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Abstract

Machine learning and deep learning are methods of statistical analysis using artifi-

cial intelligence to categorise complex data and extract deep information. Recently,

such methods have gained popularity in areas of advanced physics for the cate-

gorisation of experimental data. In addition, data that has been obtained through

numerical methods has also seen use, such as data from computing states for models

of quantum mechanics. One prominent example of such a model is the Anderson

model of localisation. In previous work, it has been shown that one key feature of

the Anderson model of localisation is the presence of a metal-insulator transition

which means that states of the extended phase show clear differences to the localised

phase. In this thesis, we want to utilise machine learning methods to learn the dif-

ferences between these states to attempt categorising between the two phases. We

will also attempt a finer categorisation by categorising on specific disorder values

of the Anderson model. We will investigate an image representation of the Ander-

son model eigenstates generated from the |Ψ|2 values, a numerical representation

of those |Ψ|2 values and a numerical representation of the original Ψ values to find

which representation is better for machine learning. We will then compare how

changing the optimiser, the system size of the data, the size of the images and the

format of the data affects the accuracy of the final model. We find that a cate-

gorisation of the Anderson model is possible. We find that it is relatively easy to

categorise the Anderson model based on whether we are in the phase above or below

the metal-insulator transition and that a categorisation of individual disorder points

is more challenging. We also find that of the 3 representations we have, using the

original Ψ values preforms the best for machine learning.
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Chapter 1

Introduction

1.1 Condensed Matter Physics

Condensed matter physics (CMP) was born in the 1960s as an expansion of solid-

state physics to create a field of research that focused on the physical properties of

both solids and liquids (Kohn [1999]). The field of CMP studies how the macro-

scopic properties of systems with high enough density that the interaction between

the particles of the system effects these properties. Systems with such properties

are called condensed systems. In analysing the properties of a given state, we find

that some macroscopic properties are qualitatively similar across different systems.

This systems are referred to collectively as a phase. Examples of such phases are

the phases of atomic spatial structures, or solids and liquids.

Through the localization of electrons it is possible to adjust how a material is able

to conduct electricity which is the primary method for altering the electrical prop-

erties of systems. One such method of localising electrons is through the use of

the Mott phenomenon which uses strong Coloumb repulsion (Imada et al. [1998]).

The key feature to this is the strong orbital and spin polarization within the un-

restricted Hartree-Fock theory (Brandow [1992]). This produces a large potential

energy difference due to the strong attractive self-exchange interaction of occupied

orbitals (Brandow [1992]). This potential energy difference has a magnitude that is

the same as the direct self interaction energy or the Hubbard U (Brandow [1992]).

The band gap of the system is therefore of the order U (Brandow [1992]). Systems

with insulating properties due to the Mott localisation are referred to as Mott in-

sulators and differs from the Bloch–Wilson insulator (or band gap insulator) due to

the consideration of the electron-electron Coloumb interactions in a Mott insulator
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(Roy [2019]).

For this thesis we will be using the Anderson model of localisation. The method

of Anderson localisation is through quantum reflections in the lattice causing the

wave-function to interfere constructively as a result of the disorder of the state

(Guan and Guan [2019]). This leads to the wave decaying and not scattering out

of the lattice which produces localisation (Guan and Guan [2019]). Anderson states

that if the disorder strength (W ) is sufficiently high, the states will always become

localised (Anderson [1958]). This can be proved in 1D (Thouless [1972]) and ap-

proximated in 2D using renormalisation group analysis (Abrahams et al. [1979]).

In 3D, there exists a turning point that represents a transition from insulating be-

haviour to metallic behaviour (Guan and Guan [2019]). This phase transition occurs

as a function of W which develops from random impurities in the system such as

vacancies, impurity atoms and extended defects (Vojta [2019]). Disorder can arise

naturally in a quantum system as a result of the preparation process and can also

be artificially introduced into the system. For high W , there will be enough decay

in the wavefunction for localisation to occur but below a critical disorder strength

Wc (Schenk et al. [2008b]) the interference of the wavefunctions in the state may

not be sufficient to lead to localisation (Guan and Guan [2019]). The insulator that

forms from Anderson localisation is called an Anderson insulator (Hibat-Allah et al.

[2023]).

The metal-insulator transition (MIT) as a result of Anderson localisation is an exam-

ple of a quantum phase transition which displays a phase transition at absolute zero

temperature (Vojta [2003]). This is of interest in the field of CMP as the behaviour

around the quantum critical point of the phase transition can influence properties

over a wide range of the phase diagram (Vojta [2003]). The physical properties

of the quantum fluctuations also differ greatly from the classical fluctuations for a

finite-temperature phase transition which means the dynamics of the phase around

the quantum critical point will require new theorems to explain, leaving potential

for new developments in the field of CMP (Vojta [2003]). The MIT gives also lots

of complexity to the intermediate regime which leads to large change in the physical

properties of the system for small variations in other variables (Dobrosavljevic et al.

[2012]). Understanding the behaviour of materials around the transition is impor-

tant as it can inform methods to alter systems to have desired electrical properties

(Edwards et al. [1998]).
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It is important to be able to identify different phases. As systems display large

variation in physical properties either side of a phase transition, identifying these

properties will allow analysis of the phase. For instance, to distinguish between

the metal and insulator states of the MIT, we could try to identify whether the

electrons of the system are extended or localised within the Anderson model. For

systems that are very much in the extended or localised domains the difference can

be identified visually (Figure 1.1) but when the systems get closer to the critical

point the distinction is harder to make (Figure 1.2). To solve this problem we can

apply the branch of artificial intelligence (AI) that is machine learning (ML). Using

ML algorithms, an AI can find patterns within systems that humans cannot easily

define. Once an ML model has been formed using these patterns, it can then be

used to make predictions on other unknown data by spotting such patterns. Here

we will create categorisation models for the Anderson model using 2 datasets, one

for determining the phase of a given state as localised or extended and one for de-

termining the specific W of a given state. These ML models will be trained to take

different forms of input, starting with an image recognition model trained on visual

representations of the eigenstates then moving onto numerical representations, using

the |Ψ|2 values the images were generated from and then moving onto the original

Ψ that were generated.

1.2 A History of Artificial Intelligence

AI originates from three sources (Haenlein and Kaplan [2019]). The idea of a ma-

chine that could make decisions for itself was first introduced in 1942 by author Isaac

Asimov in his short story Runaround (Asimov [1942]). This story revolves around

the creation of a robot and the three rules that define its behaviour (Asimov’s three

laws of robotics) capturing the idea of creating a mechanical system which acts in-

dependent of humans. Also during 1942, Alan Turing was working on a machine

capable of decrypting the enigma code (Haenlein and Kaplan [2019]). This lead to

the creation of The Bombe, what is considered one of the first electro-mechanical

computers (Haenlein and Kaplan [2019]). The Bombe’s ability to preform calcula-

tions in a way that was impossible for humans, leading Turing to further research

into the ability of machines to preform calculations, finalising in the production of

his 1950 article ”Computing Machinery and Intelligence” (Turing [1950]) in which

he discusses the methods to create and test ”intelligent machines” setting the bench-

mark for the creation of AI and pioneering the Turing Test. Then in 1956, Marvin

Minsky and John McCarthy ran the Dartmouth Summer Research Project on Arti-
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Figure 1.1: Visual representations of Anderson model eigenfunctions. Each point with |Ψ|2 > 1
N3

has been plotted as a cube of size |Ψ|2N and those with |Ψ|2N > 1√
1000

have a black border.
A colour-map has been applied to the z-axis to help gauge the position of points. The left plot
represents states W ≪ Wc which are very much in the extended phase. The right plot represents
states W ≫ Wc and thus are in the localised phase. This image has been sourced from Schenk
et al. [2008a].

ficial Intelligence (McCarthy et al. [2006]), reuniting the founding fathers of AI and

beginning the advancement of AI to what we see today. It was also when the term

”Artificial Intelligence” was first coined (Haenlein and Kaplan [2019]).

1.3 A Brief History of Machine Learning in relation to

Artificial Intelligence

ML is a subsection of AI which focuses on trying to automate the creation of the

instructions that allow the system to make decisions. While AI is able to take a

given input and compare it to a predefined set of human instructions to produce an

output, ML can take a set of inputs and expected outputs provided to it and applies

a transformation to the inputs such that the machine can differentiate between the

expected outputs. This removes the need for humans to define how the machine is

supposed to get from an input to the expected output – a task that gets quite com-

plicated when the differences between inputs are less defined. The system improves
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(a) W < Wc (b) W > Wc

Figure 1.2: Visual representations of Anderson model eigenfunctions for W close to Wc, in the
range of W values we want to categorise between. These images have been constructed using the
same method as the plots in figure 1.1.

on this process by ”training” itself – varying the transformation in order to find one

that best predicts the whole set and will thus best predict new inputs - this is called

generalization (Chollet [2017]).

The concept of ML as we consider it today originated in 1957 (Fradkov [2020]).

The term was introduced by Frank Rosenblatt who created a machine to recognise

letters of the alphabet, using ideas based on the behaviour of the human nervous

system. This machine was named a ”perceptron”, named as such due to its model of

learning carrying similarities to human/animal learning. Rosenblatt would study the

behaviour of the perceptron and discuss how it was possible for a properly designed

perceptron to be able to make meaningful classification without the parameters of

the classification being defined by its creator (Rosenblatt [1958]) - the basis of ML.

Though the mechanics behind the learning of perceptrons was first discussed by

Rosenblatt, the more well known theorem was introduced by Novikoff which states

that, if a solution exists, a perceptron will train in finite time proportional to 1
γ2

where γ is the linear separation of the dataset (Novikoff [1962]). This insight is

utilised in the modern day as the basis for training ML models.

Different machine learning algorithms exist to construct the predictive model (Pugliese

et al. [2021]). They can be divided into 4 categories: Supervised learning, Unsu-
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pervised learning, Semi-supervised learning and Reinforcement learning (Pugliese

et al. [2021]). Supervised learning involves the model creator defining a set of inputs

and the expected corresponding output (Cunningham et al. [2008]). The ML algo-

rithm will then attempt to modify the model function in order to minimise the error

between its own output and the defined output (Cunningham et al. [2008]). One

advantage of this method is that by defining the expected output we can determine

exactly what categories we want the model to classify data into (Pugliese et al.

[2021]). In doing so, we rely on humans to be able to define the expected outputs

for the initial data and as such this method would not work for data that we cannot

find the categories for already (Pugliese et al. [2021]). By contrast, Unsupervised

learning methods do not provided any information about the expected outputs to

the model (Ghahramani [2004]). This allows the model to sort the data based on

any features that it can discover from the training data (Ghahramani [2004]). As

such, one of the advantages of an unsupervised learning algorithm is that it may be

able to pick up on features that a human could not detect (Pugliese et al. [2021]). In

turn, by not defining the desired outputs, the outputs generated by the model may

be meaningless (Pugliese et al. [2021]). Semi-supervised learning combines training

with labelled and unlabelled data to produce a model that predicts better than a

purely supervised model (Chapelle et al. [2006]). This only works if the provided

unlabelled data contains information that can be used to infer features of the la-

belled data (Chapelle et al. [2006]). Reinforcement learning focuses on the outputs

the machine produces. In reinforcement learning, the machine is tasked with mak-

ing random actions that affects the environment the machine is in (Ghahramani

[2004]). The machine is then provided a ”reward” based on how well its actions lead

to the desired output which the machine will try to maximise (Ghahramani [2004]).

One advantage of this is that reinforcement learning can solve problems that cannot

be solved by other ML techniques (Pugliese et al. [2021]). Reinforcement learning

methods will require more data and computing time than other ML techniques which

must be considered when deciding which ML technique to use (Pugliese et al. [2021])

We are using supervised learning methods in order to generate models capable of

categorising states based on phase or disorder. ML categorisation is where we train

a model by providing a set of inputs and the group we want them to be sorted into

(Chollet [2017]). These set of groups are the categories of the data, C with each

input having an expected output category, c. The end result will be a model that

can take an input and output a set of values corresponding to how well the model

thinks the input matches with the categories it has trained on (Chollet [2017]). One
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alternative method of supervised learning is a regressional model (Chollet [2017]). A

regressional model once trained will take an input and output a value between zero

and one corresponding to how well this input aligns with the extremes of the data

the model was trained on (Chollet [2017]). This value can then be mapped to the

range of outputs to determine what value the input corresponds to (Chollet [2017]).

As such, regressional methods are preferred for inputs that take on a continuous

range of values whereas categorisation methods are ideal for inputs that take on

discrete values (Chollet [2017]).

ML has gained popularity recently, seeing usage in many applications in the field

of Physics (Tanaka et al. [2021]). ML categorisation methods have been used to

identify phase transitions in states. For example, in the percolation model it has

been shown that it is possible to identify physical features of the model such as the

order parameter and the permeability (Cheng et al. [2021]) as well as to categorise

disorder states (Bayo et al. [2022]). In the 2D ferromagnetic Ising model, ML meth-

ods have been used to categorise phases as a function of temperature (Naravane and

Mathur [2023]) and for the Rydberg atom array, unsupervised ML algorithms have

been used to identify phase boundaries (Patel et al. [2022]). ML methods have also

been shown to be able to identify order parameters for conventionally ordered phases

without knowing the energy or locality conditions of the Hamiltonian as well as hav-

ing the potential to represent ground state wavefunctions (Carrasquilla and Melko

[2017]). Another recent use of ML methods is solving fluid dynamics problems, such

as the viscous Burgers equation (Umeano et al. [2023]) and ML has been successful

in detecting topological order in quantum systems (Hibat-Allah et al. [2023]) and

can also be used to reduce complexity in quantum many-body problems (Carleo and

Troyer [2017]).

7



Chapter 2

Theory and Methodology

2.1 The Anderson model of localisation

Anderson localisation occurs when electrons are capable of tunnelling between neigh-

bouring sites as quantum waves while also interfering with themselves. When the

wavefunction is defined in 3D, the variation in disorder strength, W, corresponds

with a transition in the transport properties. In the 3D case, a low disorder means

the waves are extended. If the disorder is sufficiently high the wave amplitudes

destructively interfere creating a localised system. The transition between extended

and localised states also corresponds to the metal-insulator phase transition – the

system has metallic behaviour while extended and insulating behaviour while lo-

calised.

To understand and interpret the Anderson model we need the Hamiltonian, Ĥ,

of the system. We can define the Anderson Hamiltonian as a tight-binding model

with nearest-neighbour hopping and random on-site energy (Girvin and Yang [2019])

Ĥ =W
Ld∑
n=1

ϵnĉ
†
nĉn + t

∑
<n,m>

(ĉ†nĉm + h.c.), (2.1)

where n and m are the indices of positions, d is the number of dimensions we are

working with, ϵn is the on-site energy and ĉ is the annihilation operator. In this case,

the eigenvalues of the Hamiltonian give the quantum mechanical energy levels and

the wavefunctions of the quantum state are defined by the eigenvectors of the real

symmetric matrix of the Hamiltonian operator. When we set t = 1 for a cubic lattice

defined by the set of vectors r = nxex+nyey+nzez with integers 1 ≤ nx, ny, nz ≤ N

where N is the volume of the lattice, we find that a phase transition occurs at a

8



critical disorder Wc = 16.5 (Schenk et al. [2008a])

We can form the Schrödinger equation to be solved (Girvin and Yang [2019])

Wϵrψ(r)−
∑

α=x,y,x

ψ(r+ eα) + ψ(r− eα) = Eψ(r), (2.2)

and then apply equation (2.1) to d = 3 by computing the eigenvalues and eigen-

states ψ of the Anderson Hamiltonian according to equation (2.2). To solve for the

eigenvalues of the Anderson Hamiltonian many different algorithms have been intro-

duced. For example, the Lanczos algorithm and Cullum-Willoughby implementation

was developed in the mid-1980s (Cullum and Willoughby [1985]) for computing the

eigenvalues and eigenvectors of symmetric matrices. The algorithm we chose to

use was the Jacobi-Davidson method (Geus [2002]). The Jacobi-Davidson method

has been shown to have faster calculation time compared to implementations of

the Lanczos algorithm while maintaining similar memory costs (Geus [2002]). The

Jacobi-Davidson method requires solving the correction equation (Equation (2.3))

(I − uuT )(A− θI)(I − uuT )z = −r (2.3)

such that

z = (I − uuT ) (2.4)

where (u, θ) is the given approximate eigenpair and r = Au − θu is the associated

residual. The search space, Vk = [v1, ..., vk] is then expanded such that z is reorthog-

onalized with respect to [v1, ..., vk] and the new approximate eigenpair is computed

from the Ritz approximation, [Vk, z]
TA[Vk, z] (Schenk et al. [2008a]).

2.2 The Process of Deep Learning as a subset of Ma-

chine Learning

Deep learning (DL) is an extension of the principles of ML (Chollet [2017]). DL

expands on ML by applying successive layers of transformations in order to make a

more meaningful representation of the data for prediction. The basic procedure of

a deep neural network is to take an input vector, z, and produces an output, a, at

each layer, passing the previous output of a layer to the input of the next (Mehta

et al. [2019]). The full operation done at each layer is

9



a = σ(w · z + b), (2.5)

where w is the matrix of weights on the neuron, the trainable parameters that act

on the matrix of inputs, b is the bias of the neuron, the linear trainable parameter

and σ is the non-linear function applied to the neuron. For our ML algorithm we

used the rectified linear unit function (ReLU) for the non-linear function. A loss

function, E, is applied to the output of the ML algorithm to measure how much

the final predictions vary from the expected results. For the loss of the created ML

model to be minimised, we need to calculate the derivative of the loss function with

respect to all weights in each layer. In order to compute the gradient at all these

points, we can use the linked nature of a deep neural network to create a procedure

called the back-propagation algorithm. Back-propagation takes the loss from our

final output and uses it to calculate the loss at all previous layers with (Mehta et al.

[2019])

∆l
j =

∂E

∂zlj
=
∂E

∂alj
σ′(zlj) , (2.6)

∆l
j =

∂E

∂zlj
=
∂E

∂blj

∂blj

∂zlj
=
∂E

∂blj
, (2.7)

∆l
j =

∂E

∂zlj
=

∑
k

∂E

∂zl+1
k

∂zl+1
k

∂zlj

=
∑
k

∆l+1
k

∂zl+1
k

∂zlj

= (
∑
k

∆l+1
k wl+1

jk )σ′(zlj) , (2.8)

∂E

∂wl
jk

=
∂E

∂zlj

∂zlj

∂wl
jk

= ∆l
ja

l−1
k , (2.9)

where ∆ is the loss, l is the layer number and j and k are neuron numbers. Back-

propagation calculates the activation of all neurons in the input layer. The outputs

of a previous neuron are read in order to be the input of the next neuron. We

compute the value of the next layer layer, calculates the loss in the output using

equation 2.6. We then use equation 2.7 to calculate the loss in all layers and finally

use equations 2.8 and 2.9 to find the gradients for optimising. An optimiser function

is used to determine how much the weights need to vary in order to minimise loss.
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2.3 The Application of Convolutional Neural Networks

for drawing information from neighbouring data points

We are expanding on the utilisation of DL using a variation of deep neural net-

works called convolutional neural networks (ConvNets). ConvNets are able to

consider data around the point of analysis through the usage of patches - defined

selections of data to consider around each point (Figure 2.1) (Chollet [2017]). This

differs from a deep neural network which converts the full data into a 1D array and

then applies every operation to every point. This allows ConvNets to analyse any

potential information that can be drawn about a point based on it neighbours. For

example, in the image of an eye, a pixel of the iris will be surrounded by other

pixels of the iris. By using ConvNets in this way we can identify parts of the

data that correspond to a certain feature. The ConvNets can apply changes to all

the patches at once producing a representation of the data that emphasises features

that the patches can identify. This representation is called a feature map which the

model uses to identify areas that are similar to each other which can then be used

to identify patterns that may exist in the data. By using different sizes and shapes

for our patches, we can produce different feature maps which pick up on different

details. In applying these patches, we will increase the complexity of the input to

the DL algorithm. As such we can expect an increased run time. Therefore, it is

important to only consider ConvNets when it is apparent that neighbouring data

points contain useful information.

One factor that influences the training of a model using a ConvNets is that the

patches can only be centered on data with enough surrounding data points in order

to fill the patch. As such, applying a patch to some input data map will produce

a smaller output map (2.2). Padding is a process ConvNets can apply to account

for this. Padding adds additional empty columns and rows to the data so that

all data points from the initial input map can have a patch applied to them. This

will then produce an output map that has the same size as the unpadded input (2.2).

We also do not have to take every possible patch from the input datamap. One

other parameter we can define for our ConvNets layer is the stride. The stride

parameter tells the ConvNets layer how many points to skip before selecting the

next point for the patch (Chollet [2017]). This will shrink the output feature map

in a process called downsampling. Downsampling is important to reduce overfitting.

Overfitting is when the model trains too closely to the data provided to the model.
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This results in a model that predicts very well on the provided data but will predict

poorly with new data. As such the model will be ineffective at categorising data as

an overfit model will only accurately predict the data it trained with which is data

we already know the category of.

2.4 The model structures that will be used during train-

ing

We will be looking at two network structures – the first is detailed in Ohtsuki

and Mano [2020], utilising six convolution layers and three pooling layers (Figure

2.4). Pooling layers take each patch of the convolution and calculates a single value

representing the whole patch (Nirthika et al. [2022]). This is another method of

downsampling which we can use to reduce overfitting. More specifically, for this

model we are using MaxPooling which is where we take the maximum value of

the patch for the new feature map. The other common form of pooling is Aver-

agePooling where we take the average of the patch for the new feature map. We

will then look at the more dense ResNet18 network (He et al. [2015] for images

and Tran et al. [2018] for numerical files), utilising four layers which each contain

two convolution blocks made of a convolution layer, a batch normalisation layer and

a ReLU layer (Figure 2.5). Layers 2 and 3 also include a downsample block which

uses a convolution layer with a smaller kernel size and larger stride to reduce the

data passing through the model and in turn reduce overfitting. The ResNet18

network also uses both MaxPooling and AveragePooling.

As we are doing multiple category categorisation, we will use the default implemen-

tation of categorical cross entropy from the PyTorch library to measure the loss of

the model (Foundation [2021]). The categorical cross entropy loss, Ecce, is calculated

using the function (Foundation [2021])

Ecce(x, c) = − log

(
expxc∑
C expxC

,

)
(2.10)

where x is the final output tensor of the ML categorisation model, containing the

probabilities xC that the original input to the model matches each category, C. xc

is the probability that the model predicts that the original input corresponds with

the true value defined by the user. Categorical cross entropy is the standard loss

function for multiple category classification
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For our optimisers, we will be using Adam (Kingma and Ba [2017]) and Adadelta

(Zeiler [2012]) which are the two optimisers used by T.Ohtsuki (Ohtsuki and Mano

[2020]). Adam and Adadelta are both predefined optimisers in the PyTorch mod-

ule and have been implemented with the default learning rate, eps and weight decay

parameters as defined in the PyTorch API documentation (Foundation [2021]). In

order to find the ideal parameters for a ML algorithm, we preformed a hyperpa-

rameter test where we trained using randomly generated values for the optimiser

parameters for a small number of epochs in order to find what values produce the

best result in that small amount of training. From this we found that the default

parameters in the API documentation are ideal.

2.5 How the data was generated and prepared for train-

ing

The data being used is Anderson model eigenstate data at energy E = 0.0 gener-

ated by Dr Römer following the methods explained in Schenk et al. [2008a] using

the Jadamilu library in Fortran (Bollhöfer and Notay [2007]). This data is provided

as a file of Ψ values where Ψ = ψ(r). We have some scripts to convert this data

into the format required for training the models. The first is a Fortran script which

utilises the ImageMagick routine (community contributed Github repository [2023])

to convert the numerical values into an image into the .eps format which is then

converted into a .jpg or .png format to be used in our training (Figure 1.1). The

conversion must be done as by converting from .eps which is a vector format to .jpg

or .png which are rasterised formats stores the image as pixels which is necessary for

training using CNNs as we want to capture the information stored in data points and

their neighbours which relies on all the points of the image being stored individu-

ally. When we generate the images for usage in the ML process we remove the black

borders around the whole image as this black border contains no physics-based in-

formation (Figure 2.6). The second script uses the convert files into a binary format

to compress files in a way that they can still be easily read and decoded by Python

scripts. To do this we used the Pickle function in Python (Foundation [2023]). This

is in order to save space on our work machines and improve data read in speed. We

used three machines to develop our models.

We started with our local machines using the CPU to preform initial tests to make

sure the method was feasible. We then moved work onto two high performance com-

puting machines in order to use GPU training which will reduce the time it takes to
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train. The two HPC machines we used are called Avon and Sulis. Avon has 16 GPU

accelerated compute nodes, each with three Nvidia Quadro RTX6000 cards and ap-

proximately 22GB GPU RAM. Sulis has Dell PowerEdge R7525 GPU nodes each

with three NVIDIA A100 40 GB RAM passively-cooled GPUs, two AMD EPYC

7742 (Rome) 2.25 GHz 64-core processors per node, 30 total nodes, 90 GPUs, 3,840

CPU cores, 512 GB DDR4-3200 RAM per node and 4 GB RAM per core.

We can divide the categories in the dataset in different ways. With two categories,

we have split the dataset into data withW < Wc and withW > Wc which we denote

as τ2,L with L denoting the size of the cubic lattice the wavefunction has been cal-

culated over, referred to as the system size. We also split the data into 17 categories

to try to preform a more detailed classification of the W of the system. The cat-

egories we are using are W = 15.0, 15.25, 15.5, 15.75, 16.0, 16.2, 16.3, 16.4, 16.5, 16.6,

16.7, 16.8, 17.0, 17.25, 17.5, 17.75 and 18.0. The dataset forW classification has been

denoted as τ17,L when using the numerical Ψ and |Ψ2| data and as ϑ17,L for datasets

containing images. Each C in a τ and ϑ will contain 5000 samples except the C in

τ17,100 which will only contain 500 samples.

While the datasets are separated by phase or disorder category in our file stor-

age, we still need to attach labels to each file for our model training code to identify

each sample. In order to do this, we first create a file listing all the files in each

category. We then have a Python script which takes a list file for each category

and appends a numerical tag to each item in that list. For convenience, we have

labelled items with W < Wc as 0 and W > Wc as 1 and the categories for disorder

as labelled ascending from 0 to 16 with W = 15.0 having label 0 and W = 18.0

having label 16. These lists with associated numerical tags are then collated into a

single labels file which can then be passed into the model training code to generate

the training, validation and test sets. Before the data is fed into the model it is ran-

domly divided into a training, validation and test set in a ratio of 80 : 15 : 5. The

training set is the set the model uses to compare its predictions to the true values

which the model will then use to adjust the weights to get the predictions to match

the true values as best as possible. The validation set is used as a part of training

to reduce overfitting. The validation set is input into the model after the training

step to see how the model is preforming with an unseen dataset. If the model finds

that the new set of weights is preforming more poorly with the validation set than

the previous set of weights then the model will not save the new weights. This is to

optimise the model such that it predicts best on unseen data. The test set is then
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passed into the model after the whole training process is complete to determine how

effective the final model is.

One other parameter we had to defined for our ML algorithm was the batch size.

This parameter determines how the ML algorithm divides up the input τ into ran-

dom blocks for it to train on. The size of these random blocks will determine how

many samples the model can compare in one training step to try to identify features.

We chose to use a batch size of 32 for all τ and ϑ except for when using numerical

τ17,100. Each individual sample from τ17,100 contains 1003 values and we found that

even with the 40 GB GPU RAM provided Sulis, there was not enough RAM to train

a model using a batch size of 32. As such for numerical τ17,100 we used a batch size

of 4.
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Figure 2.1: Visualisation of how a ConvNets applies patches to data and captures to information
stored in neighbouring points. The shaded patch is to illustrate how a single patch is extracted and
then transformed into a single output feature. Each patch that is extracted is multiplied with the
weights of the network. The output feature map is formed by joining the output patches together
such that each output keeps the position of the center of the input patch that created it relative to
the other patches (Chollet [2017]).
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Figure 2.2: Visualisation of how padding is applied to an input map. The shaded region represents
the initial 3×3 patch which is condensed into a single output in the output map - one such patch has
been marked with the number 1 showing how a single patch is transformed. The squares marked
with an x represent empty data points which are added on as a part of the padding procedure to
allow patches to be taken from points without enough surrounding data (Chollet [2017]).
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Figure 2.3: The usage of stride in the creation of patches. For an input map of 5 × 5, if we apply
a stride of 2 we take patches from points that are 2 data points apart. As such, if we extract all
3× 3 patches, we will end up with the four patches denoted 1,2,3 and 4 (Chollet [2017]).
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Figure 2.4: Structure of training network as defined in Ohtsuki and Mano [2020] for categorisation
of 3D data.
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Figure 2.5: Architecture of the ResNet18 network for 2D images. Each conv block in figure 2.5a
consists of a convolution layer, a batch normalisation layer and a ReLU layer as shown in figure
2.5b. The 3D network uses the same structure but with 3D kernels.
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(a) Disorder 15.0 - W < Wc (b) Disorder 18.0 - W > Wc

Figure 2.6: The images that will be input into the ML algorithm for training. Same as the images
from Figure 1.2 but with the black borders removed.
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Chapter 3

Categorisation of Extended and

Localised Phases

3.1 Training with the Ohtsuki network for L = 40 with

Ψ values

We begin training using the model described in Ohtsuki and Mano [2020]. Attempt-

ing to train the ML model on τ2,40 Ψ values as defined in section 2.5 to identify

whether the input state is in an extended or localised phase. The accuracy of the

model has been calculated as the number of correct predictions divided by the total

number of samples. From this, we find that the training and validation accuracy

starts low and increases as the number of epochs, denoted as ε, increases which is

the expected behaviour for the training process. If we compare the training accu-

racy at ε = 1 (Figure 3.1) and ε = 70 (Figure 3.1), we can see that the accuracy of

the predictions has increased from 49.5% to 98.4%. We can then plot a confusion

matrix for these results which shows how many of the models predictions matches

with the desired categories. Looking at how the model behaves for ε = 1 to 70 (Fig-

ure 3.1) we can see the diagonal fit of the confusion matrices improve as ε increases

showing that the model is predicting more data correctly. We must also consider

the behaviour of the validation matrices. Comparing the validation accuracy at

ε = 1 (Figure 3.1) and the best validation accuracy at ε = 70 (Figure 3.2) we get an

improvement from 50.0% to 98.1%. When we look at the behaviour of the model

for all ε = 1 to 70 (Figure 3.2) we can see that the model is stagnate for the ε = 1

to 8 before the model begins to improve in accuracy. When we plot the accuracy

(Figure 3.3) measured at each ε, we can see how the model improves as the number

of training steps increases. We also plot a line representing what the accuracy
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Figure 3.1: Confusion matrix of initial and final ε for Ψ trained
model. Model trained using the Ohtsuki network, the Adam
optimiser and L = 40 data.

Figure 3.2: True and False positive rates at each ε for Ψ data
model. Model trained using the Ohtsuki network, the Adam
optimiser and for L = 40 data.

Figure 3.3: Accuracy of model for training and validation sets.
Model trained using the Ohtsuki network, the Adam optimiser
for L = 40 data with Ψ values.

would be if the model predicted completely randomly in order to see if the model

is working better than random chance. In this case, the accuracy starts around the

random expectation chance of 50% for ε = 1 to 8 before it begins improving from

random predictions. Overall, this shows that the model trained using the Ohtsuki

network is able to categorise states of the Anderson model into extended and lo-

calised phases that it has never seen before with an accuracy of 98.1% and thus we

can conclude that the model works effectively.

3.2 Training with the ResNet18 network for L = 40 with

Ψ values

Changing to the ResNet18 network, we can see that the model preforms differ-

ently to the Ohtsuki model. The model starts with a training accuracy of 95.1%

(Figure 3.4) and peaks with 100% at ε = 20 (Figure 3.4), fluctuating slightly due

to random variations in how the batches passed into the training step are divided.
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Figure 3.4: Confusion matrix of initial and final
ε for Ψ trained model. Model trained using the
ResNet18 network, the Adam optimiser and with
L = 40 data.

Figure 3.5: Accuracy of model for training and vali-
dation sets. Model trained using the ResNet18 net-
work, the Adam optimiser, with L = 40 data and Ψ
values.

The validation accuracy also starts really high at 99.0% (Figure 3.4) and also peaks

at 99.8% at ε = 20 (Figure 3.4). Unlike with the Ohtsuki model, the validation

accuracy does not remain close to the peak once it has reached it but fluctuates

between 99% and 50% (Figure 3.5). The training structure of the model is complex

enough that the model can reach an effective accuracy for low ε and so any addition

features the model can identify are likely not generalised leading to large variations

in the validation accuracy as the model is overfit for some ε before the validation

step discards the changes. Compared to the Ohtsuki network, we can say that the

ResNet18 network trained model preforms even better at categorising extended

and localised phases of the Anderson model as the ResNet18 trained model has

a better validation accuracy by 1.7%. This is due to the increased depth of the

ResNet18 network leading to better feature detection in the model.
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3.3 Comparison of training with Ψ values against |Ψ|2

values

The above results correspond to training using generated Ψ values. If we instead

switch to using Ψ2 values the model trains differently. For the Ohtsuki network,

looking at the accuracy (Figure 3.6) curve, we find that the peak training accuracy

is 82.7% and the peak validation accuracy is 83.0% compared to the 98.4% and

98.1% training and validation accuracy for the Ψ trained models. On figure 3.6 we

can see that for ε = 1 to 20 the model remains at 50% accuracy which also occurs in

the Ψ trained models for ε = 1 to 8 (Figure 3.3). When we then plot at the accuracy

(Figure 3.7) for the ResNet18 network we find a maximum training accuracy of

100% first at ε = 25 and a maximum validation accuracy of 99.7% at ε = 38.

Compared to the Ψ models (Figures 3.5) with maximum training and validation

accuracy of 100% and 99.8% respectively, the accuracy for the Ψ and |Ψ|2 trained

models are effectively the same. Looking at the validation accuracy, we can see that

the main difference is that there is more variation in the validation accuracy as ε

varies. Together these results show that the |Ψ|2 value model produces a slightly

less effective result when training with the Ohtsuki network and a result of similar

effectiveness when training with the ResNet18 network for L = 40.

3.4 Effects of training using AdaDelta operator com-

pared to Adam operator

One other factor we have considered in the training is the optimiser used. For the

previous example models we have been using the optimiser Adam (Kingma and Ba

[2017]). Another potential optimiser that we could use is the AdaDelta optimiser

(Zeiler [2012]) which has also been mentioned in the Ohtsuki paper (Ohtsuki and

Mano [2020]). Our results (Figure 3.9) show that training with the AdaDelta

optimiser is not as effective as using the Adam optimiser. The training accuracy

shows no growth, instead showing a large spread around the 50% mark and the

validation accuracy remains constantly at 50%. When considering that a model that

predicts completely randomly would produce an accuracy of 50% we can conclude

that the model trained using the AdaDelta optimiser has not produced a usable

model. Plotting the true and false positive rates for the validation data (Figure

3.8), we can see that the model is predicting all the data into 1 category. If we

compare this to the same model trained using the Adam optimiser (Figure 3.6),

we see that for the ε = 1 to 20 (Figure 3.10), the Adam model remains at 50%
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Figure 3.6: Accuracy of model for training and
validation sets. Model trained using the Ohtsuki
network, the Adam optimiser, with L = 40 data
and Ψ2 values.

Figure 3.7: Accuracy of model for training and
validation sets. Model trained using ResNet18
network, Adam optimiser, with L = 40 data and
Ψ2 values.

accuracy before beginning to improve as it has found an appropriate set of weights

for effective predictions. This means it could be that the AdaDelta model has not

found the appropriate set of weights to begin training from and thus is stuck in a

local minima and by continuing the training for ε > 70 we could see the model find

an appropriate starting point and then train properly. Overall, it would be more

effective to train using the optimiser Adam as a model trained with that optimiser

will reach an effective result in ε < 70 and therefore will take less time to train due

to needing a smaller range of ε.
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Figure 3.8: True and False positive rates at each ε for Ψ2 data
model. Model trained using the Ohtsuki network, theAdaDelta
optimiser for L = 40 data.

Figure 3.9: Accuracy of model for training and validation sets.
Model trained using the Ohtsuki network, the AdaDelta opti-
miser with L = 40 data and Ψ2 values.

Figure 3.10: Accuracy of model for training and validation sets.
Model trained using the Ohtsuki network, the Adam optimiser
with L = 40 data and Ψ2 values. Chart cut at ε = 20.
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Chapter 4

Categorisation based on

disorder of state

4.1 Training using Images

4.1.1 Comparison of effect of L on training of model

We now train the model using dataset ϑ17,20. We start with data with an image

size, s, of 100× 100 pixels from this dataset. Training the model with this we find

the model reaches a maximum training accuracy of 16.0 ± 0.4% at epoch (ε) 50

(Figure 4.1a). Looking at the validation accuracy when ε = 50 we find it is 15.7 ±
0.4%. The maximum validation accuracy we obtain is 15.8 ± 0.3% at ε = 34. The

model accuracy has stopped increasing after ε = 10, showing that the model has

completed training. This shows that with L = 20 and s = 100 the model cannot

train to an effective accuracy. One reason for this is that the L = 20 data only

provides information of the phase of the wavefunction for 8000 sites leading to the

model not having enough data to train with. Compared to the black line in figure

(Figure 4.1a) which represents the expected accuracy if the model predicted entirely

randomly, we can see that the model is 10% better than random chance.

Increasing to L = 40 with dataset ϑ17,40, we find that for the s = 100 images,

the model is able to reach a final training accuracy of 24.7 ± 0.6% and validation

accuracy of 24.5 ± 0.6% (Figure 4.1b). The maximum validation accuracy is 24.7

± 0.6% for ε = 41. Compared to the models for L = 20 data, we can see that

there has been an improvement in the training accuracy from 16.0% to 24.7% and

in the validation accuracy from 15.8% to 24.7%. This shows that increasing L has

improved the models effectiveness - by giving the model more data to work with the
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(a) Accuracy for model trained at L = 20. (b) Accuracy for model trained at L = 40.

(c) Accuracy for model trained at L = 100.

Figure 4.1: Accuracy graphs of training and validation sets for models trained using the ResNet18
network, the Adam optimiser for s = 100 and varying sizes of L.

model can more easily identify the patterns necessary for categorisation.

Lastly, we can train the model using ϑ17,100 s = 100 images (Figure 4.1c). With this

we find that the model is able to reach a final training accuracy of 42.3 ± 0.9%, a

final validation accuracy of 42.7 ± 0.7% and a max validation accuracy of 42.8 ±
0.6% for ε = 30. Once again, increasing L has increased the training and validation

accuracy as more data has been provided.

Plotting the accuracy of the models trained for L = 10, 40 and 100 with s = 100

(Figure 4.1c) overall, we can see that training in this way leads to very little overfit-

ting. The training and validation increase at the same rate and when the training

accuracy has reached its maximum, the validation accuracy does not begin to de-

crease. As figure 4.2 shows, increasing s has led to an increase in the training and
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Figure 4.2: Consolidated accuracy for training and validation sets for L = 20, 40 and 100 models
trained using s = 100 images. Models trained using the ResNet18 network and the Adam opti-
miser.

validation accuracy. This is due to the increased L equating to a larger cube of the

Anderson model being plotted in the image making it more likely for the differenti-

ating patterns to form and be detected for the model to train towards. We can also

see that all 3 models stop increasing at approximately ε = 15 which shows that the

training has been completed at ε = 15 and any training beyond this point is not

necessary.

4.1.2 Comparison of effect of s on training of model

We can also test how different image sizes affects the model. For this, we will train-

ing all models for L = 100. Starting with the s = 100 image training (Figure 4.1c),

the model has a final training accuracy of 42.3 ± 0.9% and max validation accuracy

of 42.8 ± 0.6%. Looking at s = 200 (Figure 4.3a), we see that the model reaches a

final accuracy of 46.3 ± 0.7%. The peak validation accuracy is 47.7 ± 0.4% when

ε = 50. With the s = 500 images the model reaches a final training accuracy of 91.3

± 1.6% and a peak validation accuracy of 43.0 ± 5.7% at ε = 28 (Figure 4.3b).

Comparing the three image sizes, we can see that increasing s from 100 to 200,

increases the training and validation accuracy. When s increases from 200 to 500

we find that the training accuracy increases by 45% compared to the 4% increase

when increasing s from 100 to 200. The validation accuracy falls by 4.7% when
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(a) Accuracy for model trained for s = 200. (b) Accuracy for model trained for s = 500.

Figure 4.3: Accuracy graphs of training and validation sets for models trained using the ResNet18
network, the Adam optimiser for L = 100 and varying sizes of s.

changing from s = 200 to 500. This behaviour of very high training accuracy and

a decrease in validation accuracy fits the behaviour of overfitting. This could show

that the increase in s has increased the information volume by too much leading to

over fitting. One key factor to also consider is that the s = 500 model was trained

using a different machine. At the time, Sulis usage was being reserved for other tasks

and as such the s = 500 training was run on Avon while Djena ran the s = 100 and

200 tasks at a later point on Sulis. This could lead to slight differences in memory

partitions and batch formation even with the same random number seed leading

to different behaviour. The behaviour at s = 500 has shown that it is important

to consider that providing the maximum amount of data is not necessarily optimal

due to overfitting and that maintaining as much consistency between machines is

important in produce reproducible models.

Changing s does not improve the training and validation accuracy as much as chang-

ing L does. Increasing s from 100 to 200 increases the training accuracy by 4% and

the validation accuracy by 4.9% whereas increasing L from 20 to 100 improves the

training accuracy by 26.7% and the validation accuracy by 27.0%. As such, we

can say that while training using the highest possible s is useful, training with the

largest L is more important. This matches up with the effects on the data of L

and s. Increasing s takes the same data and scales it up. This can produce more

detail within the finer points of the image which will improve model performance.

Increasing s does not change the information about the physical state whereas in-

creasing L will increase the size of cube of the Anderson model state being provided

to the model. Therefore, by increasing L we will provide more information about

the physical system which in turn will help the model predict more accurately.
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Figure 4.4: Consolidated accuracy for training and validation sets for s = 100, 200 and 500 at
L = 100. Models trained using the ResNet18 network and the Adam optimiser.

4.2 Training using numerical |Ψ|2 values

4.2.1 Training using L = 20 data

The next step of training was to use at the |Ψ|2 values we generated the images from.

Starting with dataset τ17,20, we find that the training accuracy is 98.4 ± 0.2% (Fig-

ure 4.5). Looking at the validation accuracy, we see that the max average validation

accuracy is 10.9 ± 7.9%. Compared to a model trained on the equivalent images

(4.1a) we find that the training accuracy has improved from 16.0 ± 0.4% whereas

the validation accuracy has decreased from 15.8 ± 0.3%. While an improvement

in training accuracy may seem beneficial, it represents a model that is only able to

predict well on the data that has already been provided to it. As such, a model with

very high training accuracy but low validation accuracy represents a model which

cannot predict well on unseen data and thus is useless for categorisation.

There is an issue with measuring the validation accuracy of the ten trials in this

way. When we plot the best and worst validation confusion matrix at ε = 8 for

the ten trials it shows that while the best confusion matrix has a diagonal shape,

the worst matrix shows that for this trial the model has failed at this point and

is predicting all the data into a single category. Since model performance at each

individual ε will not be the same across different trials,
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Figure 4.5: Accuracy of model for training
and validation sets. Model trained using the
ResNet18 network, the Adam optimiser with nu-
merical |Ψ|2 values for L = 20.

Figure 4.6: Best and worst validation confusion
matrices of the 10 training trials for L = 20 with
|Ψ|2 values at ε = 8. See Appendix A for the full
set of 10 confusion matrices.

averaging across the validation accuracy at a single ε does not provide the full

picture. As such, when we measure the best validation accuracy of the trained

models we get a maximum validation accuracy of 30.2 ± 0.3% (4.7) which is better

when compared to the 15.8 ± 0.3% for the same data in the form of images. By

plotting the confusion matrices for the ε in each training run with the best validation

accuracy, we can see that most of the models predict closer to the diagonal of the

confusion matrix. Overall, this shows that compared to models trained on images,

models trained with |Ψ|2 values can reach higher validation accuracy and thus create

models that are better for categorisation. Plots of the confusion matrices for all ten

trials can be found in Appendix A.
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Figure 4.7: Accuracy of model for training and
validation sets with best validation accuracy from
each model trained plotted in green. Model
trained using the ResNet18 network, the Adam
optimiser with numerical |Ψ|2 values for L = 20.

Figure 4.8: Best and worst validation confusion
matrices at the ε with the best validation accuracy
of the 10 trials when trained for L = 20 with |Ψ|2
values.

4.2.2 Training using L = 40 data

Moving onto the L = 40 data, we find a training accuracy of 95.3 ± 1.4% in the

final ε and a maximum average validation accuracy of 15.1 ± 13.5% when ε = 37

(Figure 4.9). The validation accuracy for the best model across each trial is 49.0

± 13.7%. When we plot the accuracy graphs for both we can see that the L = 20

data has begun to level off around ε = 30, whereas the L = 40 model is only just

starting to stop increasing, showing that the L = 40 model is not as over-fit. This

maximum validation accuracy occurs for ε = 38 compared to ε = 15 for the L = 20

data. This is explained by the less overfitting in the L = 40 training leading to the

validation accuracy being able to improve further into the training of the model.
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Figure 4.9: Accuracy of model for training
and validation sets. Model trained using the
ResNet18 network, the Adam optimiser with nu-
merical |Ψ|2 values for L = 40.

Figure 4.10: Best and worst validation confusion
matrices at the ε with the best validation accuracy
of the 10 trials when trained for L = 40 with |Ψ|2
values.

With the best and worst confusion matrices for the ε with the maximum valida-

tion accuracy (Figure 4.10), there is an improvement in the best matrix as the

predictions are tending closer to the diagonal which reflects the improved best val-

idation accuracy. Comparing the worst confusion matrix with the one for L = 20

(Figure 4.8) shows that the worst result for L = 40 is worse that for L = 20. This

is a result of the increased complexity of the data resulting in predictions becoming

more difficult. This can also be seen in the plot of the best validation accuracy for

each trial in figure 4.9. There is much more spread in the y-axis of the green plots

compared to the points in figure 4.5 showing that while the increased complexity
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Figure 4.11: Accuracy of model for training
and validation sets. Model trained using the
ResNet18 network, the Adam optimiser with nu-
merical |Ψ|2 values for L = 100.

Figure 4.12: Best and worst validation confusion
matrices at the ε with the best validation accuracy
of the 10 trials when trained for L = 100 with |Ψ|2
values.

does allow the model to reach a higher peak by providing more information for

the model to draw patterns from, it also makes it more difficult for a model to find

those patterns, leading to more variation in the best validation accuracy.

4.2.3 Training using L = 100 data

Finally, with the L = 100 data, we get a final training accuracy of 77.9 ± 5.5%,

that the maximum of the average validation accuracy is 10.6 ± 14.1% (Figure 4.11)

and that the best validation accuracy is 53.1 ± 16.6%. Plotting the best and worst

confusion matrices for the maximum measured validation accuracy (Figure 4.12)

we find again that the best confusion matrix is aligned well with the diagonal and

the worst confusion matrix is has failed completely and is only predicting into one
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Figure 4.13: Consolidated accuracy for training and validation sets for L = 20, 40 and 100 model
trained using |Ψ|2 values.

category. Plotting all of the best validation accuracy (Figure 4.11) again shows a

larger spread in the best validation accuracy values compared to L = 40 shown by

the increased error from ± 13.7% for L = 40 to ± 16.6% for L = 100. Again, this

shows that an increase in complexity can lead to a more accurate model by providing

more information for determining patterns and in turn this increased complexity will

also lead to the model having more trouble with identifying those patterns in the

first place, leading to a higher best validation accuracy and more variation in that

value between trials.

4.2.4 Comparisons of the effects of varying L on |Ψ|2 value training

Combining the training and validation accuracy for L = 20, 40 and 100 (Figure

4.13), we see that the trends match up with behaviour in the Ψ models. As L

increases, the final training accuracy decreases as the increased complexity of the

input makes the model take longer to train. Comparing the validation accuracy, the

increase in L leads to increasing best validation accuracy, even between L = 40 and

100. Considering that the average validation accuracy still decreases as L goes from

40 to 100, the increase in complexity is causing lower average validation accuracy

but leads to higher potential best validation accuracy which will be reached as more

epochs are trained. This can be seen by comparing the 10 best confusion matrices

for the 40 and 100 models.
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Figure 4.14: Training, average validation and best validation accuracy for L = 20, 40 and 100
models trained using |Ψ|2 values.

Plotting the training accuracy, average validation accuracy and best validation ac-

curacy against L (Figure 4.14), we can see that increasing L leads to a decrease

in training accuracy from 98.4% for L = 20 to 95.3% for L = 40 and 77.9% for

L = 100. The decrease in training accuracy is due to a decrease in overfitting. The

increase in the volume of data supplied to the model will increase the number of

epochs it takes to train the model which in turn leads to taking more epochs to

begin overfitting, resulting in lower training accuracy. Despite the training accu-

racy being lower for higher L, less overfitting is ideal for training as it leads to a

higher validation accuracy which is the key factor in measuring the effectiveness of

a model. This can be seen by comparing the best validation accuracy for each L.

For L = 20 the best attained validation accuracy is 30.2% which increases to 49.0%

for L = 40 and then 53.1% for L = 100. From this, we can conclude that increasing

L has produced a more effective model as the higher validation accuracy represents

a model which is better at predicting on unseen data which is the factor we want

to maximise. Comparing the average validation accuracy we find that at first the

accuracy increases between L = 20 and 40 from 10.9% to 15.1%. This fits in with

the expected behaviour where increasing L causes less overfitting and thus leads to

a higher validation accuracy. When L increases to 100 the average validation accu-

racy falls from 15.1% to 10.6%. This is due to the increased L causing the model

to get caught in a local maxima more often which skews the average accuracy down

which can be seen when comparing the confusion matrices of the best validation for
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L = 40 (Figure 4.10) and L = 100 (Figure 4.12). This increase in input data also

allows the model to reach higher best accuracy when it escapes the local maxima

which is why the best accuracy is still higher. The main issue this causes is that

the model can take more attempts to reach high best validation accuracy leading to

needing to do more runs.

4.3 Training using numerical Ψ values

4.3.1 Training using L = 20 data

The next step of training is to train using the original Ψ values in order to keep

the phase information. Starting with the L = 20 data the training accuracy reaches

a maximum of 92.5 ± 2.7% in the final ε (Figure 4.15)). The average validation

accuracy peaks at 25.1 ± 17.5% in ε = 32 and the best validation accuracy is 60.0

± 5.5%. Comparatively, the model trained with |Ψ|2 values at the same L has a

training accuracy of 98.4 ± 0.2%, an average validation accuracy of 98.4 ± 0.2% and

a best validation accuracy of 30.2 ± 3.0%. This means that compared to a model

trained using |Ψ|2 values, the Ψ train models have decreased training accuracy and

increased average and best validation accuracy. As the main factor we wish to

increase is the validation accuracy, we can conclude from this that the Ψ model

has preformed better than the equivalent |Ψ|2 model. Plotting the best and worst

confusion matrix of the best result across all trials (Figure 4.16), there is much more

alignment with the diagonal in both the best and the worst case showing how the

model is predicting much better compared to using |Ψ|2 values (Figure 4.8).

4.3.2 Training using L = 40 data

Increasing to L = 40, we get a final training accuracy of 81.3 ± 1.0% and a peak

average validation accuracy of 28.1 ± 26.9% (Figure 4.17) and the best validation

accuracy we have obtained is 85.9 ± 10.4%. Plotting the best and worst confusion

matrices out the ε representing the maximum validation accuracy for each trial (Fig-

ure 4.18), we can see that the model is predicting even closer to the diagonal when

compared to the best and worst for L = 20 showing again how the increase in L has

lead to an improved model. One other factor to consider is that for the |Ψ|2 value

trained models (Figure 4.10), while the best confusion matrix was becoming more

aligned with the diagonal, the worst confusion matrix was beginning to predict into

one category as the increased complexity was making it harder to spot patterns.

This behaviour is not seen in the Ψ model trained at the same L showing that the
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Figure 4.15: Accuracy of model for training and
validation sets, best validation accuracy from each
model trained plotted in green. Model trained us-
ing the ResNet18 network, the Adam optimiser
with numerical Ψ values at L = 20.

Figure 4.16: Best and worst validation confusion
matrices at the ε with the best validation accuracy
of the 10 trials when trained for L = 20 with Ψ
values.

patterns required for classification are more identifiable in Ψ data.

4.3.3 Training using L = 100 data

With the L = 100 data, we find that the final training accuracy is 67.6 ± 1.0%. The

best average validation accuracy is 40.1 ± 27.0% and the best validation accuracy

overall is 79.6 ± 8.2% (Figure 4.19). This is interesting as the best validation accu-

racy has decrease going from L = 40 to L = 100, from 85.9 ± 10.4% (Figure 4.17) to

79.6 ± 8.2%. When we plot the best and worst confusion matrices for the best val-

idation accuracy of each trial (Figure 4.20), we can see that the model is predicting

well near W = 15.0 and 18.0 and is struggling more around the critical point where

differentiating the categories is more complex and thus will take more training steps.
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Figure 4.17: Accuracy of model for training and
validation sets with best validation accuracy from
each model trained plotted. Model trained using
the ResNet18 network, the Adam optimiser for
numerical Ψ values at L = 40.

Figure 4.18: Best and worst validation confusion
matrices at the ε with the best validation accuracy
of the 10 trials when trained for L = 40 with Ψ
values.

It is also important to consider that in training the L = 100 data, we could only use

500 samples instead of 5000 due to GPU memory constraints and run-times. While

this is still more data (1003× 500 = 5× 108 vs 403× 5000 = 3.2× 108) the increased

complexity of L = 100 data may mean that 500 samples is insufficient for the full

training.

41



Figure 4.19: Accuracy of model for training and
validation sets with best validation accuracy from
each model trained plotted. Model trained using
the ResNet18 network, the Adam optimiser with
numerical Ψ values at L = 100.

Figure 4.20: Best and worst validation confusion
matrices at the ε with the best validation accuracy
of the 10 trials when trained for L = 100 with Ψ
values.

4.3.4 Comparisons of the effects of varying L on Ψ value training

Overall, training across L = 20, 40 and 100 (Figure 4.21), we can see that the in-

crease in L increases the number of epochs it takes for the model to fully identify

the training set. This is seen in how the training accuracy on ε = 50 is lower as

L increases. Increasing L increases the validation accuracy when going from 20 to

40 but not from 40 to 100. While increasing L does help with increasing the val-

idation accuracy, it is still important to factor in the increased training time. As

such it is important to balance the best validation accuracy with the number of

epochs it takes to train - while using the largest possible L will give a better vali-

dation accuracy, it will take less time with smaller Ls and thus can be more efficient.
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Figure 4.21: Consolidated accuracy for training and validation sets for L = 20, 40 and 100 model
trained using Ψ values.

Plotting the training accuracy, average validation accuracy and best validation ac-

curacy against L (Figure 4.22), we can see that increasing L leads to a decrease in

training accuracy from 92.5% for L = 20 to 81.3% for L = 40 and 67.6% for L = 100.

Again, this shows a decrease in overfitting as L increases which is ideal behaviour.

Comparing the average validation accuracy for each L, we find for L = 20 the peak

average validation accuracy is 25.1% which increases to 28.1% for L = 40 and then

40.1% for L = 100. This improvement in the average validation accuracy shows that

increasing L is improving the model’s ability to predict on unseen data. If we then

compare the best validation accuracy we find that at first the accuracy increases

between L = 20 and 40 from 60.0% to 85.9% which is due to less overfitting again.

When L increases to 100 the best validation accuracy falls from 85.9% to 79.6%.

The potential explanations for this are that the random split in the dataset when

forming the training, validation and test sets and the random split in the batches

was more beneficial to the training process for the L = 40 data than the L = 100

data producing a better model for the L = 40 dataset. Alternatively, the decrease

in individual samples in the L = 100 dataset compared to the L = 40 dataset could

have made it more difficult for the model to identify the categories correctly and

thus produce a worse final model.
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Figure 4.22: Training, average validation and best validation accuracy for L = 20, 40 and 100
models trained using Ψ values.
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Chapter 5

Conclusions

5.1 Comparisons of training using images against nu-

merical values

When comparing models trained using images to models trained using Ψ or |Ψ|2

values, we can see that image-trained models preform similarly to the |Ψ|2 models

with maximum validation accuracy of the image model reaches being 46.7% (Figure

4.3a) for the model of s = 200, L = 100 compared to the maximum validation

accuracy for the |Ψ|2 model at L = 100 of 53.1% 4.11). When compared to the

models also trained with Ψ values at L = 100, we find that the image models

preform more poorly as the Ψ models can reach a maximum validation accuracy of

79.6% for L = 100 (Figure 4.19). Another factor to consider here is how the model

behaves towards the end of the training. For the image models, after approximately

epoch 15, the training and validation accuracy stops increasing. While the training

and validation accuracy are very similar showing that there is no overfitting, this

also means that the model will not improve beyond this point. Comparatively, the

numerical models do not have the training accuracy level off towards the end. This

means that the models still have potential to improve. When we plot the L = 20

numerical models, we can see the training accuracy has begun overfitting meaning

that training the numerical models for more epochs will not necessarily improve the

validation accuracy. By employing more methods that minimise overfitting, it may

be possible to train the numerical models in order to further increase the validation

accuracy. From this we can conclude that it is better to use the numerical values

over images for training classification models. This makes sense as by converting

the raw values into images, we are sacrificing some of the underlying information of

the system in order to convert it into a visual format. In addition, the process of
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Figure 5.1: Alternative visual representation of the Anderson model. Here sites that contribute to
98% of the wavefunction norm are plotted as cube of volume |Ψ|2. The colour map for this figure
corresponds to the value of − logL |Ψ|2 with L = 120. These plots correspond to disorders spanning
the MIT with a) W = 15.0, b) W = 16.5 and c) W = 18.0 (Rodriguez et al. [2011]).

converting a numerical file into an image requires more information to be stored by

the computer and as such leads to larger individual file sizes and thus more storage

will be required on the machines being used for ML. The visual representation for

the Anderson model we are using has been chosen for convenience. As such, we

can consider other potential ways to represent the data in a 3D format (Figure 5.1)

or even by converting the 3D representation into a series of 2D images by taking

cross-section slices out of the 3D image and placing them in a 2D grid and seeing

how that compares (Figure 5.2). Some other things to consider are the training

time and the error. While the image models have a lower accuracy, they also have

a lower error compared to the numerical models. In addition, the accuracy of the

models trained on images stops increasing after the 15th epoch, showing that the

training has completed within the first 15 epochs. As such, if we can develop a

image model that can predict to similar accuracy to the best raw models, then it

would be more effective to use images over raw values as the models would train in

less steps, taking less time and training with a lower error.

5.2 Comparisons of training using |Ψ|2 versus Ψ

Separating the raw values into Ψ and |Ψ|2, we can see the impact they have on

the models. Overall, we can confirm that switching from Ψ to |Ψ|2, increases the

training accuracy but decreases the validation accuracy - for both the average and

the best validation accuracy (Figure 5.3). From this we can say that it is ideal

to use Ψ values for training classification models. While the |Ψ|2 models display

a better training accuracy the more important factor is the validation accuracy as
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Figure 5.2: Potential method of converting 3D representation into 2D. This method discards some
of the cross-section slices of the original image in order to maintain a square shape. This is so that
the kernel size, padding, stride and other parameters can remain the same in the equivalent 2D
model in order to try to keep similar training behaviour.

that represents how the model is training on unseen data. We want the validation

accuracy to be as high as possible as that would represent a model that is effective

at predicting unseen data and therefore a model that can be used to identify a new

input. As such, the significantly lower average and best validation accuracy for |Ψ|2

trained models means that it is more effective to use Ψ values where possible. This

is representative of the phase problem. By training with the |Ψ2| values we only

have access to the amplitude of the wavefunction at each point which only takes

positive values whereas by training with Ψ values we also have the information of

the phase of the wavefunction which can be positive or negative. The extra infor-

mation of whether the phase is positive or negative is beneficial to ML algorithms

as additional information provides more points of comparison for an ML model to

preform categorisations.
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(a) Accuracy for models trained using numerical
|Ψ|2 values.

(b) Accuracy for models trained using numerical
|Ψ|2 values.

Figure 5.3: Average training accuracy, average validation accuracy and best validation accuracy
for |Ψ|2 and Ψ trained at L = 20, 40 and 100. Models trained using the ResNet18 network and
the Adam optimiser.

5.3 Overall effectiveness of models produced through

this method

The model produced through this method has shown promise for predicting states

of the Anderson model. When preforming classifications of L = 40 data between

the phases of W < Wc and W > Wc, we have attained an accuracy of 98.1% when

attempting to recreate the model shown in Ohtsuki and Mano [2020]. This results

is preforming slightly worse than the result attained in Ohtsuki and Mano [2020],

where the authors state that their model can predict between localised and delo-

calised states with an accuracy > 99%. The authors also state in this paper that

they are expecting validation accuracy values of over 97% so our model is still pre-

forming within expected values. Any difference in performance is most likely due to

the different datasets used between the two studies. In addition, we have shown that

it is possible to attain a validation accuracy > 99% by switching to the ResNet18

to increase the depth of the training without significant increases to the training

time. With the ResNet18 network we were able to attain an accuracy of 99.8%

showing that the ML implementation we have used here has preformed to the same

level as previous studies.

Increasing the complexity of the dataset by introducing discrete categories of W ,

we have found that for models trained on Ψ values, we attain a peak validation

accuracy > 60% for all system sizes. The model can preform at around 80% accu-

racy for L = 40or100, leading to approximately 20% of samples being categorised

incorrectly. For comparison, ML classification for datasets with more then two cate-
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gories shown in Bayo et al. [2022] and Çivitcioğlu et al. [2022] has produced models

that categorise 5% and 10% of samples incorrectly. While both cases use less than

17 categories, with Bayo et al. [2022] using twelve categories and Çivitcioğlu et al.

[2022] using seven, as the model developed in Bayo et al. [2022] has shown that

despite the large number of categories, it is possible to attain > 90% accuracy, there

is still improvements that can be made to the model we have developed.

There is also the idea of generalisation. While the model developed preforms well

on unseen data of the same system size, as shown by the high validation accuracy

attained for each system size, we find that the model preforms more poorly when

the system size of the unseen data and the model are mismatched. This is due to the

patterns that exist in the data that the model has identified vary with the system

size of the data leading to each model identifying different key features for different

values of L. This becomes apparent when testing the model for lower system sizes

than the model was trained on as models trained on L = 100 data will predict much

more poorly for L = 40 or 20 data. This is linked to the improved accuracy for

larger systems sizes, as when the model is trained for larger system sizes, it is able

to find more extensive patterns within the data to preform a more accurate classi-

fication. When the system size is then reduced, these patterns may not develop in

the data, leading to the patterns that the model attempts to identify not existing

and therefore leading to failed classification. When models of a lower system size

are trained on data of a larger system size, the issue is that the method the data

reads in will cause data points to be lost leading to key identifying features of the

category being lost. As such, while the models can be used to predict categories for

systems sizes that are different to the ones they were trained on, they will preform

much more poorly.

5.4 Potential points of improvement and future addi-

tions to consider

From this point there are many things to consider with improving the ML methods

for classifying physical systems. Firstly, training models in such a way has a large

time sink - this is both due to the training process taking a large amount of time

but also due to the resource requirements for training effectively. This time factor

increases as L gets larger as the data volume increases by a factor of L3. As such,

this has required us to utilise GPU clusters in order to train our models - these also

come with a queue time, adding to the time requirement. There is also the time
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taken to generate the data, compress it/convert it into images and transfer this data

onto the work clusters. All in all, there are many time factors to consider which

must be account for when attempting ML work and determining what’s the best

level of data to be used for training.

The next factor to consider is memory requirements. Training models requires a

substantial amount of RAM in order to process the data and the training being

done on it. For example, when training using τ17,20 and τ17,40, we were able to

utilise all 5000 samples in the training process. When we attempted to train on

τ17,100, the data volume increase by a factor of L3 meant that even with the full 40

GB GPU RAM available on Sulis, we were unable to use the full 5000 samples and

had to reduce the dataset to 500 samples. In addition, the data and copies of the

models being stored must also be considered in the disk space they take up. The

total τ17,20 dataset takes up 5.5 GB of memory to store the compressed numerical

files. The τ17,40 dataset increases this to 43.6 GB of memory for its numerical files.

In total the memory taken up by all datasets used is 190.8 GB. If we wanted to use

the full 5000 samples for τ17,100 this memory requirement goes to 804.8 GB as the

memory requirements also increase by a factor of L3 as well as s2 for images. These

factors must also be considered when trying to determine how much data and of

what size should be used for training.

It can also be important to consider the systems being used for training. While

storing the random number seed used while the model is training is helpful in creat-

ing reproducible models, external factors such as memory partitions on hard drives

and how the machine chooses to separate data during training will impact how the

model achieves its training. This can be noticed when trying to transfer and re-run a

training process across our HPC machines Avon and Sulis. As such, it is important

to consider what the properties of the different machines being used to train ML

models as trying to keep such parameters constant across all machines in a project

team will be difficult. The usage of a work machine with consistent parameters has

helped avoid this issue but being aware of the repeatability issues is important to

remember. We chose to mainly focus on using Sulis as the available resources of

Sulis allowed training to be completed slightly quicker than on Avon. While the

training is not guaranteed to be reproducible, the models, once trained, will con-

tinue to behave the same and can therefore be transferred to many other system.

In the future, we can consider the creation of a regression based classifier. By

stretching the prediction region over the disorder range of 15.0 to 18.0 and scaling

that to the 0 to 1 scale of the regression and training on that, we should be able to
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create a model that can predict to any disorder value on the scale of 15.0 to 18.0

rather than just the defined categories set by our training process.
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Appendix A

Full confusion matrices

Here we plot the full confusion matrices from which we took the best and worst

confusion matrices for use in Section 4.2 and 4.3.
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Figure A.1: Confusion matrices for all ten trials at ε = 8 for models trained using the ResNet18
network, the Adam optimiser with numerical |Ψ|2 values for L = 20.
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Figure A.2: Confusion matrices for all ten trials at the ε with the best validation accuracy for
models trained using the ResNet18 network, the Adam optimiser with numerical |Ψ|2 values for
L = 20.
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Figure A.3: Confusion matrices for all ten trials at the ε with the best validation accuracy for
models trained using the ResNet18 network, the Adam optimiser with numerical |Ψ|2 values for
L = 40.
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Figure A.4: Confusion matrices for all ten trials at the ε with the best validation accuracy for
models trained using the ResNet18 network, the Adam optimiser with numerical |Ψ|2 values for
L = 100.
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Figure A.5: Confusion matrices for all ten trials at the ε with the best validation accuracy for
models trained using the ResNet18 network, the Adam optimiser with numerical Ψ values for
L = 20.
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Figure A.6: Confusion matrices for all ten trials at the ε with the best validation accuracy for
models trained using the ResNet18 network, the Adam optimiser with numerical Ψ values for
L = 40.
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Figure A.7: Confusion matrices for all ten trials at the ε with the best validation accuracy for
models trained using the ResNet18 network, the Adam optimiser with numerical Ψ values for
L = 100.
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