

Neutrino Shadow Play

－Kinematic determination of nuclear effects at MINERvA

> Xianguo LU/ 卢显国 University of Oxford on behalf of MINERvA Collaboration
> Joint Experimental-Theoretical Physics Seminar
> FNAL, 2 March 2018

Neutrino

- Oscillation

oscillation between flavor states as v
e

The Nobel Prize in Physics 2015

Takaaki Kajita
Prize share: $1 / 2$

Photo: A. Mahmoud
Arthur B. McDonald Prize share: $1 / 2$

The Nobel Prize in Physics 2015 was awarded jointly to Takaaki Kajita and Arthur B. McDonald "for the discovery of neutrino oscillations, which shows that neutrinos have mass"
https://www.nobelprize.org/nobel_prizes/physics/laureates/2015/

Neutrino mass: shift between interaction and propagation states

The big picture of neutrino detection in oscillation experiment

Fermi motion (FM) biases E_{v} reconstruction

Fermi motion (FM) biases E_{v} reconstruction

Multinucleon correlations:

Fermi motion (FM) biases E_{v} reconstruction

Multinucleon correlations:
cross section unknown, strong bias to all final-state kinematics

Fermi motion (FM) biases E_{v} reconstruction

Multinucleon correlations:
cross section unknown, strong bias to all final-state kinematics
QE-like: π absorbed in nucleus \leftarrow final-state interaction (FSI)
charged current $(\mathrm{CC}) v \rightarrow I^{\prime}$

Resonance production (RES)

$$
\nu \mathrm{p} \rightarrow \ell^{-} \Delta^{++} \rightarrow \ell^{-} \mathrm{p} \pi^{+}
$$

QE-like $\mathrm{N} \rightarrow \mathrm{N}^{\prime}$
including resonance production (RES) $\Delta \rightarrow \mathrm{N}^{\prime} \pi$ followed by π absorption

Fermi motion (FM) biases E_{v} reconstruction

Multinucleon correlations:
cross section unknown, strong bias to all final-state kinematics
QE-like: π absorbed in nucleus \leftarrow final-state interaction (FSI)
FSI \rightarrow energy-momentum transferred in nucleus, possible nuclear emission
charged current $(\mathrm{CC}) v \rightarrow I^{\prime}$

QE-like $\mathrm{N} \rightarrow \mathrm{N}^{\prime}$
including resonance production (RES) $\Delta \rightarrow N^{\prime} \pi$ followed by π absorption

MINERvA

Scintillator tracker

Scintillator tracker:
Hydrocarbon (CH) target
Homogeneous non-magnetized active tracker

RES

DIS

Diagram by M. Betancourt

QE

RES

DIS

Today's topic:
μ-p mesonless production

Today's topic:

μ-p mesonless production

First presented by Tammy Walton in 2014 [Phys. Rev. D 91, 071301(R)]

- Hydrocarbon target
- NuMI low energy (LE) neutrino beam
- Foundation of further MINERvA μ p analyses

Today's topic:

μ-p mesonless production

Extension to nuclear targets presented by Minerba Betancourt in 2016 [Phys. Rev. Lett. 119, 082001]

- Extended previous framework
- Challenging analysis

Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy office of Science

Nuclear Dependence of Quasi-Elastic

 Scattering at MINERvA

Today's topic:

μ-p mesonless production

This analysis

- Subsample of 2014 analysis
> Muon matched to MINOS
> Proton kinematics measurement significantly better
- New observables:
, Transverse kinematics imbalances
[XL, L. Pickering, S. Dolan et al., Phys.Rev. C94 (2016) no.1, 015503]
> Initial neutron momentum
[A. Furmanski, J. Sobczyk, Phys.Rev. C95 (2017) no.6, 065501]

$$
\vec{p}_{\mathrm{T}}^{\ell^{\prime}}
$$

A brief history of Shadow Art

Cave of Pettakere, Bantimurung district (kecamatan), South Sulawesi, Indonesia. Hand stencils estimated between $\mathbf{3 5 , 0 0 0 - 4 0 , 0 0 0 ~ B P}$

A brief history of Shadow Art

https://en.wikipedia.org/wiki/Cave_painting

A brief history of Shadow Art

https://zh.wikipedia.org/wiki/\�\�\�\�\�\�\�\�\�
Traditional Chinese "movie"

A brief history of Shadow Art

http://www.spoon-tamago.com/2015/08/03/illusionistic-shadow-art-by-shigeo-fukuda
Japanese modern art

A brief history of Shadow Art

http://www.spoon-tamago.com/2015/08/03/illusionistic-shadow-art-by-shigeo-fukuda/
Japanese modern art

Transverse kinematic imbalances

- a neutrino shadow play

Transverse kinematic imbalances

- a neutrino shadow play

To make Neutrino Shadow Play, we need \checkmark beam of light
$\stackrel{\text { screen }}{ }$

Transverse kinematic imbalances

- a neutrino shadow play

To make Neutrino Shadow Play, we need \checkmark beam of light \rightarrow accelerator
\checkmark screen

Transverse kinematic imbalances

- a neutrino shadow play

To make Neutrino Shadow Play, we need \checkmark beam of light \rightarrow accelerator \checkmark screen \rightarrow transverse plane

Transverse kinematic imbalances

- a neutrino shadow play

Static nucleon target

To make Neutrino Shadow Play, we need \checkmark beam of light \rightarrow accelerator \checkmark screen \rightarrow transverse plane

Transverse kinematic imbalances

- a neutrino shadow play
ay

To make Neutrino Shadow Play, we need \checkmark beam of light \rightarrow accelerator \checkmark screen \rightarrow transverse plane

Transverse kinematic imbalances

- a neutrino shadow play

Nuclear target

To make Neutrino Shadow Play, we need \checkmark beam of light \rightarrow accelerator \checkmark screen \rightarrow transverse plane

Transverse kinematic imbalances

- a neutrino shadow play

$\delta \vec{p}_{\mathrm{T}}=\vec{p}_{\mathrm{T}}^{\mathrm{N}}-\Delta \vec{p}_{\mathrm{T}}$

Convolution of Fermi motion and intranuclear momentum transfer due to FSI, resonance production, 2 p 2 h etc.

Static nucleon target

Nuclear target

XL, L. Pickering, S. Dolan et al., Phys.Rev. C94 (2016) no.1, 015503

Transverse kinematic imbalances

- a neutrino shadow play

$$
\delta \vec{p}_{\mathrm{T}}=\vec{p}_{\mathrm{T}}^{\mathrm{N}}-\Delta \vec{p}_{\mathrm{T}}
$$

Convolution of Fermi motion and intranuclear momentum transfer due to FSI, resonance production, 2 p 2 h etc.

Nuclear target

XL, L. Pickering, S. Dolan et al., Phys.Rev. C94 (2016) no.1, 015503

A more general analysis of kinematic imbalance

Transverse: $\quad 0=\vec{p}_{\mathrm{T}}^{\ell^{\prime}}+\vec{p}_{\mathrm{T}}^{\mathrm{N}^{\prime}}-\delta \vec{p}_{\mathrm{T}}$
Longitudinal: $\quad E_{\nu}=p_{\mathrm{L}}^{\ell^{\prime}}+p_{\mathrm{L}}^{\mathrm{N}^{\prime}}-\delta p_{\mathrm{L}}$
New variable: $\quad p_{\mathrm{n}} \equiv \sqrt{\delta p_{\mathrm{T}}^{2}+\delta p_{\mathrm{L}}^{2}}$

Neutrino energy is unknown (in the first place), equations are not closed.

A. Furmanski, J. Sobczyk, Phys.Rev. C95 (2017) no.6, 065501

A more general analysis of kinematic imbalance

Transverse: $\quad 0=\vec{p}_{\mathrm{T}}^{\ell^{\prime}}+\vec{p}_{\mathrm{T}}^{\mathrm{N}^{\prime}}-\delta \vec{p}_{\mathrm{T}}$
Longitudinal: $\quad E_{\nu}=p_{\mathrm{L}}^{\ell^{\prime}}+p_{\mathrm{L}}^{\mathrm{N}^{\prime}}-\delta p_{\mathrm{L}}$
New variable: $\quad p_{\mathrm{n}} \equiv \sqrt{\delta p_{\mathrm{T}}^{2}+\delta p_{\mathrm{L}}^{2}}$
Neutrino energy is unknown (in the first
place), equations are not closed.

Assuming exclusive μ-p-A' final states
Use energy conservation to close the equations

$$
\begin{aligned}
E_{\nu}+m_{\mathrm{A}} & =E_{\ell^{\prime}}+E_{\mathrm{N}^{\prime}}+E_{\mathrm{A}^{\prime}} \\
E_{\mathrm{A}^{\prime}} & =\sqrt{m_{\mathrm{A}^{\prime}}^{2}+p_{\mathrm{n}}^{2}}
\end{aligned}
$$

p_{n} : recoil momentum of the nuclear remnant
A. Furmanski, J. Sobczyk, Phys.Rev. C95 (2017) no.6, 065501

A more general analysis of kinematic imbalance
Transverse: $\quad 0=\vec{p}_{\mathrm{T}}^{\ell^{\prime}}+\vec{p}_{\mathrm{T}}^{\mathrm{N}^{\prime}}-\delta \vec{p}_{\mathrm{T}}$
Longitudinal: $\quad E_{\nu}=p_{\mathrm{L}}^{\ell^{\prime}}+p_{\mathrm{L}}^{\mathrm{N}^{\prime}}-\delta p_{\mathrm{L}}$
New variable: $\quad p_{\mathrm{n}} \equiv \sqrt{\delta p_{\mathrm{T}}^{2}+\delta p_{\mathrm{L}}^{2}}$
Neutrino energy is unknown (in the first
place), equations are not closed.

For CCQE with elastic FSI, $\mathrm{A}^{\prime}={ }^{11} \mathrm{C}^{*}$ No more unknowns p_{n} : neutron Fermi motion *weakly smeared
A. Furmanski, J. Sobczyk, Phys.Rev. C95 (2017) no.6, 065501

Xianguo Lu, Oxford

Assuming exclusive μ-p-A' final states Use energy conservation to close the equations

$$
\begin{aligned}
E_{\nu}+m_{\mathrm{A}} & =E_{\ell^{\prime}}+E_{\mathrm{N}^{\prime}}+E_{\mathrm{A}^{\prime}} \\
E_{\mathrm{A}^{\prime}} & =\sqrt{m_{\mathrm{A}^{\prime}}^{2}+p_{\mathrm{n}}^{2}}
\end{aligned}
$$

p_{n} : recoil momentum of the nuclear remnant

Measurement of final-state correlations in neutrino charged-current muon-proton mesonless production on hydrocarbon at $\left\langle E_{\nu}\right\rangle=3 \mathrm{GeV}$

Signal definition:

- Charged current
- One muon and at least one proton in the restricted final-state phase space

$$
\begin{aligned}
1.5 \mathrm{GeV} / c<p_{\mu} & <10 \mathrm{GeV} / c, \theta_{\mu}<20^{\circ} \\
0.45 \mathrm{GeV} / c<p_{\mathrm{p}} & <1.2 \mathrm{GeV} / c, \quad \theta_{\mathrm{p}}<70^{\circ}
\end{aligned}
$$

- No mesons

Measurement:

Data sample: NuMI low energy neutrino data, 3.28×10^{20} POT Interaction target: tracker (mostly CH)

- Event selection
- Background estimation and subtraction
- Unfolding
- Efficiency correction
> Flux integrated cross section as results

Simulation: GENIE

- Nominal: version 2.8.4
v global Fermi Gas (RFG) model with Bodek-Ritchie (BR) tail [Phys. Rev. D 23, 1070 (1981)]
\checkmark hA FSI [AIP Conf.Proc. 1405 (2011) 213-218]
- No-FSI: Nominal without FSI

- INC-like with one "effective" interaction
- tuned do hadron-nucleus data
- easy to reweight
- Nominal: version 2.8.4
v global Fermi Gas (RFG) model with Bodek-Ritchie (BR) tail [Phys. Rev. D 23, 1070 (1981)]
v hA FSI [AIP Conf.Proc. 1405 (2011) 213-218]
- No-FSI: Nominal without FSI
- MnvGENIE-v1: GENIE MINERvA Tune (v1) [only 2p2h relevant for this analysis]
> Added Random Phase Approximation (RPA) [Phys.Rev. C70 (2004) 055503]
> Non-resonance pion production scaled down by 75\% [Phys.Rev. D90 (2014) no.11, 112017]
» Valencia 2p2h [Nieves et al., Phys.Lett. B707 (2012) 72-75, Phys. Rev. C 86, 015504 (2012), Phys.Rev. D88 (2013) no.11, 113007, arXiv:1601.02038]
- tuned to MINERvA inclusive data \rightarrow significant enhancement in small 4-momentum transfer region [Phys.Rev.Lett. 116 (2016) 071802]

Science 320 (2008) 1476-1478

\rightarrow representing energy transfer from the neutrino to the target

- Nominal: version 2.8.4
v global Fermi Gas (RFG) model with Bodek-Ritchie (BR) tail [Phys. Rev. D 23, 1070 (1981)]
v hA FSI [AIP Conf.Proc. 1405 (2011) 213-218]
- No-FSI: Nominal without FSI
- MinvGENIIE-v1: GIENIE MINERvA Tune (v1) [only 2p2h rellevant for this analysis]
> Added Random Phase Approximation (RPA) [Phys.Rev. C70 (2004) 055503]
> Non-resonance pion production scaled down by 75\% [Phys.Rev. D90 (2014) no.11, 112017]
> Valencia 2p2h [Nieves et al., Phys.Lett. B707 (2012) 72-75, Phys. Rev. C 86, 015504 (2012), Phys.Rev. D88 (2013) no. 11, 113007, arXiv:1601.02038]
v tuned to MINERvA inclusive data \rightarrow significant enhancement in small 4-momentum transfer region [Phys.Rev.Lett. 116 (2016) 071802]

Detector simulation: GEANT4 (4.9.2)

GENIE used in other experiments (e.g. NOvA, T2K, μ BooNE, DUNE)
This analysis:
GENIE MINERvA Tune (v1) used in cross section extraction

Event Selection

- One muon candidate track matched to a MINOS track
- At least one proton candidate (particle identification using $\mathrm{dE} / \mathrm{dx}$ along the track)
- Elastically Scattered Contained (ESC) proton selection
- Vertex in tracker
- Michel electron (from pion-muon-electron decay chain) tag to remove pion production
- Cut on energy far from vertex (unattached visible energy) to remove events with untracked pions

Event Selection

- One muon candidate track matched to a MINOS track
- At least one proton candidate (particle identification using $\mathrm{dE} / \mathrm{dx}$ along the track)
- Elastically Scattered Contained (ESC) proton selection
- Vertex in tracker
- Michel electron (from pion-muon-electron decay chain) tag to remove pion production
- Cut on energy far from vertex (unattached visible energy) to remove events with untracked pions

Based on $\mathrm{dE} / \mathrm{dx}$ profile along the track

Event Selection

- One muon candidate track matched to a MINOS track
- At least one proton candidate (particle identification using $\mathrm{dE} / \mathrm{dx}$ along the track)
- Elastically Scattered Contained (ESC) proton selection
- Vertex in tracker
- Michel electron (from pion-muon-electron decay chain) tag to remove pion production
- Cut on energy far from vertex (unattached visible energy) to remove events with untracked pions

Signal:
QE-like events

Event Selection

- One muon candidate track matched to a MINOS track
- At least one proton candidate (particle identification using $\mathrm{dE} / \mathrm{dx}$ along the track)
- Elastically Scattered Contained (ESC) proton selection
- Vertex in tracker
- Michel electron (from pion-muon-electron decay chain) tag to remove pion production
- Cut on energy far from vertex (unattached visible energy) to remove events with untracked pions

Background

Event Selection

- One muon candidate track matched to a MINOS track
- At least one proton candidate (particle identification using $d E / d x$ along the track)
- Elastically Scattered Contained (ESC) proton selection \rightarrow new development
- Vertex in tracker
- Michel electron (from pion-muon-electron decay chain) tag to remove pion production
- Cut on energy far from vertex (unattached visible energy) to remove events with untracked pions

Homogeneous non-magnetized tracker Momentum by range

Momentum-range correlation best known when the track has "peaceful" end: stopped elastically

Event Selection

- One muon candidate track matched to a MINOS track
- At least one proton candidate (particle identification using $\mathrm{dE} / \mathrm{dx}$ along the track)
- Elastically Scattered Contained (ESC) proton selection \rightarrow new development
- Vertex in tracker
- Michel electron (from pion-muon-electron decay chain) tag to remove pion production
- Cut on energy far from vertex (unattached visible energy) to remove events with untracked pions

Homogeneous non-magnetized tracker Momentum by range

Momentum-range correlation best known when the track has "peaceful" end: stopped elastically

If track ends on the fly due to inelastic interaction in detector (e.g. p A $\rightarrow \mathrm{n} \mathrm{A}^{\prime}$)
Range can only be measured prematurely \rightarrow large bias in momentum estimation

Event Selection

- One muon candidate track matched to a MINOS track
- At least one proton candidate (particle identification using $\mathrm{dE} / \mathrm{dx}$ along the track)
- Elastically Scattered Contained (ESC) proton selection \rightarrow new development
- Vertex in tracker
- Michel electron (from pion-muon-electron decay chain) tag to remove pion production
- Cut on energy far from vertex (unattached visible energy) to remove events with untracked pions

Homogeneous non-magnetized tracker Momentum by range

Proton stopped on the fly have smaller $\mathrm{dE} / \mathrm{dx}$
\rightarrow Cut on dEdx from track end point

Event Selection

- One muon candidate track matched to a MINOS track
- At least one proton candidate (particle identification using $\mathrm{dE} / \mathrm{dx}$ along the track)
- Elastically Scattered Contained (ESC) proton selection \rightarrow new development
- Vertex in tracker
- Michel electron (from pion-muon-electron decay chain) tag to remove pion production
- Cut on energy far from vertex (unattached visible energy) to remove events with untracked pions

- Require at least $6 \mathrm{dE} / \mathrm{dx}$ nodes from track end point

Event Selection

- One muon candidate track matched to a MINOS track
- At least one proton candidate (particle identification using $\mathrm{dE} / \mathrm{dx}$ along the track)
- Elastically Scattered Contained (ESC) proton selection \rightarrow new development
- Vertex in tracker
- Michel electron (from pion-muon-electron decay chain) tag to remove pion production
- Cut on energy far from vertex (unattached visible energy) to remove events with untracked pions

- Require at least $6 \mathrm{dE} / \mathrm{dx}$ nodes from track end point
- Cut on summed dE/dx of last two nodes (node 0 and 1 correlated)

Event Selection

- One muon candidate track matched to a MINOS track
- At least one proton candidate (particle identification using $\mathrm{dE} / \mathrm{dx}$ along the track)
- Elastically Scattered Contained (ESC) proton selection \rightarrow new development
- Vertex in tracker
- Michel electron (from pion-muon-electron decay chain) tag to remove pion production
- Cut on energy far from vertex (unattached visible energy) to remove events with untracked pions

- Require at least $6 \mathrm{dE} / \mathrm{dx}$ nodes from track end point
- Cut on summed dE/dx of last two nodes (node 0 and 1 correlated)
- Cut on individual nodes (node 1-5)

Event Selection

- One muon candidate track matched to a MINOS track
- At least one proton candidate (particle identification using $\mathrm{dE} / \mathrm{dx}$ along the track)
- Elastically Scattered Contained (ESC) proton selection \rightarrow new development
- Vertex in tracker
- Michel electron (from pion-muon-electron decay chain) tag to remove pion production
- Cut on energy far from vertex (unattached visible energy) to remove events with untracked pions

- Require at least $6 \mathrm{dE} / \mathrm{dx}$ nodes from track end point
- Cut on summed dE/dx of last two nodes (node 0 and 1 correlated)
- Cut on individual nodes (node 1-5)

Event Selection

- One muon candidate track matched to a MINOS track
- At least one proton candidate (particle identification using $\mathrm{dE} / \mathrm{dx}$ along the track)
- Elastically Scattered Contained (ESC) proton selection \rightarrow new development
- Vertex in tracker
- Michel electron (from pion-muon-electron decay chain) tag to remove pion production
- Cut on energy far from vertex (unattached visible energy) to remove events with untracked pions

*dE/dx+cleanup cut efficiency 30-40-20\%@0.6-0.75-1 GeV/c

ESC proton selection:

- Cut efficiency $\sim 40 \%$
- Reconstructed momentum spread much reduced@0.7-1.1 GeV, resolution 3\%~2\%
- 5-10\% uncertainty in efficiency

Clean-up cuts to improve proton and muon momentum resolution:

- proton $\mathrm{dE} / \mathrm{dx}$ profile χ^{2}
- number of MINOS track nodes

Also need to correct pT scales of both muon and protons.

Event Selection

- One muon candidate track matched to a MINOS track
- At least one proton candidate (particle identification using $\mathrm{dE} / \mathrm{dx}$ along the track)
- Elastically Scattered Contained (ESC) proton selection \rightarrow new development
- Vertex in tracker
- Michel electron (from pion-muon-electron decay chain) tag to remove pion production
- Cut on energy far from vertex (unattached visible energy) to remove events with untracked pions

Event Selection

- One muon candidate track matched to a MINOS track
- At least one proton candidate (particle identification using $\mathrm{dE} / \mathrm{dx}$ along the track)
- Elastically Scattered Contained (ESC) proton selection \rightarrow new development
- Vertex in tracker
- Michel electron (from pion-muon-electron decay chain) tag to remove pion production
- Cut on energy far from vertex (unattached visible energy) to remove events with untracked pions

Event Selection

- One muon candidate track matched to a MINOS track
- At least one proton candidate (particle identification using $\mathrm{dE} / \mathrm{dx}$ along the track)
- Elastically Scattered Contained (ESC) proton selection \rightarrow new development
- Vertex in tracker
- Michel electron (from pion-muon-electron decay chain) tag to remove pion production
- Cut on energy far from vertex (unattached visible energy) to remove events with untracked pions

Large unattached visible energy dominated by background.

Event Selection

- One muon candidate track matched to a MINOS track
- At least one proton candidate (particle identification using $\mathrm{dE} / \mathrm{dx}$ along the track)
- Elastically Scattered Contained (ESC) proton selection \rightarrow new development
- Vertex in tracker
- Michel electron (from pion-muon-electron decay chain) tag to remove pion production
- Cut on energy far from vertex (unattached visible energy) to remove events with untracked pions

Signal and sidebands are defined

Event Selection

- One muon candidate track matched to a MINOS track
- At least on
- Elastical
- Vertex in ti
- Michel eler
- Cut on ene pions

Overall efficiency: $\sim 9 \%$
icle identification using
(ESC) proton selection
electron decay chain) ta
ittached visible energy) Fermi motion
n

Peak region (see later slides)

Background Estimation

- Data driven sideband fit

Background in MC are rescaled according to data driven sideband fit

Background Estimation

- Data-MC comparison at reconstructed level after sideband fit

Selected Sample

- Data-MC comparison at reconstructed level after sideband fit

Selected Sample

- Data-MC comparison at reconstructed level after sideband fit

GENIE MINERvA Tune (v1) describes data well (to first order)
Large concentration of pure QE at high angle GENIE excess above data beyond 60 deg (see discussion later slides)

Selected Sample

- Data-MC comparison at reconstructed level after sideband fit

Selected Sample

- Data-MC comparison at reconstructed level after sideband fit

GENIE MINERvA Tune (v1) describes data well (to first order)
Depletion at small $\delta \alpha_{\text {T }}$
GENIE excess at $\delta \alpha_{\mathrm{T}} \rightarrow 180 \mathrm{deg}$.

Selected Sample

- Data-MC comparison at reconstructed level after sideband fit

Selected Sample

- Data-MC comparison at reconstructed level after sideband fit

- Strong separation of pure QE
- Double-peak structure, very strong in GENIE

Systematic Uncertainties

Total uncertainty $=12-20 \%$
$\sim 6 \%$ (stat) $+6 \%$ (flux, mostly normalization) $+8 \%$ (GENIE) $+6-16 \%$ (detector)
Detector systematics dominated by transverse projection and ESC proton selection uncertainties. GENIE systematics dominated by 2p2h model uncertainties.

RESULTS

Single-Particle Kinematics

- Muon momentum, angle

- Good description by GENIE MINERvA Tune (v1)
- All predictions have same shape

Single-Particle Kinematics

- Muon momentum, angle
- Proton momentum, angle

- GENIE Nominal and No-FSI have different shape
- GENIE MINERvA Tune (v1) excess at high angle

FSI decomposition in mesonless proton production:

Proton FSI:

- Non-interacting (no change of energy and direction of the proton)
- Acceleration: energy of proton increased after FSI
- Deceleration: energy of proton decreased after FSI

Pion FSI: pion absorption
charged current (CC) $v \rightarrow I^{\prime}$

charged current (CC) $v \rightarrow I^{\prime}$

Single-Particle Kinematics

- Muon momentum, angle
- Proton momentum, angle

Pionless resonant production dominates low angle

NUCLEAR EFFECT DIAGNOSTICS

A more general analysis of kinematic imbalance
Transverse: $\quad 0=\vec{p}_{\mathrm{T}}^{\ell^{\prime}}+\vec{p}_{\mathrm{T}}^{\mathrm{N}^{\prime}}-\delta \vec{p}_{\mathrm{T}}$
Longitudinal: $\quad E_{\nu}=p_{\mathrm{L}}^{\ell^{\prime}}+p_{\mathrm{L}}^{\mathrm{N}^{\prime}}-\delta p_{\mathrm{L}}$
New variable: $\quad p_{\mathrm{n}} \equiv \sqrt{\delta p_{\mathrm{T}}^{2}+\delta p_{\mathrm{L}}^{2}}$
Neutrino energy is unknown (in the first
place), equations are not closed.

For CCQE with elastic FSI, $\mathrm{A}^{\prime}={ }^{11} \mathrm{C}^{*}$ No more unknowns p_{n} : neutron Fermi motion *weakly smeared
A. Furmanski, J. Sobczyk, Phys.Rev. C95 (2017) no.6, 065501

Xianguo Lu, Oxford

Assuming exclusive μ-p-A' final states Use energy conservation to close the equations

$$
\begin{aligned}
E_{\nu}+m_{\mathrm{A}} & =E_{\ell^{\prime}}+E_{\mathrm{N}^{\prime}}+E_{\mathrm{A}^{\prime}} \\
E_{\mathrm{A}^{\prime}} & =\sqrt{m_{\mathrm{A}^{\prime}}^{2}+p_{\mathrm{n}}^{2}}
\end{aligned}
$$

p_{n} : recoil momentum of the nuclear remnant

Nuclear Effect Diagnostics

- CCQE with Fermi motion

Fermi Gas model prediction
p_{n} is Fermi motion magnitude \rightarrow "QE peak" - GENIE No-FSI

Nuclear Effect Diagnostics

- CCQE with Fermi motion

p_{n} is Fermi motion magnitude \rightarrow "QE peak"
- GENIE No-FSI
- p-FSI Non-interacting

Nuclear Effect Diagnostics

- CCQE with Fermi motion

For CCQE with elastic FSI, $\mathrm{A}^{\prime}={ }^{11} \mathrm{C}^{*}$ No more unknowns
p_{n} : neutron Fermi motion *weakly smeared

$$
\begin{aligned}
& \delta \vec{p}_{\mathrm{T}}=\vec{p}_{\mathrm{T}}^{\mathrm{N}} \\
& \delta \alpha_{\mathrm{T}} \text { is Fermi motion direction } \rightarrow \text { isotropic }
\end{aligned}
$$

Nuclear Effect Diagnostics

- CCQE with Fermi motion

$\vec{p}_{\mathrm{T}}^{U_{\mathrm{T}}^{\prime}}$

$\delta \alpha_{\mathrm{T}}$ is Fermi motion direction \rightarrow isotropic
- GENIE No-FSI

Nuclear Effect Diagnostics

- CCQE with Fermi motion

$\vec{p}_{\mathrm{T}}^{\ell^{\prime}}$

$\delta \alpha_{\mathrm{T}}$ is Fermi motion direction \rightarrow isotropic
- GENIE No-FSI
- p-FSI Non-interacting

Nuclear Effect Diagnostics

- CCQE with Fermi motion

$\vec{p}_{\mathrm{T}}^{\ell^{\prime}}$

$\delta \alpha_{\mathrm{T}}$ is Fermi motion direction \rightarrow isotropic
- GENIE No-FSI
- p-FSI Non-interacting

Baseline for all non-Fermi motion effects
Factor out Fermi motion uncertainty
Complementary to p_{n}

$$
\vec{p}_{\mathrm{T}}^{\ell^{\prime}}
$$

With full nuclear effects

$$
\delta \vec{p}_{\mathrm{T}}=\vec{p}_{\mathrm{T}}^{\mathrm{N}}-\Delta \vec{p}_{\mathrm{T}}
$$

$\vec{p}_{\mathrm{T}}^{\ell^{\prime}}$

Baseline for all non-Fermi motion effects Factor out Fermi motion uncertainty Complementary to p_{n}

Nuclear Effect Diagnostics

- CCQE with Fermi motion
- FSI deceleration vs. acceleration
$\vec{p}_{\mathrm{T}}^{e^{\prime \prime}}$

Deceleration at large $\delta \alpha_{\text {T }}$

Nuclear Effect Diagnostics

- CCQE with Fermi motion
- FSI deceleration vs. acceleration

$\vec{p}_{\mathrm{T}}^{e^{\prime \prime}}$
$\delta \mathrm{p}_{\mathrm{T}}$ (nuclear effects)
boosting outgoing proton

Deceleration at large $\delta \alpha_{T}$
Acceleration at both small and (due to transverse projection) large $\delta \alpha_{\mathrm{T}}$

Nuclear Effect Diagnostics

- CCOE with Fermi motion
- FSI deceleration vs. acceleration

$\vec{p}_{\mathrm{T}}^{\ell^{\prime}}$ $\begin{array}{ll} & \delta p_{\mathrm{T}} \text { (nuclear effects) } \\ & \text { boosting outgoing proton }\end{array}$

Deceleration at large $\delta \alpha_{\text {T }}$ Acceleration at both small and (due to transverse projection) large $\delta \alpha_{T}$

Nuclear Effect Diagnostics

- CCQE with Fermi motion
- FSI deceleration vs. acceleration

Acceleration to the left of QE peak Strongly distort QE peak

A more general analysis of kinematic imbalance
Transverse: $\quad 0=\vec{p}_{\mathrm{T}}^{\ell^{\prime}}+\vec{p}_{\mathrm{T}}^{\mathrm{N}^{\prime}}-\delta \vec{p}_{\mathrm{T}}$
Longitudinal: $\quad E_{\nu}=p_{\mathrm{L}}^{\ell^{\prime}}+p_{\mathrm{L}}^{\mathrm{N}^{\prime}}-\delta p_{\mathrm{L}}$
New variable: $\quad p_{\mathrm{n}} \equiv \sqrt{\delta p_{\mathrm{T}}^{2}+\delta p_{\mathrm{L}}^{2}}$
Neutrino energy is unknown (in the first
place), equations are not closed.

For RES, DIS, 2p2h, no longer exclusive μ-p-A' final states p_{n} : smeared $\delta \mathrm{p}_{\mathrm{T}}$ beyond QE peak
A. Furmanski, J. Sobczyk, Phys.Rev. C95 (2017) no.6, 065501

Xianguo Lu, Oxford

Assuming exclusive μ-p-A' final states Use energy conservation to close the equations

$$
\begin{aligned}
E_{\nu}+m_{\mathrm{A}} & =E_{\ell^{\prime}}+E_{\mathrm{N}^{\prime}}+E_{\mathrm{A}^{\prime}} \\
E_{\mathrm{A}^{\prime}} & =\sqrt{m_{\mathrm{A}^{\prime}}^{2}+p_{\mathrm{n}}^{2}}
\end{aligned}
$$

p_{n} : recoil momentum of the nuclear remnant

Nuclear Effect Diagnostics

- CCQE with Fermi motion
- FSI deceleration vs. acceleration
- Pionless resonant production, pion absorption FSI, and 2p2h

Xianguo Lu, Oxford
$\mathrm{p}_{\mathrm{n}}:$ smeared $\delta \mathrm{p}_{\mathrm{T}}$ beyond QE peak \rightarrow tail
$-\pi$-FSI Absorption

Pion production and 2 p 2 h process: strong intra-nuclear momentum transfer due to momentum sharing with proton

Nuclear Effect Diagnostics

- CCQE with Fermi motion
- FSI deceleration vs. acceleration
- Pionless resonant production, pion absorption FSI, and 2p2h

Xianguo Lu, Oxford
$\mathrm{p}_{\mathrm{n}}:$ smeared $\delta \mathrm{p}_{\mathrm{T}}$ beyond QE peak \rightarrow tail
$-\pi$-FSI Absorption
$-2 \mathrm{p} 2 \mathrm{~h}$
(= MnvGENIE-v1 - GENIE Nominal)

Pion production and 2 p 2 h process: strong intra-nuclear momentum transfer due to momentum sharing with proton

Nuclear Effect Diagnostics

- CCQE with Fermi motion
- FSI deceleration vs. acceleration
- Pionless resonant production, pion absorption FSI, and 2p2h

GENIE describes the tail reasonably well due to large contribution from 2 p 2 h tuned to MINERvA inclusive measurements
$p_{\mathrm{n}}:$ smeared $\delta \mathrm{p}_{\mathrm{T}}$ beyond QE peak \rightarrow tail
$-\pi$-FSI Absorption
$-2 \mathrm{p} 2 \mathrm{~h}$
(= MnvGENIE-vl - GENIE Nominal)

Pion production and 2 p 2 h process:
strong intra-nuclear momentum transfer
due to momentum sharing with proton

Nuclear Effect Diagnostics

- CCQE with Fermi motion
- FSI deceleration vs. acceleration
- Pionless resonant production, pion absorption FSI, and 2p2h δp_{T} (nuclear effects)

Proton momentum shared by others, decelerated \rightarrow large $\delta \alpha_{\mathrm{T}}$ region
$-\pi$-FSI Absorption

Nuclear Effect Diagnostics

- CCQE with Fermi motion
- FSI deceleration vs. acceleration
- Pionless resonant production, pion absorption FSI, and 2p2h $\delta \mathrm{p}_{\mathrm{T}}$ (nuclear effects)

Proton momentum shared by others, decelerated \rightarrow large $\delta \alpha_{\mathrm{T}}$ region
$-\pi$-FSI Absorption

- 2p2h (= MnvGENIE-v1 - GENIE Nominal)

ADVANCED TOPICS: GENIE FSIs

Advanced Topics: GENIE FSIs

- (pre2015) hA: effective model, include "elastic component" in intranuclear scattering, used in GENIE MINERvA Tune (v1)
- hA2015: removed "elastic component", replacing hA in MnvGENIE-v1-hA2015

No p-FSI acceleration

Advanced Topics: GENIE FSIs

- (pre2015) hA: effective model, include "elastic component" in intranuclear scattering, used in GENIE MINERvA Tune (v1)
- hA2015: removed "elastic component", replacing hA in MnvGENIE-v1-hA2015

No p-FSI acceleration

QE peak not distorted, but much narrower

Advanced Topics: GENIE FSIs

- (pre2015) hA: effective model, include "elastic component" in intranuclear scattering, used in GENIE MINERvA Tune (v1)
- hA2015: removed "elastic component", replacing hA in MnvGENIE-v1-hA2015
- hN2015: full cascades + Oset, replacing hA in MnvGENIE-v1-hN2015

ADVANCED TOPICS: NUWRO

- Nominal: version 2.8.4
v global Fermi Gas (RFG) model with Bodek-Ritchie (BR) tail [Phys. Rev. D 23, 1070 (1981)]
v hA FSI [AIP Conf.Proc. 1405 (2011) 213-218]
- No-FSI: Nominal without FSI
- MinvGENIIE-v1: GENIE MINERvA Tune (v1) [only 2p2h rellevant for this analysis]
> Added Random Phase Approximation (RPA) [Phys.Rev. C70 (2004) 055503]
» Non-resonance pion production scaled down by 75\% [Phys.Rev. D90 (2014) no.11, 112017]
» Valencia 2p2h [Nieves et al., Phys.Lett. B707 (2012) 72-75, Phys. Rev. C 86, 015504 (2012), Phys.Rev. D88 (2013) no.11, 113007, arXiv:1601.02038]
v tuned to MINERvA inclusive data \rightarrow significant enhancement in small 4-momentum transfer region [Phys.Rev.Lett. 116 (2016) 071802]

- Version: 11q
- Local Fermi Gas (LFG) or Spectral Function (SF) [Benhar et al., Nucl.Phys. A579 (1994) 493-517]
\checkmark FSI: intranuclear cascades of hadronic interactions + Oset model [Nucl.Phys. A484 (1988) 557-592]
- Valencia 2p2h [Nieves et al., Phys.Lett. B707 (2012) 72-75, Phys. Rev. C 86, 015504 (2012)]

Advanced Topics: NuWro

- Fermi motion

SF describes Fermi motion very well

Advanced Topics: NuWro

- Fermi motion
- Resonance / 2p2h strength

SF describes Fermi motion very well
Resonance / 2p2h lacks of strength in small regions

ADVANCED TOPICS: COMPARISON TO T2K

Advanced Topics: Comparison to T 2 K

[arXiv:1802.05078] *same target, slight difference in signal phase space definition

- $\delta \alpha_{\mathrm{T}}$

MINERvA-T2K difference mainly due to RES: Very small resonance contribution at T 2 K

Advanced Topics: Comparison to T 2 K

[arXiv:1802.05078] *same target, slight difference in signal phase space definition

- $\delta \alpha_{\mathrm{T}}$

MINERvA-T2K difference mainly due to RES
Fermi motion (isotropic) baseline consistent

Advanced Topics: Comparison to T 2 K

[arXiv:1802.05078] *same target, slight difference in signal phase space definition

- $\delta \alpha$
- δp_{T}

MINERvA-T2K difference mainly due to RES
The QE peaks are consistent

Summary and Outlook

- Muon-proton mesonless production at MINERvA
, 2014: LE neutrino beam, CH target
- 2016: LE neutrino beam, CH + nuclear targets
, This analysis: LE neutrino beam, $\mathrm{CH}\left(3.28 \times 10^{20}\right.$ POT $)$
, Future: medium energy neutrino beam $\mathrm{CH}+$ nuclear targets $\left(\mathrm{E}_{\mathrm{v}} \sim 6 \mathrm{GeV}, 12 \times 10^{20}\right.$ POT)
- In this analysis, we have shown
- Single-particle kinematics (muon and proton momentum and angle)
- Transverse kinematic imbalances $\left(\delta \alpha_{\mathrm{T}}, \delta \mathrm{p}_{\mathrm{T}}\right)$
- Initial neutron momentum $\left(p_{n}\right)$
$\vec{p}_{\mathrm{T}}^{\ell^{\prime}}$

Summary and Outlook

- Muon-proton mesonless production at MINERvA
- 2014: LE neutrino beam, CH target
- 2016: LE neutrino beam, CH + nuclear targets
> This analysis: LE neutrino beam, $\mathrm{CH}\left(3.28 \times 10^{20}\right.$ POT $)$
, Future: medium energy neutrino beam $\mathrm{CH}+$ nuclear targets $\left(\mathrm{E}_{\mathrm{v}} \sim 6 \mathrm{GeV}, 12 \times 10^{20} \mathrm{POT}\right)$
- In this analysis, we have shown
- Single-particle kinematics (muon and proton momentum and angle)
- Transverse kinematic imbalances ($\delta \alpha_{\mathrm{T}}, \delta \mathrm{p}_{\mathrm{T}}$)
- Initial neutron momentum $\left(p_{n}\right)$

By rearranging final-stat kinematics, nuclear effects can be diagnosed:

- p_{n} strong constraint to Fermi motion
- $\delta \alpha_{\mathrm{T}}$ factors out Fermi motion uncertainty and have direct sensitivity to FSI

Summary and Outlook

- Muon-proton mesonless production at MINERvA
- 2014: LE neutrino beam, CH target
- 2016: LE neutrino beam, CH + nuclear targets
> This analysis: LE neutrino beam, $\mathrm{CH}\left(3.28 \times 10^{20}\right.$ POT $)$
, Future: medium energy neutrino beam $\mathrm{CH}+$ nuclear targets $\left(\mathrm{E}_{\mathrm{v}} \sim 6 \mathrm{GeV}, 12 \times 10^{20}\right.$ POT)
- In this analysis, we have shown
- Single-particle kinematics (muon and proton momentum and angle)
- Transverse kinematic imbalances ($\delta \alpha_{\mathrm{T}}, \delta \mathrm{p}_{\mathrm{T}}$)
- Initial neutron momentum (p_{n})

By rearranging final-stat kinematics, nuclear effects can be diagnosed:

- p_{n} strong constraint to Fermi motion
- $\delta \alpha_{\mathrm{T}}$ factors out Fermi motion uncertainty and have direct sensitivity to FSI

Interesting observation:
, GENIE MINERvA Tune (v1)

- Describes data well to first order
- Critical component is Valencia 2p2h tuned to MINERvA inclusive data
> NuWro
- SF provides very good description of data

Summary and Outlook

- Muon-proton mesonless production at MINERvA
- 2014: LE neutrino beam, CH target
- 2016: LE neutrino beam, CH + nuclear targets
> This analysis: LE neutrino beam, $\mathrm{CH}\left(3.28 \times 10^{20}\right.$ POT $)$
, Future: medium energy neutrino beam $\mathrm{CH}+$ nuclear targets $\left(\mathrm{E}_{\mathrm{v}} \sim 6 \mathrm{GeV}, 12 \times 10^{20}\right.$ POT)
- In this analysis, we have shown
- Single-particle kinematics (muon and proton momentum and angle)
- Transverse kinematic imbalances $\left(\delta \alpha_{\mathrm{T}}, \delta \mathrm{p}_{\mathrm{T}}\right)$
- Initial neutron momentum (p_{n})
- New developments
> Transverse kinematic imbalances
- New system to solve the nuclear effect problem in neutrino interaction most relevant for oscillation measurements
- Radical approach \rightarrow double transverse kinematic imbalance [Phys. Rev.D 92, 051302(R)]
- First measurement of Furmanski-Sobczyk initial neutron momentum
- diagnostic power
\checkmark Practically efficient way to select pure CCQE events (beyond the scope of this talk)
- ESC (Elastically Scattered Contained) proton selection
- Powerful to enhance the proton reconstruction quality
- Application in other homogeneous non-magnetized detectors, e.g. LAr

Source: http://www.cnhubei.com/ztmjys-pyts

BACKUP

Background Estimation

- Data-MC comparison at reconstructed level after sideband fit

Sideband $1 \rightarrow 4$ high background direction

Interpretation of $\delta \mathrm{p}_{\mathrm{T}}$

$$
\begin{aligned}
\delta \vec{p}_{\mathrm{T}} & =\vec{p}_{\mathrm{T}}^{\mathrm{N}}-\Delta \vec{p}_{\mathrm{T}} \\
p_{\mathrm{n}} & \equiv \sqrt{\delta p_{\mathrm{T}}^{2}+\delta p_{\mathrm{L}}^{2}}
\end{aligned}
$$

Only differ by longitudinal momentum imbalance p_{n} has better resolution

\mid					
Analysis p_{p} $\cos \theta_{p}$ p_{μ} $\cos \theta \mu$ Multi-dimensional $>500 \mathrm{MeV}$ - - - STV $450-1000 \mathrm{MeV}$ >0.4 $>250 \mathrm{MeV}$ >-0.6 Inferred kinematics $>450 \mathrm{MeV}$ >0.4 - -					

TABLE I. Signal phase space restrictions for the three analyses.
arXiv:1802.05078

NEUT for T2K has very small RES

FIG. 16. The extracted differential cross section as a function of the single transverse variables compared to: the NEUT 5.3.2.2 simulation with the SF initial state model and an ad hoc 2 p 2 h model (left); the same NEUT simulation with various scalings of the mean free path of nucleons undergoing FSI processes to simulate different FSI strengths (right). $2 \mathrm{p} 2 \mathrm{~h}_{N}$ indicates the Nieves et. al. model of Ref. [76] implemented in NEUT. A comparison of the NEUT prediction without a 2p2h contribution is also shown. More details of these models can be found in Sec. IV A. The ' N ' subscript after LFG indicates that the model is using both a 1 p 1 h and 2 p 2 h prediction from the aforementioned model of Nieves et. al. The inlays on the left plots show a close-up of the tail regions of δp_{T} and $\delta \alpha_{\mathrm{T}}$ whilst those on the right show the same comparisons on a logarithmic scale.

FIG. 17. The extracted differential cross section as a function of the single transverse variables compared to: the GENIE 2.12.4 simulation (left) and the GiBUU 2016 simulation (right). GENIE uses the Bodek and Richie RFG initial state model and this prediction also includes GENIE's empirical 2 p 2 h prediction $\left(2 \mathrm{p} 2 \mathrm{~h}_{E}\right)$. This GENIE prediction is similar that used as a starting point for the NO ν A experiment's oscillation analyses. More details of these models can be found in Sec. IV A. The inlays on the plots show a close-up of the tail regions of δp_{T} and $\delta \alpha_{\mathrm{T}}$.

Both GENIE taken from left column

END

