 0 0 0 Sψ5e
−iϕ54 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0−iCψ5Cθ5e
−iϕ54 0 0 0 1



.

(A.5)
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