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Preface

This series of ten one-hour lectures on Introduction to Quantum Field Theory (QFT)
serves as the first of the three-part module, PX454: Theoretical Particle Physics.
It is tailored for students in their final year pursuing a master’s degree in physics at
the University of Warwick during the spring of 2024. Within this brief timeframe,
we aim to reach two primary objectives:

1. Enable students to perform basic field-theoretical calculations.

2. Facilitate a smooth transition for students to independently explore QFT with
the aid of extensive literature.

With these goals in mind, we place an emphasis on calculations, and students are
encouraged to attempt the questions in the Exercise sections, designed to guide
them in comprehending the derivations presented.

As indicated by the title, our focus will be on QFT for particle physics. The
system we consider here is one where methods in statistical mechanics do not apply.
Consequently, our approach differs noticeably from a QFT course oriented towards
condensed matter physics, where temperature plays a vital role.

One of the celebrated achievements of QFT is its ability to describe the mi-
croscopic world at the fundamental level through perturbation theories, wherein
interactions are broken down in assending orders of coupling strength. Within two
chapters, we delve into the cononical quantisation of scalar, spinor, and photon
fields without interactions, trying to establish a foundational understanding at the
zero-th order of perturbation. Chapter 1 elucidates the core ideas of canonical
quantisation using the simplest field: real scalars in 1 + 1 spacetime. After the
introduction of the Lagrange-Hamilton formalism, these concepts find applications
in Chapter 2, where we systematically quantise the physical fields one by one.

In preparing these notes, I am deeply grateful for the inspiration and suggestions
from my PX454 co-lecturers, Prof. Paul Harrison and Prof. Bill Murray. Their
support has been truly invaluable.

Lu, Xianguo (卢显国)
Coventry

January 2024
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Chapter 1

Quantum Theory of Free
Fields

Fourier transform the momentum operator,

F [p̂f ] =
1√
2π

∫ ∞

−∞
dx

(
−i

d
dx f

)
e−ipx

=
−i√
2π

{[
fe−ipx

]∞
−∞

+ i

∫
dx pfe−ipx

}
=

1√
2π

∫
dx pfe−ipx

= pF [f ] ,

with a function that gracefully fades into
oblivion at infinities.

1.1 Quantum Harmonic Oscillator
We use the quantum harmonic oscillator as the initial test case for methods em-
ployed in Quantum Field Theory (QFT).

In the position space, we have the position and momentum operators,
x̂ = x, (1.1)

p̂ = −i ddx , (1.2)

which gives us the commutation relation (Exercise 1.1c),
[x̂, p̂] = i. (1.3)

The Hamiltonian of a harmonic oscillator is given by

Ĥ =
p̂2

2m
+

1

2
mω2x̂2. (1.4)

Define the ladder operators â and â† as linear combinations of x̂ and p̂:

â =
1√
2

(√
mω x̂+

i√
mω

p̂

)
, (1.5)

â† =
1√
2

(√
mω x̂− i√

mω
p̂

)
. (1.6)
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8 CHAPTER 1. QUANTUM THEORY OF FREE FIELDS

We have the commutation relation,[
â, â†

]
= 1. (1.7)

The Hamiltonian can then be rewritten in terms of â and â†:

Ĥ =
1

2

(
â†â+ ââ†

)
ω =

(
â†a+

1

2

)
ω. (1.8)

This leads to the following observations. First,[
Ĥ, â†

]
= ωâ†. (1.9)

In the Heisenberg picture, an operator evolves with time as

Ô(t) = eiHtÔ(0)e−iHt, (1.10)

and hence

d Ô
dt = i

[
H, Ô

]
. (1.11)

Therefore, we arrive at the time evolution of â†,

â†(t) = eiωtâ†(0). (1.12)

Similarly, we have [
Ĥ, â

]
= −ωâ, (1.13)

â = e−iωtâ(0). (1.14)

The seemingly time-dependent phases, e±iωt, actually mean that the system is time-
translation invariant, i.e., time-independent.

Second, the energy eigenstate of the harmonic oscillator at level n is |n⟩ with
eigenvalue En,

Ĥ |n⟩ = En |n⟩ . (1.15)

Therefore,

Ĥ
(
â† |n⟩

)
= (En + ω)

(
â† |n⟩

)
= En+1

(
â† |n⟩

)
, (1.16)

That is

â† |n⟩ = |n+ 1⟩ , (1.17)

up to a normalisation factor. Similarly,

â |n⟩ = |n− 1⟩ , (1.18)

which lowers the energy level of the system; however, this cannot continue forever,
as it will eventually hit the ground state, which means

â |0⟩ = 0. (1.19)

As a result, we have the zero-point energy of the system,〈
0
∣∣∣ Ĥ ∣∣∣ 0〉 =

〈
0

∣∣∣∣ (â†a+ 1

2
ω

) ∣∣∣∣ 0〉 =
1

2
ω. (1.20)

These ladder operators are called annihilation and creation operators.



1.1. QUANTUM HARMONIC OSCILLATOR 9

1.1.1 Mode Expansion
The definitions of the ladder opperators, Eqs. 1.5 and 1.6, could seem unnatural at
first glance. In fact, the essence is that they are liner transformations of x̂ and p̂
and form a ladder up and down the energy levels; all other features are derivative.

To see how this actually happens, let’s consider canonical coordinates q̂ and p̂,
which have been promoted to operators (i.e., quantised) with [q̂, p̂] = i. Expand
them in â and b̂ via a general linear transform,

q̂ = c1â+ c2b̂, (1.21)

p̂ = λ
(
c1â− c2b̂

)
, (1.22)

where c1, c2, and λ are coefficients to be determined. We can obtain the inverse
transform straightforwardly:

â =
q̂ + p̂/λ

2c1
, (1.23)

b̂ =
q̂ − p̂/λ

2c2
, (1.24)

and the commutation relation,[
â, b̂
]
= − [q̂, p̂]

2λc1c2
= − i

2λc1c2
. (1.25)

Assume both p̂ and q̂ are Hermitian and choose b̂ = â† (Exercise 1.2d), then c1 = c∗2
and λ is a pure imaginary number.

Further assume a general form of a Hamiltonian, which is by definition Hermi-
tian, with real coefficients h1 and h2 to be given for a physical system, and then
expand and collect terms of â and â†:

Ĥ = h1p̂
2 + h2q̂

2 (1.26)
= Aââ+Bâ†â† + C

(
â†â+ ââ†

)
, (1.27)

with

A =
(
h1λ

2 + h2
)
c21 (1.28)

B =
(
h1λ

2 + h2
)
c22 (1.29)

C =
(
−h1λ2 + h2

)
c1c2. (1.30)

If

h1λ
2 + h2 = 0, (1.31)

then both A- and B-terms vanish, so that we are left with

Ĥ = C
(
â†â+ ââ†

)
, (1.32)

which gives us [
Ĥ, â†

]
∼ â†, (1.33)[

Ĥ, â
]
∼ â. (1.34)

The relation, Eq. 1.31, can be viewed as a dispersion relation for reasons that will
become clear in Sec. 1.2.1.
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Define D as follows: [
Ĥ, â†

]
≡ Dâ†, D > 0, (1.35)

which implies
[
Ĥ, â

]
= −Dâ. It can be shown that

D = 2
√
|h1h2|, (1.36)

C
[
â, â†

]
= D. (1.37)

Given the dispersion relation, the Hamiltonian, Eq. 1.26, fully determines the dy-
namics of the system (Eq. 1.36), regardless of c1,2 and λ. As a result, while the
conventions, like c1,2, enter the expressions of C and

[
â, â†

]
, they cancel each other

such that D is independent of them. In the case of the harmonic oscillator,

h1 =
1

2m
, (1.38)

h2 =
1

2
mω2. (1.39)

It can be shown that

λ = −imω, (1.40)
D = ω. (1.41)

By requiring that
[
â, â†

]
= 1, we have

C =
ω

2
, (1.42)

and also c1,2 can be fixed up to an arbitrary phase—in this sense, the harmonic
oscillator case is fully recovered (Exercise 1.2).

1.2 Quantum Field Expansion
Consider a real scalar field, ϕ(x, t), that is a generalised coordinate in 1+1 spacetime,
and its real canonical momentum,

π(x, t). (1.43)

Promote them into operators (second quantisation), while x and t are now consid-
ered labels only (namely, the dynamics of x, such as ẋ, do not concern us anymore).
We have the canonical equal-time commutators,

[ϕ(x, t), π(y, t)] = iδ(x− y), (1.44)
[ϕ(x, t), ϕ(y, t)] = [π(x, t), π(y, t)] = 0. (1.45)

Expand them in â and â† via Fourier transforms (Exercise 1.1b):

ϕ̂(x, t) =
1√
2π

∫
dk
(
c1âe

ikx + c2â
†e−ikx

)
, (1.46)

π̂(x, t) =
1√
2π

∫
dk
(
−iωc1âeikx + iωc2â

†e−ikx
)
, (1.47)

where the x-dependence is fully encapsulated in the phases, while the t-dependence
is in â and â†. The operators, â and â†, and the coefficients, c1,2 (c1 = c∗2) and ω
(real number), all depend on k.
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To simplify the notation, from now on we drop theˆ-notation for operators and
use the following compact forms for Fourier transforms:

f̃η(k) = Fη[f ] =
1√
2π

∫
dx f(x)eηikx, (1.48)

s̃η(x) = Kη[s] =
1√
2π

∫
dk s(k)eηikx, (1.49)

where η stands for the sign + or −. Equations 1.46 and 1.47 become
ϕ = K+ [c1a] +K−

[
c2a

†] , (1.50)
π = K+ [−iωc1a] +K−

[
iωc2a

†] . (1.51)
Note that (Exercise 1.3a),

F+

[
st̃+
]
= s(k)t(−k), (1.52)

F+

[
st̃−
]
= s(k)t(k). (1.53)

We have
F+ [iωkϕ] = iωkc1,−ka−k + iωkc2,ka

†
k, (1.54)

F+[π] = −iω−kc1,−ka−k + iωkc2,ka
†
k, (1.55)

from which we can solve a†:

a†k =
F+ [iωkϕ+ π]

2iωkc2,k
, (1.56)

where we have assumed
ωk = ω−k. (1.57)

Similarly, we have

ak =
F− [−iωkϕ+ π]

−2iωkc1,k
. (1.58)

Furthermore, note that (Exercise 1.3b), if
[f(x), g(y)] = r δ(x− y), (1.59)

then [
f̃−(k), g̃+ (k′)

]
= r δ (k − k′) , (1.60)[

f̃−(k), g̃− (k′)
]
= r δ (k + k′) , (1.61)[

f̃+(k), g̃+ (k′)
]
= r δ (k + k′) . (1.62)

Therefore, [
ak, a

†
k′

]
∼ [F− [−iωkϕ] ,F+[π]] + [F−[π],F+ [iωk′ϕ]] (1.63)

= ωkδ (k − k′) + ωk′δ (k − k′) (1.64)
= 2ωkδ (k − k′) , (1.65)

[ak, ak′ ] ∼ [F− [−iωkϕ] ,F−[π]] + [F−[π],F− [−iωk′ϕ]] (1.66)
= ωkδ (k + k′)− ωk′δ (k + k′) (1.67)
= 0, (1.68)[

a†k, a
†
k′

]
∼ [F+ [iωkϕ] ,F+[π]] + [F+[π],F+ [iωk′ϕ]] (1.69)

= −ωkδ (k + k′) + ωk′δ (k + k′) (1.70)
= 0. (1.71)
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So, finally, [
ak, a

†
k′

]
=
δ (k − k′)

2ωkc1c2
, (1.72)

[ak, ak′ ] =
[
a†k, a

†
k′

]
= 0. (1.73)

1.2.1 Free Fields
To continue our discussion, we first notice

∂ϕ

∂x
= ∂xϕ = K+ [ikc1a] +K−

[
−ikc2a†

]
. (1.74)

Now assume a general form of a free (namely, no interactions) Hamiltonian
density, with real coefficients h1,2,3 to be given for a physical system:

H(x) = h1π
2 + h2 (∂xϕ)

2
+ h3m

2ϕ2, (1.75)

where m is a real parameter 1 to be determined that is introduced just to account
for the dimension of h3. Upon expanding and collecting terms of a and a†, the
Hamiltonian is then

H =

∫
dxH(x) (1.76)

= A+B + C, (1.77)

where

A ∼ K+K+, (1.78)
B ∼ K−K−, and (1.79)
C ∼ K+K− +K−K+. (1.80)

Let’s calculate the A-term first:

A =

∫
dx
{
h1K+ [−iωc1a]K+ [· · · ] + h2K+ [ikc1a]K+ [· · · ] + h3m

2K+ [c1a]K+ [· · · ]
}
,

(1.81)

where [· · · ] indicates the repetitive terms that are similar up to swapping. Note
that (Exercise 1.3c) ∫

dx s̃+(x)t̃+(x) =
∫

dk s(k)t(−k), (1.82)

for arbitrary functions s(k) and t(k). We have

A =

∫
dk [h1 (−iωkc1,k) (−iω−kc1,−k) aka−k

+ h2 (ikc1,k) (−ikc1,−k) aka−k
+h3m

2c1,kc1,−kaka−k
]
, (1.83)

=

∫
dk
(
−h1ω2 + h2k

2 + h3m
2
)
c1,kc1,−kaka−k, (1.84)

1You might have already guessed that this is some sort of field’s mass. However, this information
is irrelevant for the calculation; we can proceed with the analysis without explicitly considering
its nature.
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where, in the last step, we have used the assumption Eq. 1.57.
Similarly, we have

B =

∫
dk
(
−h1ω2 + h2k

2 + h3m
2
)
c2,kc2,−ka

†
ka

†
−k. (1.85)

Finally, for C-term,

C =

∫
dx {h1

(
K+ [−iωc1a]K−

[
iωc2a

†]+K− [· · · ]K+ [· · · ]
)

+ h2
(
K+ [ikc1a]K−

[
−ikc2a†

]
+K− [· · · ]K+ [· · · ]

)
+h3m

2
(
K+ [c1a]K−

[
c2a

†]+K− [· · · ]K+ [· · · ]
)}
. (1.86)

Note that (Exercise 1.3c), similar to Eq. 1.82,∫
dx s̃+(x)t̃−(x) =

∫
dk s(k)t(k), (1.87)

And therefore,

C =

∫
dk
[
h1ω

2c1c2
(
aa† + a†a

)
+ h2k

2c1c2
(
aa† + a†a

)
+ h3m

2c1c2
(
aa† + a†a

)]
(1.88)

=

∫
dk
(
h1ω

2 + h2k
2 + h3m

2
)
c1c2

(
aa† + a†a

)
. (1.89)

From Eqs. 1.84, 1.85, and 1.89, we see that once the dispersion relation is satisfied:

ω2 =
h2
h1
k2 +

h3
h1
m2, (1.90)

which is consistent with Eq. 1.57, both A-and B-terms vanish, leading to

H = C =

∫
dk 2h1ω2c1c2

(
a†a+ aa†

)
. (1.91)

As we shall see in later chapters, for a free scalar field,

h1 = h2 = h3 =
1

2
, (1.92)

with m being the mass of the field particle. Then, following Eq. 1.90, k and ω are
interpreted as the momentum and energy of the scalar field,

ω =
√
k2 +m2. (1.93)

By choosing

c1 = c2 =
1√
2ω
, (1.94)

we have [
ak, a

†
k′

]
= δ (k − k′) , (1.95)

H =

∫
dk ω

2

(
a†a+ aa†

)
, (1.96)

with which it is straightforward to recover the same set of algebra as in the case of
the harmonic oscillator.
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1.2.2 Time Dependence
The assumed form of the free Hamiltonian, Eqs. 1.75 and 1.92, ensures that the
a(t) and a†(t) evolve with a phase factor e∓iωt (cf. Eqs. 1.9, 1.12, 1.13, and 1.14);
therefore, for the general case, it is customary to factor out these phases in the
mode expansion (Eqs. 1.46 and 1.47, with the choice of c1,2 from Eq. 1.94) so that
a and a† only retain possible non-trivial time dependence:

ϕ(x, t) =
1√
2π

∫
dk 1√

2ω

(
aeikx−iωt + a†e−ikx+iωt

)
, (1.97)

π(x, t) =
1√
2π

∫
dk 1√

2ω

(
−iωaeikx−iωt + iωa†e−ikx+iωt

)
. (1.98)

Or, in our shorthand notation:

ϕ = K+ [ca] +K−
[
c∗a†

]
, (1.99)

π = K+ [−iωca] +K−
[
iωc∗a†

]
, (1.100)

(∂xϕ = K+ [ikca] +K−
[
−ikc∗a†

]
,
)

(1.101)

where c = 1√
2ω
e−iωt.

We notice that

π = ∂tϕ ⇔ ∂ta = 0, ∂ta
† = 0, (1.102)

The first is satisfied for Hamiltonians like Eq. 1.75 and the latter means that a and
a† are time-independent. In this case, Eqs. 1.56 and 1.58 become (note the inverse
phases e±iωt)

a =
F−
[
eiωt (ωϕ+ i∂tϕ)

]
√
2ω

, (1.103)

a† =
F+

[
e−iωt (ωϕ− i∂tϕ)

]
√
2ω

. (1.104)

As a consistency check, differentiate Eq. 1.103 with respect to time,

∂ta =
F−
[
ieiωt

(
ω2 + ∂2t

)
ϕ
]

√
2ω

. (1.105)

With the free field (i.e., on shell) dispersion relation and using the Fourier transform
of ∂x (cf. epigraph), we have

ω2 = k2 +m2 → −∂2x +m2, (1.106)

namely,

∂ta =
F−
[
ieiωt

(
∂2t − ∂2x +m2

)
ϕ
]

√
2ω

. (1.107)

And similarly,

∂ta
† =

F+

[
−ie−iωt

(
∂2t − ∂2x +m2

)
ϕ
]

√
2ω

. (1.108)

∂ta
(†) = 0 holds for t → ±∞ (asymptotic states) where

(
∂2t − ∂2x +m2

)
ϕ = 0. In

general, it should be understood as ∂ta(†) behaves like δ-functions at some time,
non-vanishing only where ∂2t − ∂2x +m2 does not destroy the yield.
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Exercise 1
1. Fourier Transform—Part 1

(a) The Dirac delta function can be defined as

δ(x) =
1

2π

∫ ∞

−∞
dk e±ikx.

Using this definition, show that∫ ∞

−∞
dx δ(x) = 1.

(Hint: use the Gaussian integral
∫∞
−∞ dx e−x2

=
√
π.)

(b) Consider the following general forms of the Fourier transform and its
inverse:

f̃(k) = F [f ] = A

∫
dx f(x)eiCkx

f(x) = F−1[f̃ ] = B

∫
dk f̃(k)e−iCkx.

Show that

AB =
|C|
2π

.

(c) Momentum-space operators are the Fourier-transformed ones from posi-
tion space. Recall the definition of the Fourier transform:

f̃(p) = F [f ] =
1√
2π

∫
dx f(x)e−ipx.

Show that: had we mapped the x-space operators to the p-space opera-
tors with the following Fourier transform:

F [f ] = A

∫
dx f(x)eipx,

where A is an arbitrary constant, the x-space momentum operator would
have been

p̂ = i
d
dx ,

and therefore we would have the commutation relation [x̂, p̂] = −i in-
stead.

2. Quantum Harmonic Oscillator

(a) Only consider the Hamiltonian, Eq. 1.26,

Ĥ = h1p̂
2 + h2q̂

2,

with the dispersion relation, Eq. 1.31,

h1λ
2 + h2 = 0.

Calculate C and D (defined in Eqs. 1.32 and 1.35, respectively),

Ĥ = C
(
â†â+ ââ†

)
,[

Ĥ, â†
]
≡ Dâ†, D > 0.
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(b) Prove Eq. 1.40,

λ = −imω,

and Eq. 1.41,

D = ω,

for the case of the harmonic oscillator.
(c) Finally, prove Eq. 1.42,

C =
ω

2
,

and fully recover Eqs. 1.5 and 1.6,

â =
1√
2

(√
mω x̂+

i√
mω

p̂

)
,

â† =
1√
2

(√
mω x̂− i√

mω
p̂

)
,

(up to some phase factors) by requiring [â, â†] = 1.
(d) The transforms, Eqs. 1.21 and 1.22,

q̂ = c1â+ c2b̂,

p̂ = λ
(
c1â− c2b̂

)
,

are general in the sense that â and â† are fully independent. Now, show
that if [Ô, â†] = ωâ†, then [Ô, â] = −ωâ, for an arbitrary Hermitian
operator Ô.

3. Fourier Transform—Part 2
η and τ are arbitrary signs, show that

(a)

Fη
[
st̃τ
]
=

1√
2π

∫
dx eηikxs(k) 1√

2π

∫
dk ′eτik

′xt (k′)

=

{
s(k)t(−k), η = τ
s(k)t(k), η ̸= τ

.

(b) [
f̃η(k), g̃τ (k

′)
]
=

[
1√
2π

∫
dx eηikxf(x), 1√

2π

∫
dy eτik

′yg(y)

]
=

{
r δ (k + k′) , η = τ
r δ (k − k′) , η ̸= τ

,

given that [f(x), g(y)] = r δ(x− y).
(c) ∫

dx s̃η(x)t̃τ (x) =
∫

dx 1√
2π

∫
dk eηikxs(k) 1√

2π

∫
dk′ eτik

′xt (k′)

=

{ ∫
dk s(k)t(−k) =

∫
dk s(−k)t(k), η = τ∫

dk s(k)t(k), η ̸= τ
.

N.B.: Effectively, we obtain the convolution theorem for the case of
η = τ .
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1.3 LSZ Reduction
In a field theory, the interpretation of |0⟩ is different from the harmonic oscillator
case; it is now the vacuum state, and it should be stable:

a |0⟩ = 0. (1.109)

The vacuum state is conventionally normalised as

⟨0 | 0⟩ = 1. (1.110)

There is a technical difference between the zero-point energy in Eq. 1.20 and its
correspondence following Eqs. 1.95 and 1.96—the vacuum energy:

⟨0 |H | 0⟩ =
∫

dk ω
〈
0

∣∣∣∣ a†a+ 1

2
δ(0)

∣∣∣∣ 0〉 (1.111)

=

(∫
dk ω

2

)
δ(0) ⟨0 | 0⟩ , (1.112)

where both the integral over k and δ(0) (∼
∫
dx 1) are infinite as they are the sum

of all energy times the whole spacial volume. This infinity needs to be subtracted by
rearranging the order of a and a† and hence the introduction of normal ordering:

:a†a:= a†a, :aa†:= a†a, (1.113)

namely, all annihilation operators are moved to the right of the creation operators.
This is our first experience dealing with infinite vacuum fluctuations to obtain phys-
ically meaningful results. The renormalised Hamiltonian (Exercise 2.1) and vacuum
energy are

:H:=

∫
dk ωa†a, (1.114)

⟨0 | :H: | 0⟩ = 0, (1.115)

and furthermore,

:H: a†k |0⟩ = ωka
†
k |0⟩ , (1.116)

so a†k |0⟩ is the eigenstate of the Hamiltonian created by a†k with momentum k.
Symbolically, we write

|k⟩ ≡ Zka
†
k |0⟩ , (1.117)

where Zk is the normalisation convention (Exercise 2.2):

⟨k | k′⟩ = Z∗
kZk′

〈
0
∣∣∣ aka†k′ ∣∣∣ 0〉 (1.118)

= |Zk|2δ (k − k′) . (1.119)

While [ϕ, π] is consistently defined in the literature, [a, a†] varies depending on the
choices of c1,2 in Eq. 1.72 (including the choice of the Fourier transform prefactor).
This is another factor that implicitly affects the normalisation of |k⟩.

Now, consider the asymptotic states,

|k1 in ⟩ ≡ a†1(−∞) |0⟩ , (1.120)
|k2 out ⟩ ≡ a†2(+∞) |0⟩ , (1.121)
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where the subscripts 1,2 of a† are shorthand notation for k1,2 , and we have set
Zk = 1 for convenience. We are interested in the transition amplitude between
them,

S21 ≡⟨k2 out | k1 in ⟩ (1.122)

=
〈
k2 out

∣∣∣ a†1(−∞)
∣∣∣ 0〉 . (1.123)

Because

⟨k2 out | k1 out ⟩ = δ (k1 − k2) (1.124)

=
〈
k2 out

∣∣∣ a†1(+∞)
∣∣∣ 0〉 , (1.125)

we have

S21 − ⟨k2 out | k1 out ⟩

=−
〈
k2 out

∣∣∣ a†1(+∞)− a†1(−∞)
∣∣∣ 0〉 (1.126)

=−
〈
k2 out

∣∣∣ a†1(t) ∣∣∣+∞
−∞

∣∣∣ 0〉 (1.127)

=−

〈
k2 out

∣∣∣∣∣∣∣∣∣∣
∫ +∞

−∞
dt1 ∂t1a

†
1(t1)︸ ︷︷ ︸

I†1

∣∣∣∣∣∣∣∣∣∣
0

〉
(1.128)

≡−
〈
0
∣∣∣ a2(+∞)I†1

∣∣∣ 0〉 . (1.129)

At this point, one would tend to repeat the same trick and add a term
〈
k2 in

∣∣∣ I†1 ∣∣∣ 0〉
to generate a similar difference

∫ +∞
−∞ dt2 ∂t2a2(t2), but this extra term is non-trivial.

Instead, we can use the following term that vanishes because a |0⟩ = 0:〈
0
∣∣∣ I†1a2(−∞)

∣∣∣ 0〉 = 0. (1.130)

So,

S21 − ⟨k2 out | k1 out ⟩

=−
〈
0
∣∣∣ a2(+∞)I†1

∣∣∣ 0〉+
〈
0
∣∣∣ I†1a2(−∞)

∣∣∣ 0〉 (1.131)

=−

〈
0

∣∣∣∣∣∣∣
∫

dt1

a2(+∞)∂t1a
†
1 (t1)︸ ︷︷ ︸

≡s(t1,+∞)

− ∂t1a
†
1 (t1) a2(−∞)︸ ︷︷ ︸
≡s(t1,−∞)


∣∣∣∣∣∣∣ 0
〉

(1.132)

=−
〈
0

∣∣∣∣ ∫ dt1
∫ +∞

−∞
dt2 ∂t2s (t1, t2)

∣∣∣∣ 0〉 . (1.133)

We need to find a function s(t1, t2) that satisfies the above boundary conditions at
t2 = ±∞, hence the introduction of time ordering:

T [A (t1)B (t2)] = A (t1)B (t2) θ (t1 − t2) +B (t2)A (t1) θ (t2 − t1) (1.134)

=

{
A (t1)B (t2) , t1 > t2
B (t2)A (t1) , t2 > t1

, (1.135)
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namely, fields at an earlier time are moved to the right of later ones. Here we have
used the Heaviside step function (Exercise 2.3),

θ(x) =

{
1, x > 0
0, x < 0

,
dθ
dx = δ(x). (1.136)

We have

s (t1, t2) = T
[
∂t1a

†
1 (t1) a2 (t2)

]
. (1.137)

So,

S21 − ⟨k2 out | k1 out ⟩

=−
〈
0

∣∣∣∣ ∫ dt1 dt2 T
[
∂t1a

†
1 (t1) ∂t2a2 (t2)

] ∣∣∣∣ 0〉 . (1.138)

Recall, from Eqs. 1.107 and 1.108,

∂t1a
†
1 (t1) =

1√
2ω1

F+

[
−ie−iω1t1

(
∂2t1 − ∂2x1

+m2
)
ϕ1
]
, (1.139)

∂t2a2 (t2) =
1√
2ω2

F−
[
ieiω2t2

(
∂2t2 − ∂2x2

+m2
)
ϕ2
]
. (1.140)

Putting things together 2, we have

S21 =δ(k1 − k2) +
i√
2ω1

i√
2ω2

1

2π

∫
dt1 dx1 dt2 dx2 eik1x1−iω1t1e−ik2x2+iω2t2

×
(
∂2t1 − ∂2x1

+m2
) (
∂2t2 − ∂2x2

+m2
)
⟨0 |T [ϕ(x1, t1)ϕ(x2, t2)] | 0⟩ , (1.141)

which is known as the Lehmann-Symanzik-Zimmermann (LSZ) reduction
formula—the transition amplitude is reduced to the vacuum expectation value of
the time-ordered product, which is also called the two-point Green’s function.
Its structure is readily identifiable: the integral is a Fourier transform over the space-
time coordinates of all involved fields, and the in-and out-states are distinguished
by the ± signs in the phase factors. The prefactors come from our convention of
the |k⟩ normalisation.

With the free fields, the two-point Green’s function, G2, is, in fact, the Feynman
propagator, ∆F (Exercise 2.4):

G2 (x1 − x2, t1 − t2) ≡ ⟨0 |T [ϕ(x1, t1)ϕ(x2, t2)] | 0⟩ (1.142)

= i

∫ dk
2π

dω
2π

eik(x1−x2)−iω(t1−t2)

ω2 − k2 −m2 + iϵ
≡ ∆F (x1 − x2, t1 − t2) , (1.143)

with ϵ → 0+. Applying ∂2ti and ∂2xi
to G2 will bring down −ω2 and −k2 from

the phase, and, therefore, either of the operators in Eq. 1.141, ∂2ti − ∂2xi
+ m2 ∼

ω2 − k2 −m2 (off-shell), cancels the denominator in the integral:(
∂2ti − ∂2xi

+m2
)
G2 (x1 − x2, t1 − t2) = −iδ(x1 − x2)δ(t1 − t2), (1.144)

namely, G2 is the Green’s function of the equation(
∂2t − ∂2x +m2

)
ϕ (x, t) = 0, (1.145)

2Caveat on pulling T through ∂t, cf. e.g. Schwartz (2014) p. 72 [Sch14], Aitchison and Hey
(2013) p. 210 [AH13], and Itzykson and Zuber (1980) Section 6.1.4 (p. 284, Dover edition) [IZ80].
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and hence the name. The remaining ∂2ti −∂
2
xi
+m2 ∼ ω2

k−k2−m2 after integration
by parts kills the integral due to the (on-shell) dispersion relation. Then the whole
equation is reduced to S21 = δ(k1 − k2), which makes sense since we are dealing
with a free field.

As is with the time evolution of a and a† (Eqs. 1.107 and 1.108), the LSZ
reduction is non-vanishing where ∂2t − ∂2x +m2 does not destroy the field, that is,
when interactions are turned on. The LSZ reduction is the cornerstone connecting
experimental observables and the underlying perturbative field theories, where free
fields are used to describe interactions.

1.3.1 Multi-Particle States
Non-interacting multi-particle states can be created by multiple creation operators
(Exercise 2.5):

:H: a†k2a
†
k1

|0⟩ = (ωk1 + ωk2) a
†
k2
a†k1 |0⟩ , (1.146)

Symbolically, we write

|k1k2⟩ ≡ Zk1k2a
†
k2
a†k1 |0⟩ . (1.147)

Repeating the procedure in Sec. 1.3, we can calculate the transition amplitude
between the asymptotic states |k1k2 · · · in⟩ and |p1p2 · · · out⟩:

Sfi ≡ ⟨p1p2 · · · out | k1k2 · · · in⟩ (1.148)

∼ δfi + F

[
n∏
i

(
∂2ti − ∂2xi

+m2
)
⟨0 |T [ϕ (x1, t1)ϕ (x2, t2) · · ·ϕ (xn, tn)] | 0⟩

]
,

(1.149)

where F is a shorthand notation for the multi-dimensional Fourier transform (ab-
sorbing all prefactors) overall all involved space-time, and the time-ordered product
is the n-point Green’s function, which can be broken down into combinations of
Feynman propagators through Wick’s theorem:

⟨0 |T [ϕ (x1, t1)ϕ (x2, t2) · · ·ϕ (xn, tn)] | 0⟩ = ∆12
F ∆34

F · · ·+ permutations, (1.150)

where ∆ij
F ≡ ∆F (xi − xj , ti − tj). Note that, for an odd n, there is always a re-

maining field that does not form a propagator, and as a result, the Green’s function
vanishes due to the trailing ⟨0 |ϕ | 0⟩.

Before we conclude this chapter, let’s look at a four-point Green’s function,

⟨0 |T [ϕ1ϕ2ϕ3ϕ4] | 0⟩ = ∆12
F ∆34

F +∆13
F ∆24

F +∆14
F ∆23

F . (1.151)

This forms the basic idea of representing a transition amplitude (Sfi) as the sum of
Feynman diagrams (e.g., ∆12

F ∆34
F ) consisting of lines for propagators (e.g., ∆12

F ).
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Exercise 2
1. Normal Ordering

Show that normal ordering does not alter the commutator relations:

[:H:, a] = −ωa,[
:H:, a†

]
= ωa†.

2. The Vacuum—Part 1

(a) Show that 〈
0
∣∣∣ aka†k′ ∣∣∣ 0〉 = δ (k − k′) .

(b) What is ⟨k | k′⟩ if we use the following mode expansion,

ϕ(x, t) =

∫ dk
2π

1

2ω

(
aeikx−iωt + a†e−ikx+iωt

)
,

π(x, t) =

∫ dk
2π

1

2ω

(
−iωaeikx−iωt + iωa†e−ikx+iωt

)
,

instead of Eqs. 1.97 and 1.98,

ϕ(x, t) =
1√
2π

∫
dk 1√

2ω

(
aeikx−iωt + a†e−ikx+iωt

)
,

π(x, t) =
1√
2π

∫
dk 1√

2ω

(
−iωaeikx−iωt + iωa†e−ikx+iωt

)
,

while keeping the commutation relation as in Eq. 1.44

[ϕ(x, t), π(y, t)] = iδ(x− y)

(let’s choose Zk = 1)?

3. Time Ordering
Prove that for arbitrary operators, A(t) and B(t),

∂t1T [A (t1)B (t2)]

=T [∂t1A (t1)B (t2)] + [A (t1) , B (t2)] δ (t1 − t2) .

4. Feynman Propagator
Our usual mode expansion is Eq. 1.97,

ϕ(x, t) =
1√
2π

∫
dk 1√

2ω

(
aeikx−iωt + a†e−ikx+iωt

)
,

or in the shorthand notation,

ϕ(x, t) = K+ [ca] +K−
[
c∗a†

]
, c =

1√
2ω
e−iωt.

(a) Show that

⟨0 |ϕ | 0⟩ = 0.
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(b) Show that

⟨0 |ϕ (x1, t1)ϕ (x2, t2) | 0⟩ =
∫ dk

2π

1

2ωk
eik(x1−x2)−iωk(t1−t2).

(c) Use the identity

θ(t) =
i

2π

∫ +∞

−∞
dω e−iωt

ω + iϵ
, ϵ→ 0+,

to show

⟨0 |ϕ1ϕ2 | 0⟩ θ(t) =
∫ dk

2π

1

2ωk
eikx−iωktθ(t)

=

∫ dk
2π

1

2ωk

i

2π

∫ +∞

−∞
dω
(
− 1

ω + ωk − iϵ

)
e−ikx+iωt,

where x = x1 − x2, t = t1 − t2.
(d) Finally, show that

∆F (x, t) ≡ ⟨0 |Tϕ1ϕ2 | 0⟩ = i

∫ dk dω
(2π)2

eikx−iωt

ω2 − ω2
k + iϵ

,

and show that

∆F (x, t) = ∆F (−x,−t) .

5. The Vacuum—Part 2
Prove Eq. 1.146,

:H: a†k2a
†
k1

|0⟩ = (ωk1 + ωk2) a
†
k2
a†k1 |0⟩ .



Chapter 2

Quantum Fields

Taylor expand f(x) at a,

f (a+ ϵ) =
∞∑

n=0

dnf (a)

dxn

ϵn

n!

=
∞∑

n=0

ϵn

n!

(
d

dx

)n

f (a)

=eϵ
d

dx f (a) .

Still remember

p̂x = −i
d

dx ,

so that,

f (x) = ei(x−a)p̂xf (a) .

2.1 Lagrange-Hamilton Formalism
We use the real scalar field, ϕ(xµ), to demonstrate the Lagrange-Hamilton formal-
ism. We start by rewriting the Lagrangian L(t) as a Lagrangian density 1 L,

L =

∫
d3x⃗L. (2.1)

The dimensionless (in natural units) action (for relativistic notations, cf. Ap-
pendix A),

S =

∫
dt L =

∫
d4xL [ϕ, ∂µϕ] , (2.2)

is a functional of the field ϕ and its four spacetime derivatives ∂µϕ. In field theory,
the degrees of freedom are ϕ and ∂µϕ, and space and time are just labels.

Consider independent changes, δϕ and δ(∂µϕ), that lead to a change of L:

δL =
∂L
∂ϕ

δϕ+
∂L

∂(∂µϕ)
δ(∂µϕ). (2.3)

1If the term “density” is clear in the context and its omission does not lead to confusion, we
will drop it for brevity.

23
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The resulting change in the action is

δS =

∫
d4x (L+ δL)−

∫
d4xL (2.4)

=

∫
d4x

[
∂L
∂ϕ

δϕ+
∂L

∂(∂µϕ)
δ(∂µϕ)

]
(2.5)

(integrate by parts for the second term)

=

∫
d4x

{
∂L
∂ϕ

∂ϕ−
[
∂µ

∂L
∂(µϕ)

]
δϕ

}
(2.6)

=

∫
d4x

[
∂L
∂ϕ

− ∂µ
∂L

∂(∂µϕ)

]
δϕ. (2.7)

The principle of least action requires that δS = 0 for the arbitrary δϕ. Therefore,

∂L
∂ϕ

= ∂µ
∂L

∂(∂µϕ)
. (2.8)

This is the Euler-Lagrange equation.
Now consider a translation in spacetime by an infinitesimal amount, ϵµ,

xµ → xµ + ϵµ. (2.9)

The measure changes correspondingly,

dxµ → dxµ + dϵµ (2.10)
(no Einstein summation convention on repeated µ)

= dxµ
(
1 +

dϵµ
dxµ

)
, (2.11)

(resuming Einstein summation convention)

d4x → d4x (1 + ∂µϵ
µ) + o

(
ϵ2
)
. (2.12)

The change in L is

δL =
∂L
∂ϕ

∂µϕϵ
µ +

∂L
∂ (∂νϕ)

∂µ (∂νϕ) ϵ
µ (2.13)

(apply E-L to the first term, and swap the order of ∂µ,ν on ϕ in the second term)

=

[
∂ν

∂L
∂ (∂νϕ)

]
∂µϕϵ

µ +
∂L

∂ (∂νϕ)
∂ν∂µϕϵ

µ (2.14)

= ∂ν

[
∂L

∂ (∂νϕ)
∂µϕ

]
ϵµ. (2.15)

The change of action is, omitting o
(
ϵ2
)
-terms,

δS =

∫
d4x (1 + ∂µϵ

µ) (L+ δL)−
∫

d4xL (2.16)

=

∫
d4x (δL+ ∂µϵ

µL) (2.17)

(put in δL and integrate by parts for the second term)

=

∫
d4x

{
∂ν

[
∂L

∂ (∂νϕ)
∂µϕ

]
ϵµ − ϵµ∂µL

}
(2.18)

(ϵµ∂µL = ∂ν
(
gνµL

)
ϵµ)

=

∫
d4x ∂ν

[
∂L

∂ (∂νϕ)
∂µϕ− gνµL

]
ϵµ, (2.19)
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which should vanish for arbitrary ϵµ. Therefore, we have

∂νT
ν
µ = 0, (2.20)

with the energy-momentum tensor,

T νµ ≡ ∂L
∂ (∂νϕ)

∂µϕ− gνµL, (2.21)

whose components are

T 00 =
∂L
∂ϕ̇

ϕ̇− L, (2.22)

T 0µ =
∂L
∂ϕ̇

∂µϕ, µ = 1, 2, 3. (2.23)

In the previous Section 1.2, we mentioned the canonical momentum, π, and Hamil-
tonian density, H, as given. Now, in the Lagrange-Hamilton formalism, they are
defined as follows:

π =
∂L
∂ϕ̇

, (2.24)

H = πϕ̇− L. (2.25)

Therefore, we have

T 00 = πϕ̇− L = H, (2.26)
T 0µ = π∂µϕ, µ = 1, 2, 3. (2.27)

We can define the energy-momentum four-vector,

Pµ ≡
∫

d3x⃗ T 0µ. (2.28)

As before, the Hamiltonian is

H =

∫
d3x⃗H =

∫
d3x⃗ T 00 = P 0, (2.29)

and the momentum of component µ is (Exercise 3.1a)

Pµ =

∫
d3x⃗ T 0µ =

∫
d3x⃗ π∂µϕ, µ = 1, 2, 3. (2.30)

Now, we can derive the more general Heisenberg’s equation of motion (Exer-
cise 3.1b),

i [Pµ, ϕ] = ∂µϕ. (2.31)

We will see other similar “EOMs” in later sections. Restoring the -̂notation for the
moment and rearrange the terms, we have

p̂µϕ̂ =
[
ϕ̂, P̂µ

]
, (2.32)

where p̂µ generates spacetime translation and P̂µ is the amount of the energy-
momentum of the field.
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2.2 Real Scalars
We have the free scalar field Lagrangian,

L [ϕ] =
1

2
∂µϕ∂

µϕ− 1

2
m2ϕ2, (2.33)

with

∂L
∂ (∂µϕ)

= ∂µϕ,
∂L
∂ϕ

= −m2ϕ. (2.34)

The field equation of motion is given by the Euler-Lagrange equation,(
∂µ∂

µ +m2
)
ϕ = 0. (2.35)

This is the Klein-Gordon equation. With p̂ ∼ i∂, we have p̂2 = −∂2, and
therefore, (

p̂2 −m2
)
ϕ = 0. (2.36)

We have the canonical momentum,

π =
∂L
∂ϕ̇

= ϕ̇. (2.37)

implying time-independent a and a†, as discussed in Sec. 1.2.2. The equal-time
canonical commutators are

[ϕ(x⃗, t), π(y⃗, t)] = iδ3(x⃗− y⃗), (2.38)
[ϕ(x⃗, t), ϕ(y⃗, t)] = [π(x⃗, t), π(y⃗, t)] = 0. (2.39)

The mode expansion is

ϕ = K3
+ [ca] +K3

−
[
c∗a†

]
, (2.40)

π = K3
+ [−iωca] +K3

−
[
iωc∗a†

]
, (2.41)

(∂iϕ = K3
+ [ikica] +K3

−
[
−ikic∗a†

]
,
)

(2.42)

where c = 1√
2ω
e−iωt.

The Hamiltonian density is

H = πϕ̇− L = π2 − 1

2

[
π2 − (∇ϕ)2

]
+

1

2
m2ϕ2 (2.43)

=
1

2
π2 +

1

2
(∇ϕ)2 + 1

2
m2ϕ2, (2.44)

which has the assumed form of Eq. 1.75. Correspondingly, we have the dispersion
relation,

ω =

√
k⃗2 +m2. (2.45)

We see that the mode expansion, Eq. 2.40, when restricted to this on-shell dispersion
relation, automatically satisfy the Klein-Gordon equation.
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Furthermore, we have[
ak⃗, a

†
k⃗′

]
= δ3

(
k⃗ − k⃗′

)
, (2.46)[

ak⃗, ak⃗′
]
=
[
a†
k⃗
, a†
k⃗′

]
= 0, (2.47)

ak⃗ |0⟩ = 0, (2.48)

a†
k⃗
|0⟩ =

∣∣∣⃗k〉 (up to a normalisation constant), (2.49)

:H:=

∫
d3k⃗ ω a†a, (2.50)

⟨0 |Tϕ (x)ϕ (y) | 0⟩ = ∆F(x− y) = i

∫ d4k
(2π)4

e−ik(x−y)

k2 −m2 + iϵ
. (2.51)

Note that, while the expressions of
[
a, a†

]
and H depend on the conventions for

writing down the mode expansion, the Feynman propagator ∆F does not.

2.3 Complex Scalars
Scalar fields are useful models to illustrate the mathematical structure of quantum
fields; new properties arise with new construction. In the following, we will show
that by uniting two independent real fields into a complex field, we have the first
sight of particle-antiparticle dualism.

Consider two independent real scalar fields, ϕ1 and ϕ2, with the same mass.
Their associated quantities, i.e., those discussed in the preceding section, are all
labelled with subscripts i = 1, 2. Each paif of their associated operators commutes,[

Ô1, Ô2

]
= 0. (2.52)

The two fields now form a non-interacting system, whose Lagrangian is

L [ϕ1, ϕ2, ∂µϕ1, ∂µϕ2] = L1 + L2. (2.53)

Now, define a combined field,

ϕ =
ϕ1 − iϕ2√

2
. (2.54)

By taking the Hermitian conjugate, we have

ϕ† =
ϕ1 + iϕ2√

2
, (2.55)

which is considered independent of ϕ in terms of its contribution to the Lagrangian,
which has become

L [ϕ1, ϕ2, ∂µϕ1, ∂µϕ2] = L
[
ϕ, ϕ†, ∂µϕ, ∂µϕ

†] = ∂µϕ∂
µϕ† −m2ϕϕ†. (2.56)

The Euler-Lagrange equations can be derived from it:(
∂2 +m2

)
ϕ = 0, (2.57)

ϕ†
(

⃗∂
2
+m2

)
= 0, (2.58)

which do not look too interesting, but nevertheless, let’s move on.
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The canonical momentum of the ϕ field is

π =
∂L
∂ϕ̇

= ϕ̇†, (2.59)

which is no longer ϕ̇; And that of ϕ† is

π̃ =
∂L
∂ϕ̇†

= ϕ̇ = π†. (2.60)

We can check that

[ϕ(x⃗, t), π(y⃗, t)] = [ϕ†(x⃗, t), π†(y⃗, t)] = iδ3(x⃗− y⃗). (2.61)

For completeness, the remaining commutators are[
ϕ, ϕ†

]
=
[
π, π†]

=[ϕ, ϕ] = [π, π] =
[
ϕ, π†]

=
[
ϕ†, ϕ†

]
=
[
π†, π†] = [ϕ†, π] = 0. (2.62)

Because ϕ† ̸= ϕ, we need to have an additional degree of freedom in the mode
expansion (as usual, we have c = 1√

2ω
e−iωt):

ϕ = K3
+[ca] +K3

−
[
c∗b†

]
, (2.63)

where the definitions of a and b† follow Eq. 2.54 with the underlying operators
associated with ϕ1,2:

a =
a1 − ia2√

2
, (2.64)

b† =
a†1 − ia†2√

2
, (2.65)

which have inherited the time-independence from a
(†)
1,2. We can construct the addi-

tional expansion:

ϕ† = K3
+[cb] +K3

−
[
c∗a†

]
, (2.66)

π = ϕ̇† = K3
+[−iωcb] +K3

−
[
iωc∗a†

]
, (2.67)

The full list of annilation and creation operator commutation relation is[
ak⃗, a

†
k⃗′

]
=
[
bk⃗, b

†
k⃗′

]
= δ3

(
k⃗ − k⃗′

)
, (2.68)

[
ak⃗, b

†
k⃗′

]
=
[
a†
k⃗
, bk⃗′

]
=
[
ak⃗, ak⃗′

]
=
[
bk⃗, bk⃗′

]
=
[
ak⃗, bk⃗′

]
=
[
a†
k⃗
, a†
k⃗′

]
=
[
b†
k⃗
, b†
k⃗′

]
=
[
a†
k⃗
, b†
k⃗′

]
= 0. (2.69)

Now we can discuss some physics. First, let’s examine the vacuum:

ak⃗ |0⟩ = bk⃗ |0⟩ = 0, (2.70)∣∣∣⃗k〉
a
≡ a†

k⃗
|0⟩ =

∣∣∣⃗k〉
1
+ i
∣∣∣⃗k〉

2√
2

, (2.71)

∣∣∣⃗k〉
b
≡ b†

k⃗
|0⟩ =

∣∣∣⃗k〉
1
− i
∣∣∣⃗k〉

2√
2

. (2.72)
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The states created by the two modes, a† and b† (Exercise 3.2a), are orthogonal:

b

〈
k⃗
∣∣∣ k⃗′〉

a
= 0. (2.73)

Since H = H
[
ϕ, π, ϕ†, π†], we have

H = πϕ̇+ π†ϕ̇† − L (2.74)

= 2ϕ̇ϕ̇† −
(
ϕ̇ϕ̇† −∇ϕ∇ϕ† −m2ϕϕ†

)
(2.75)

= ϕ̇ϕ̇† +∇ϕ∇ϕ† +m2ϕϕ†. (2.76)

The Hamiltonian is

H =

∫
d3k⃗ ω

2

(
a†1a1 + a1a

†
1 + a†2a2 + a2a

†
2

)
(2.77)

=

∫
d3k⃗ ω

(
a†a+ bb†

)
, (2.78)

:H: =

∫
d3k⃗ ω

(
a†a+ b†b

)
. (2.79)

Second, the spacetime picture: The two-point Green’s functions are (Exercise 3.2b)

⟨0 |Tϕ (x)ϕ (y) | 0⟩ =
〈
0
∣∣Tϕ† (x)ϕ† (y) ∣∣ 0〉 = 0, (2.80)〈

0
∣∣Tϕ (x)ϕ† (y) ∣∣ 0〉 = ∆F(x− y). (2.81)

From the non-vanishing one, we can see that both modes propagate separately from
early to late time:〈

0
∣∣Tϕ(x)ϕ†(y) ∣∣ 0〉

=

{〈
0
∣∣ϕ(x)ϕ†(y) ∣∣ 0〉 ∼ K

[〈
0
∣∣ aa† ∣∣ 0〉] , x0 > y0〈

0
∣∣ϕ†(y)ϕ(x) ∣∣ 0〉 ∼ K

[〈
0
∣∣ bb† ∣∣ 0〉] , y0 > x0

. (2.82)

2.3.1 Noether’s Theorem
Noether’s theorem says that “a conserved current is associated with each gener-
ator of a continuous symmetry [Zee03].” A conserved current, Jµ, has a vanishing
total divergence,

∂µJ
µ =

∂J0

∂t
+∇ · J⃗ = 0. (2.83)

Note that this is also known as the continuity equation. With a vanishing three-
current at the spatial boundaries, we have a conserved charge:

Q ≡
∫

d3x⃗ J0, (2.84)

∵ 0 =

∫
d3x⃗ ∂µJµ =

d
dt

∫
d3x⃗ J0 +

∫
d3x⃗∇ · J⃗ (2.85)

=
dQ
dt +

∫
dS⃗ · J⃗︸ ︷︷ ︸

=0 at boundaries

. (2.86)

The conserved current and charge are called the Noether current and Noether
charge of the symmetry, respectively.
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The complex scalar fields we discussed in the pre-
ceding section are formed by two real scalar fields
(Eqs. 2.54 and 2.55):

ϕ =
ϕ1 − iϕ2√

2
, ϕ† =

ϕ1 + iϕ2√
2

. (2.87)

A complex phase, e±iα (α ∈ R), rotates ϕ and ϕ†,
while keeping |ϕ|2 ∼ ϕ21 + ϕ22 invariant—a global
U(1) symmetry we shall revisit briefly in Sec. 2.5.1.

We can verify that the Lagrangian is unchanged by the transformation:

ϕ→ e−iαϕ, ϕ† → eiαϕ†. (2.88)

For infinitesimal α, they become

ϕ→ ϕ− iαϕ, ϕ† → ϕ† + iαϕ†, (2.89)

and therefore the changes in the fileds and the Lagrangian are, respectively,

δϕ = −iαϕ , δϕ† = iαϕ†, (2.90)

0 = δL =
∂L
∂ϕ

δϕ+
∂L

∂ (∂µϕ)
δ∂µϕ+ δϕ†

∂L
∂ϕ†

+ δ∂µϕ
† ∂L
∂ (∂µϕ†)

(2.91)

=
∂L
∂ϕ

δϕ+
∂L

∂ (∂µϕ)
δ∂µϕ+ h.c. (2.92)

(apply E-L for the first term)

=

[
∂µ

∂L
∂ (∂µϕ)

]
δϕ+

∂L
∂ (∂µϕ)

(∂µδϕ) + h.c. (2.93)

= ∂µ

[
∂L

∂ (∂µϕ)
δϕ

]
+ h.c. (2.94)

≡ ∂µJ
µ, (2.95)

where

Jµ ≡ ∂L
∂(∂µϕ)

δϕ+ h.c., (2.96)

is the Noether current. Therefore, the Noether charge is

Q =

∫
d3x⃗ J0 =

∫
d3x⃗ ∂L

∂ϕ̇
(−iαϕ) + h.c. (2.97)

= −iα
∫

d3x⃗ (πϕ− h.c.) . (2.98)

We have (Exercise 3.3)

[Q,ϕ] = −αϕ,
[
Q,ϕ†

]
= αϕ†. (2.99)

Or,

i [Q,ϕ] = −iαϕ = δϕ, i
[
Q,ϕ†

]
= iαϕ† = δϕ† (2.100)

—another set of “EOMs” in addition to Eq. 2.31!
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Let’s continue the physics discussion of complex scalar fields. We find that
(Exercise 3.2c)

Q = α

∫
d3k⃗

(
a†a− bb†

)
, (2.101)

:Q: = α

∫
d3k⃗

(
a†a− b†b

)
, (2.102)

whose sign between the two modes is in contrast to the Hamiltonian case (Eq. 2.79).
It leads to [

:Q:, a†
]
= αa†, (2.103)

[:Q:, a] = −αa, (2.104)[
:Q:, b†

]
= −αb†, (2.105)

[:Q:, b] = αb, (2.106)

and, therefore,

:Q:
∣∣∣⃗k〉

a
= α

∣∣∣⃗k〉
a
, (2.107)

:Q:
∣∣∣⃗k〉

b
= −α

∣∣∣⃗k〉
b
, (2.108)

namely, the two modes created by a† and b† carry opposite charges!

Exercise 3
1. Energy-Momentum Tensor

Consider only the spatial components (i.e., µ = 1, 2, 3).

(a) Use the mode expansion for real scalar fields, Eqs. 2.40-2.42,

ϕ = K3
+ [ca] +K3

−
[
c∗a†

]
,

π = K3
+ [−iωca] +K3

−
[
iωc∗a†

]
,

(∂iϕ = K3
+ [ikica] +K3

−
[
−ikic∗a†

]
,
)

where c = 1√
2ω
e−iωt, to show

Pµ =

∫
d3k⃗ k

µ

2

(
a†a+ aa†

)
.

(b) Prove Eq. 2.32,

p̂µϕ̂ =
[
ϕ̂, P̂µ

]
.

2. Complex Scalar Fields

(a) Verify Eq. 2.73,

b

〈
k⃗
∣∣∣ k⃗′〉

a
= 0,

and Eq. 2.78,

H =

∫
d3k⃗ ω

2

(
a†1a1 + a1a

†
1 + a†2a2 + a2a

†
2

)
=

∫
d3k⃗ ω

(
a†a+ bb†

)
.

explicitly.
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(b) Modify your answer of Exercise 2.4b to verify Eqs. 2.80 and 2.81,

⟨0 |Tϕ (x)ϕ (y) | 0⟩ =
〈
0
∣∣Tϕ† (x)ϕ† (y) ∣∣ 0〉 = 0,〈

0
∣∣Tϕ (x)ϕ† (y) ∣∣ 0〉 = ∆F(x− y).

(c) Prove Eq. 2.101,

Q = α

∫
d3k⃗

(
a†a− bb†

)
,

using the field expansion, Eqs. 2.63, 2.66 and 2.67,

ϕ = K3
+[ca] +K3

−
[
c∗b†

]
,

ϕ† = K3
+[cb] +K3

−
[
c∗a†

]
,

π = ϕ̇† = K3
+[−iωcb] +K3

−
[
iωc∗a†

]
.

3. Noether’s Theorem

(a) Derive Eq. 2.99,

[Q,ϕ] = −αϕ,
[
Q,ϕ†

]
= αϕ†.

(b) Based on Eqs. 2.98,

Q =

∫
d3x⃗ J0 = −iα

∫
d3x⃗ (πϕ− h.c.) ,

and 2.99 (see above), we define Q0 and ψ1,2 as follows:

Q = αQ0 , [Q0, ϕ] = −ϕ;
ψ1 = eαQ0ϕe−αQ0 ,

ψ2 = e−αϕ.

Prove that ψ1 = ψ2.
(Hint: Expand ψ1,2 in Taylor series as a function of α around 0, compare
the coefficients order by order.)
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2.4 Spinors
The free Dirac Lagrangian is

L
[
ψ, ∂ψ, ψ̄, ∂ψ̄

]
= ψ̄ (iγ∂ −m)ψ, ψ̄ = ψ†γ0, (2.109)

with

∂L
∂ψ

= −mψ̄, ∂L
∂ (∂µψ)

= ψ̄iγµ; (2.110)

∂L
∂ψ̄

= (iγ∂ −m)ψ,
∂L

∂
(
∂µψ̄

) = 0. (2.111)

We have the Euler-Lagrange equations, which gives us the Dirac equations (Ex-
ercise 4.1a),

ψ̄
(
iγ ⃗∂ +m

)
= 0, (2.112)

(iγ∂ −m)ψ = 0. (2.113)

Applying (iγ∂ +m) on the left of Eq. 2.113, we recover the Klein-Gordon equation 2:

0 = (iγ∂ +m) (iγ∂ −m)ψ (2.114)
=
(
−γµ∂µγν∂ν −m2

)
ψ = −

(
∂2 +m2

)
ψ. (2.115)

The canonical momenta read

π =
∂L
∂ψ̇

= ψ̄iγ0 = iψ†, π̃ =
∂L
∂ ˙̄ψ

= 0, (2.116)

which leads us to the Hamiltonian density,

H = πψ̇ + π̃ ˙̄ψ − L (2.117)
= iψ†ψ̇ − ψ̄ (iγ∂ −m)ψ (2.118)
= iψ†ψ̇, (2.119)

where the last step has applied the Euler-Lagrange (Dirac) equation.
Similar to the complex field with the global U(1) symmetry ψ → e−iαψ

(Eq. 2.96), we have the Noether current,

Jµ =
∂L

∂(∂µψ)
δψ +

∂L
∂(∂µψ̄)

δψ̄ (2.120)

=αψ̄γµψ, (2.121)

and the Neother charge,

Q =

∫
d3x⃗ J0 =α

∫
d3x⃗ ψ̄γ0ψ (2.122)

=α

∫
d3x⃗ ψ†ψ. (2.123)

2One can prove the second line with Eq. 2.126.
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2.4.1 Dirac Equation
Let’s pause and take a look at the solutions of the Dirac equation—Dirac spinors.

First of all, we have the anticommutation relation of the gamma matrix:

{γµ, γν} = 2gµν , (2.124)

from which we have (Exercises 4.1b and 4.1c),(
γ0
)2

= 1, (2.125)
(γx)2 = x2, (2.126)
γxγ0 = 2x0 − γ0γx, (2.127)

with an abbitrary 4-vector x 3. In the Dirac basis,

(γµ)
†
= γ0γµγ0, (2.128)

γ0 = diag (1, 1,−1,−1) =

(
I2 0
0 −I2

)
, (2.129)

where I2 is the 2× 2 identity matrix.
Second, we notice that,

i∂eipx = −peipx (2.130)
i∂e−ipx = pe−ipx. (2.131)

So, we have two plane-wave solutions:

ψ = u (p) e−ipx, (γp−m)u (p) = 0; (2.132)
ψ = v (p) eipx, (γp+m) v (p) = 0. (2.133)

Consider the solution for p⃗ = 0, i.e., in the rest frame of the field particle. We
have 4

p =
(
m, 0⃗

)
; (2.134)(

γ0 − 1
)
u(0) = 0, (2.135)(

γ0 + 1
)
v(0) = 0. (2.136)

3 Equation 2.126 leads to the following useful expressions:

(γp+m)(γp−m) = (γp−m)(γp+m) = 0

⇒ γp(γp−m) = −m(γp−m), γp(γp+m) = m(γp+m).

Namely, one can replace γp right in front of γp±m directly by ±m—Try the following:

(γp+m)(γp+m) = 2m(γp+m),

(γp−m)(γp−m) = −2m(γp−m),

(γp+m)γ0(γp+m) =
(
2p0 − γ0γp+mγ0

)
(γp+m) = 2p0(γp+m),

(γp−m)γ0(γp−m) =
(
2p0 − γ0γp−mγ0

)
(γp−m) = 2p0(γp−m).

4Direct implications:

ū(0) = u†(0), v̄(0) = −v†(0).
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In the Dirac basis, we can choose the following orthogonal solutions 5:

u1(0) =


1
0
0
0

 , u2(0) =


0
1
0
0

 , (2.137)

v1(0) =


0
0
1
0

 , v2(0) =


0
0
0
1

 . (2.138)

The two-fold solutions of u and v each are the spin degrees of freedom for a spin- 12
particle. We can now construct the solutions for non-vanishing p⃗:

u (p) = N(γp+m)u(0), (2.139)
v (p) = N(γp−m)v(0), (2.140)

where N is a normalisation factor to be chosen later. To see that they are indeed
solutions of the Dirac equation, we can put them back into the equation. For
example,

(γp−m)u (p) = N(γp−m)(γp+m)u(0) = 0. (2.141)

The normalisation of these solutions are 6 (Exercises 4.1d and 4.1e)

u†s(p)us′(p) = δss′2E (m+ E)N2 (2.142)
= v†s(p)vs′(p), (2.143)

ūs(p)us′(p) = δss′2m (m+ E)N2 (2.144)
= −v̄s(p)vs′(p). (2.145)

It is very often that we need to do spin sums, which are given as follows 7:∑
s=1,2

us (p) ūs (p) = N2 (m+ E) (γp+m), (2.146)

∑
s=1,2

vs (p) v̄s (p) = N2 (m+ E) (γp−m). (2.147)

5For an arbitrary 4 × 4 matrix M , u†s(0)Mus′ (0) = Mss′ , v†s(0)Mvs′ (0) = M2+s,2+s′ . This
is particularly useful when M is the γ-matrix: u†s(0)γxus′ (0) = u†s(0)γ0x0us′ (0) = δss′x0,
v†s(0)γxvs′ (0) = v†s(0)γ0x0vs′ (0) = −δs,s′x0, with an arbitrary 4-vector x. Further more,∑

s=1,2

us(0)u
†
s(0) =

(
I2 0
0 0

)
=
γ0 + 1

2
,

∑
s=1,2

vs(0)v
†
s(0) =

(
0 0
0 I2

)
=

1− γ0

2
.

6The proof for the first case is sketched below. The steps involve Footnotes 3-5.

u†s(p)us′ (p) = u†s(0)
(
γ†p+m

)
N2(γp+m)us′ (0) = ūs(0)(γp+m)γ0(γp+m)us′ (0)N

2

= ūs(0)(γp+m)us′ (0)N
22p0 = u†s(0)(γp+m)us′ (0)N

22p0 = δss′
(
m+ p0

)
N22p0.

The “−” sign in Eq. 2.145 originates from the one in Footnote 3.
7The proof for the first case is sketched below:∑

s

us(p)ūs(p) = N2(γp+m)
∑
s

us(0)u
†
s(0)

(
γ†p+m

)
γ0 = N2(γp+m)

γ0 + 1

2
(γp+m)

= N2 2p
0 + 2m0

2
(γp+m) = N2

(
m+ p0

)
(γp+m).



36 CHAPTER 2. QUANTUM FIELDS

2.4.2 Quantising the Spinor Field
We are going to build our spinor field expansion on top of what we did for the
complex scalar field, Eq. 2.63. Now, the differences are that

1. there are additional degrees of freedom for spins;

2. the field expansion needs to automatically satisfy the Dirac equation.

Therefore, we have the following expansion of the ψ field, trying to maintain a
parallelism with Eq. 2.63:

ψ = K3
+

[
c
∑
s

asus

]
+K3

−

[
c∗
∑
s

b†svs

]
, (2.148)

and then π and ψ̇ can be constructed out of it:

π = iψ† (2.149)

= K3
+

[
ic
∑
s

bsv
†
s

]
+K3

−

[
ic∗
∑
s

a†su
†
s

]
, (2.150)

ψ̇ = K3
+

[
−iωc

∑
s

asus

]
+K3

−

[
iωc∗

∑
s

b†svs

]
. (2.151)

Note that the †’s on the spinors need to be consistent in all the terms. The last
modification to make is to change commutators to anticommutators. The only
non-vanishing anticommutators are{

as,⃗k, a
†
s′,k⃗′

}
=
{
bs,⃗k, b

†
s′ ,⃗k′

}
= δss′δ

3
(
k⃗ − k⃗′

)
. (2.152)

The approach we take here is somehow opposite to what we did for the scalar fields;
now we are going to use the creation and annihilation anticommutators to determine
the field anticommutator 8:

{ψ (x⃗, t) , π (y⃗, t)} = i

∫ d3k⃗
(2π)

3 e
ik⃗·(x⃗−y⃗)N2 (m+ ωk) . (2.153)

8It should be understood that here ψ and π are broken down into their components, that is, ψ
and π carry some spinor indices α and β, respectively, which then propagate throughout.

{ψ (x⃗, t) , π (y⃗, t)}

=

{
K3

+

[
c
∑
s

asus

]
,K3

−

[
ic∗
∑
s

a†su
†
s

]}
+

{
K3

−

[
c∗
∑
s

b†svs

]
,K3

+

[
ic
∑
s

bsv
†
s

]}

=
i

(2π)3

∫
d3k⃗ d3k⃗′

1
√
2ωk

1
√
2ωk′

eik⃗·x⃗−iωkte−ik⃗′·y⃗+iωk′ t

×
∑
ss′

usu
†
s′︸ ︷︷ ︸

(if s = s′)
= N2(m+wk)(γk+m)γ0

{
as, a

†
s′

}
︸ ︷︷ ︸

=δs,s′δ
3(k⃗−k⃗′)

+

∫
· · ·

=
i

(2π)3

∫
d3k⃗

1

2ωk
eik⃗·(x⃗−y⃗)N2 (m+ ωk) (γk +m)γ0 +

∫
· · ·

=
i

(2π)3

∫
d3k⃗

N2 (m+ ωk)

2ωk

[
eik⃗·(x⃗−y⃗) (γk +m) + e−ik⃗·(x⃗−y⃗)(γk −m)

]
γ0

(γk ±m = γ0ωk︸ ︷︷ ︸
even

− γiki︸︷︷︸
odd

± m︸︷︷︸
even

)

=
i

(2π)3

∫
d3k⃗

N2 (m+ ωk)

2ωk

[
eik⃗·(x⃗−y⃗) + e−ik⃗·(x⃗−y⃗)

]
ωk.
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If we choose the spinor normalisation as (otherwise we need to change our conven-
tions for c1,2)

N =
1√

m+ ωk
, (2.154)

the integral becomes a δ function, and, finally,

{ψ (x⃗, t) , π (y⃗, t)} = iδ (x⃗− y⃗) , (2.155)

which is similar to the scalar cases, Eqs. 2.38 and 2.61. With this normalisation
(and our usual c = 1√

2ω
e−iωt), we have

u†s(p)us′(p) = δss′2E (2.156)
= v†s(p)vs′(p), (2.157)

ūs(p)us′(p) = δss′2m (2.158)
= −v̄s(p)vs′(p). (2.159)∑

s=1,2

us (p) ūs (p) = γp+m, (2.160)

∑
s=1,2

vs (p) v̄s (p) = γp−m. (2.161)

Furthermore, we have 9

H =

∫
d3k⃗ ω

∑
s

(
a†sas − bsb

†
s

)
, (2.162)

and (Exercise 4.1f),

Q = α

∫
d3k⃗

∑
s

(
a†sas + bsb

†
s

)
. (2.163)

Note the different “−” signs compared to the complex scalar fields (Eqs. 2.78
and 2.101). Because of anticommutation, we now introduce a “−” sign when the
normal ordering takes effect. Therefore,

:H: =

∫
d3k⃗ ω

∑
s

(
a†a+ b†b

)
, (2.164)

:Q: = α

∫
d3k⃗

∑
s

(
a†a− b†b

)
, (2.165)

which have the same forms as for the complex scalar (Eqs. 2.79 and 2.102).
9The calculation of H is relatively straightforward:

H =

∫
d3x⃗ iψ†ψ̇

(cross terms vanish because of orthogonality)

=i

∫
d3x⃗

(
K3

+

[
c
∑
s

bsv
†
s

]
K3

−

[
iωc∗

∑
s

b†svs

]
+K3

−

[
c∗
∑
s

a†su
†
s

]
K3

+

[
−iωc

∑
s

asus

])

=i

∫
d3k⃗

(
i

2

∑
ss′

v†svs′bsb
†
s′ −

i

2

∑
ss′

u†sus′a
†
sas′

)
.
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The time-ordered product and spinor Feynman propagator are, respectively,

Tψα (x) ψ̄β (y) ≡ ψα (x) ψ̄β (y) θ
(
x0 − y0

)
− ψ̄β (y)ψα (x) θ

(
y0 − x0

)
, (2.166)〈

0
∣∣Tψα (x) ψ̄β (y) ∣∣ 0〉 = SFαβ , (2.167)

where α and β are spinor indices (see Footnote 8) and

SF ≡ i

∫ d4k
(2π)

4

γk +m

k2 −m2 + iϵ
e−ik(x−y) = i

∫ d4k
(2π)

4

e−ik(x−y)

γk −m+ iϵ
. (2.168)

It can be readily verified that SF is indeed the Green’s function of the Dirac equa-
tion:

(iγ∂ −m)SF = iδ4 (x− y) . (2.169)

2.5 Photons
The free Lagrangian of a photon field is

L [A, ∂A] = −1

4
FµνF

µν , (2.170)

with the electromagnetic tensor,

Fµν = ∂µAν − ∂νAµ. (2.171)

Note that,

∂Fµν
∂ (∂αAβ)

=
∂

∂ (∂αAµ)
(∂µAν − ∂νAµ) (2.172)

= δαµδ
β
ν − δαν δ

β
µ . (2.173)

We have
∂L

∂ (∂αAβ)
= −1

4

∂ (FµνF
µν)

∂Fµν

∂Fµν
(∂∂αAβ)

(2.174)

= −1

4
· 2Fµν

(
δαµδ

β
ν − δαν δ

β
µ

)
(2.175)

= −1

2

(
Fαβ − F βα

)
(2.176)

= −1

2

(
Fαβ + Fαβ

)
(2.177)

= −Fαβ . (2.178)

This gives us the Euler-Lagrange equations,

0 =
∂L
∂Aβ

= ∂α
∂L

∂ (∂αAβ)
(2.179)

= −∂αFαβ (2.180)
= −∂α

(
∂αAβ − ∂βAα

)
(2.181)

= −∂2Aβ + ∂β∂αA
α. (2.182)

These four equations (with β = 0, . . . , 3) do not determine Aβ uniquely because a
shift in Aβ as follows leaves the field tensor, Fµν , unchanged and therefore preserves
the above Euler-Lagrange equations:

Aβ → Aβ + ∂βG, (2.183)
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where G is an arbitrary scalar field. This redundant degree of freedom of the Aβ-
field needs to be gauged away. With the Lorenz gauge 10 condition,

∂µA
µ = 0, (2.184)

this becomes

∂2Aµ = 0. (2.185)

The gauge fixing can be elegantly imposed by adding a term to the Lagarangian:

L = −1

4
FµνF

µν + Lg, (2.186)

Lg ≡ −1

2
∂µA

µ∂νA
ν , (2.187)

with
∂Lg

∂ (∂αAβ)
= −1

2
· 2 (∂µAµ)

∂ (∂µA
µ)

∂ (∂αAβ)︸ ︷︷ ︸
=δαµδ

µβ︸ ︷︷ ︸
=δαβ

(2.188)

= −δαβ∂µAµ. (2.189)

So,
∂L

∂ (∂αAβ)
= −Fαβ − δαβ∂µA

µ. (2.190)

Now, we have an Euler-Lagrange equation that is automatically gauge-fixed:

0 = ∂α
∂L

∂ (∂αAβ)
= −∂αFαβ − ∂β∂µA

µ (2.191)

= −∂α
(
∂αAβ − ∂βAα

)
− ∂β∂µA

µ (2.192)
= −∂2Aβ + ∂β∂αA

α − ∂β∂µA
µ (2.193)

= −∂2Aβ . (2.194)

This gauge choice of the Lagrangian is called the Feynman gauge (although here
effectively, it is doing what the Lorenz gauge does).

The existence of one choice means that there are many others—there is always
more than one way to remove a degree of freedom, that is, to add an independent
field equation such as Eq. 2.184. One way of generalising is to parameterise the
gauge-fixing Lagrangian:

Lg (ξ) ≡ − 1

2ξ
∂µA

µ∂νA
ν , (2.195)

with the corresponding Euler-Lagrange equation (Exercise 4.2a):[
−∂2gµα −

(
1

ξ
− 1

)
∂µ∂α

]
Aα = 0. (2.196)

The photon Feynman propagator is

⟨0 |TAµ(x)Aν(y) | 0⟩ = ΠµνF ≡ −i
∫ d4k

(2π)4
gµν − (1− ξ)k

µkν

k2

k2 + iϵ
e−ik(x−y), (2.197)

which is the Green’s function of Eq. 2.196 (Exercise 4.2b):[
−∂2gµα −

(
1

ξ
− 1

)
∂µ∂α

]
ΠανF = −igµνδ4(x− y). (2.198)

10Not Lorentz!
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2.5.1 Local Gauge Principle
In Sec. 2.3.1, we discussed an example of the global gauge invance: the Lagrangian
is invariant under a phase rotation, Eq. 2.88, that is independent of space and time:

ϕ→ e−iαϕ, ϕ† → eiαϕ†.

Now, let’s consider the free (hence the subscript 0) Lagrangian of a spinor field
and a local phase change, which is a function of space and time:

L0 = ψ̄ (iγ∂ −m)ψ, (2.199)
ψ → e−iα(x)ψ, ψ̄ → eiα(x)ψ̄. (2.200)

Since

∂µψ = (−i∂µα) e−iαψ + e−iα∂µψ, (2.201)

we have a change in the Lagrangian,

δL0 = eiαψ̄iγµ (−i∂µα) e−iαψ (2.202)
= (∂µα) ψ̄γ

µψ (2.203)
≡ (∂µα) J

µ, (2.204)

where J is the Noether current we obtained in Eq. 2.121 (note that we have taken
α out of the definition here).

We shall correct this by 11 replacing the ordinary derivative with the covariant
derivative:

∂µ → ∂µ + ieAµ, (2.205)

where Aµ is a vector field and e some constant. Now we have an additional term in
the Lagrangian:

L′ = ψ̄iγµ (ieAµ)ψ (2.206)
= −eAµψ̄γµψ (2.207)
= −eAµJµ. (2.208)

The new Lagrangian is (Exercise 4.3)

L = L0 + L′ (2.209)
= ψ̄ (iγµ∂µ −m)ψ − eAµJ

µ. (2.210)

Then we require the Aµ-field to change in the local gauge transform, Eq. 2.200, as
follows:

Aµ → Aµ + δAµ, (2.211)

which should keep the new Lagrangian invariant.

δL = (∂µα) J
µ − e (δAµ) J

µ = 0. (2.212)

The required change of the Aµ field is then

δAµ =
1

e
∂µα, (2.213)

11Also known as minimal substitution.
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namely,

Aµ → Aµ +
1

e
∂µα. (2.214)

We identify the Aµ-field as the photon field, with Eq. 2.214 a special case of
Eq. 2.183; Fµν is already compatible with the covariant derivative, namely, the
modification, Eq. 2.205, leaves Fµν invariant. By the same token of gauge in-
variance, a mass term ∼ 1

2M
2AµA

µ is forbidden in the free photon Lagarangian,
Eq. 2.170.

Exercise 4
1. Spinors

(a) Derive Eq. 2.112,

ψ̄
(
iγ ⃗∂ +m

)
= 0,

from Eq. 2.113,

(iγ∂ −m)ψ = 0.

(b) Prove Eq. 2.126,

(γx)2 = x2

(c) Prove Eq. 2.127,

γxγ0 = 2x0 − γ0γx.

(d) The spinors, ψ, u, v, are 4×1 objects, namely vectors in the spinor space.
What are the dimensions of the following quantities?
i. ψ̄,
ii. γµ,
iii. the Lagrangian, L,
iv. the Hamiltonian density, H,
v. ūu,
vi. uū, and
vii. the current Jµ = ψ̄γµψ.

(e) Prove
i. ∑

s

us(0)u
†
s(0)

(
γ†p+m

)
γ0 =

γ0 + 1

2
(γp+m),

ii. Eqs. 2.143, 2.144, 2.145 and 2.147,

δss′2E (m+ E)N2 = v†s(p)vs′(p),

ūs(p)us′(p) = δss′2m (m+ E)N2

= −v̄s(p)vs′(p),∑
s=1,2

vs (p) v̄s (p) = N2 (m+ E) (γp−m).
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(f) Derive Eq. 2.163,

Q = α

∫
d3k⃗

∑
s

(
a†sas + bsb

†
s

)
.

2. Photons

(a) Derive Eq. 2.196, [
−∂2gµα −

(
1

ξ
− 1

)
∂µ∂α

]
Aα = 0.

(b) Verify Eq. 2.198,[
−∂2gµα −

(
1

ξ
− 1

)
∂µ∂α

]
ΠανF = −igµνδ4(x− y).

3. Local Gauge Principle
What is the Euler-Lagrange equation of the spinor field by the new Lagargian,
Eq. 2.210,

L = ψ̄ (iγµ∂µ −m)ψ − eAµJ
µ ?



Appendix

A Relativistic Notations
Here is a reminder of the signs in special relativity. We temporarily restore the
-̂notation for operators in this subsection to avoid confusion. We use Greek letters,
µ, ν, etc., for Lorentz indices, while Latin letters, i, j, etc., do not need to follow
the index rule.

Metric:

gµν = gµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 . (A.1)

Note that, independent of the signature convention, we have

gµαgαν = gµν = δµν , (A.2)

where δµν = δµν = δµν is the Kronecker delta.
Contravariant vectors Aµ:

xµ = (t, x⃗) = (t, x, y, z) , (A.3)
pµ = (E, p⃗) = (E, px, py, pz) , (A.4)

∂µ =
∂

∂xµ
=

(
∂

∂t
,−∇

)
=

(
∂

∂t
,− ∂

∂x
,− ∂

∂y
,− ∂

∂z

)
, (A.5)

p̂µ = i∂µ =

(
i
∂

∂t
,−i∇

)
=

(
i
∂

∂t
,−i ∂

∂x
,−i ∂

∂y
,−i ∂

∂z

)
. (A.6)

Covariant vectors Aµ = gµνA
ν :

xµ = (t,−x⃗) , (A.7)
pµ = (E,−p⃗) , (A.8)

∂µ =
∂

∂xµ
=

(
∂

∂t
,∇
)
, (A.9)

p̂µ = i∂µ =

(
i
∂

∂t
, i∇

)
. (A.10)

Note the freedom of rearranging the indices within the scalar product:

px = pµxµ = pµx
µ = Et− p⃗ · x⃗. (A.11)

Differentials:

d4x = dtd3x⃗ = dtdx dy dz , (A.12)
d4p = dE d3p⃗ = dE dpx dpy dpz , (A.13)
d4k = dω d3k⃗ = dω dkx dky dkz . (A.14)
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The calculation in the previous chapter can be straightforwardly extended to the
1 + 3 spacetime. In particular, equations with the shorthand notations for Fourier
transforms can be mostly carried forward without modification—additional spatial
dimensions need to be added:

f̃(E) = Tη[f ] =
1√
2π

∫
dt f (t) eηiEt, (A.15)

f̃(p⃗) = F3
η [f ] =

1(√
2π
)3 ∫ d3x⃗ f (x⃗) eηip⃗·x⃗, (A.16)

f̃(p) = F4
η [f ] = TηF3

−η[f ] (A.17)

=
1(√
2π
)4 ∫ d4x f (x) eηi(Et−p⃗·x⃗) = 1(√

2π
)4 ∫ d4x f (x) eηipx. (A.18)

Now, consider the Fourier transform of p̂µ:

F4
+ [p̂µf ] =

1(√
2π
)4 ∫ d4x eipx (i∂µf) (A.19)

(integration by parts)

=
−i(√
2π
)4 ∫ d4x

(
∂µeipx

)︸ ︷︷ ︸
∂

∂xµ
eip

µxµ=ipµeip
µxµ

f (A.20)

=
1(√
2π
)4 ∫ d4x eipxpµf (A.21)

= pµF4
+ [f ] . (A.22)

So, F4
+ (= T+F3

−) is the Fourier transform from the position space to the momentum
space.



Bibliography

[AH13] Ian J.R. Aitchison and Anthony J.G. Hey. Gauge Theories in Particle
Physics: A Practical Introduction, volume 1: From Relativistic Quantum
Mechanics to QED. CRC Press, 4. edition, 2013.

[AJ02] David Atkinson and Porter Wear Johnson. Quantum Field Theory—A Self-
contained Course, volume 2. Rinton Press, 2002.

[Eng] Christoph Englert. Quantum Field Theory. https://conference.
ippp.dur.ac.uk/event/1181/attachments/5050/6482/QFTnotes.pdf,
accessed 2023-12-24.

[Gel19] François Gelis. Quantum Field Theory—From Basics to Modern Topics.
Cambridge University Press, 2019.

[IZ80] Claude Itzykson and Jean-Bernard Zuber. Quantum Field Theory. Interna-
tional Series In Pure and Applied Physics. McGraw-Hill, New York, Dover
edition, 1980.

[Sch14] Matthew D. Schwartz. Quantum Field Theory and the Standard Model.
Cambridge University Press, 2014.

[Ton] David Tong. Quantum Field Theory. https://www.damtp.cam.ac.uk/
user/tong/qft/qft.pdf, accessed 2023-12-24.

[Zee03] Anthony Zee. Quantum Field Theory in a Nutshell. Princeton University
Press, 2003.

45

https://conference.ippp.dur.ac.uk/event/1181/attachments/5050/6482/QFTnotes.pdf
https://conference.ippp.dur.ac.uk/event/1181/attachments/5050/6482/QFTnotes.pdf
https://www.damtp.cam.ac.uk/user/tong/qft/qft.pdf
https://www.damtp.cam.ac.uk/user/tong/qft/qft.pdf


46 BIBLIOGRAPHY



Solutions to Exercises

Exercise 1
1. Fourier Transform—Part 1

(a) Just need to prove the +ikx case.

δ(x) =
1

2π

∫ ∞

−∞
dk eikx

=
1

2π
lim
ε→0

∫ ∞

−∞
dk e−εk

2+ikx

=
1

2π
lim
ε→0

∫ ∞

−∞
dk e−ε(k− ix

2ε )
2− x2

4ε

=
1

2π
lim
ε→0

e−
x2

4ε

√
π

ε
,∫ ∞

−∞
dx δ(x) = 1

2π
lim
ε→0

√
π

ε

∫ ∞

−∞
dx e− x2

4ε

=
1

2π
lim
ε→0

√
π

ε
2
√
επ

= 1.

(b)

f(x) = F−1 [F [f ]] = AB

∫
dk dy f(y)eiCky−iCkx =

∫
dy f(y)δ(y − x)

δ(y − x) = AB

∫
dk eiCk(y−x)

=
AB

|C|

∫
dk′ eik

′(y−x).

Matching the last step to the form of the δ-function.

(c) (direct calculation as in the epigraph.)

2. Quantum Harmonic Oscillator

(a) [
Ĥ, â†

]
= C

[
â†â+ ââ†, â†

]
= 2C

[
â, â†

]
â†.

47
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With the D-R

C =
(
h1λ

2 + h2
)
c1c2

= −2h1λ
2c1c2 = 2h2c1c2.

D = 2C
[
â, â†

]
= 2ih1λ = −2ih2

λ
.

(b) With the harmonic oscillator Hamiltonian, h1 = 1
2m , h2 = 1

2mω
2,

C = mω2c1c2,

λ2 = −h2
h1

= −m2ω2

λ =


imω ⇒ D = −ω,

[
â, â†

]
= − 1

2mωc1c2

−imω ⇒ D = ω,
[
â, â†

]
= 1

2mωc1c2

.

So far, the treatment for a and a† is symmetric, hence the two options
in the sign of D. We can take the + solution.

(c) Furthermore,

[
â, â†

]
= 1 ⇒ c1c2 =

1

2mω
,

⇒ C =
ω

2
.

At this point, because c∗1 = c2, c1,2 can be determined up to a phase
e±iα. Choose real values,

c1 = c2 =
1√
2mω

,

and the harmonic oscillator case is fully recovered.

(d) For arbitrary operators A and B, (AB)† = B†A†.

H† = H,(
[H, a†]

)†
=
(
Ha† − a†H

)†
= aH −Ha

= −[H, a],(
ωa†

)†
= ωa,

∴ − [H, a] = ωa,

i.e. [H, a] = −ωa.

3. Fourier Transform—Part 2
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(a)

Fη
[
st̃τ
]
=

1√
2π

∫
dx eηikxs(k) 1√

2π

∫
dk ′eτik

′xt (k′)

=
1

2π

∫
dx dk ′s(k)t (k′) eτi(

η
τ k+k

′)x

=

∫
dk ′s(k)t (k′) δ

(η
τ
k + k′

)
= s(k)t

(
−η
τ
k
)

=

{
s(k)t(−k), η = τ
s(k)t(k), η ̸= τ

.

(b)

[f(x), g(y)] = r δ(x− y),[
f̃η(k), g̃τ (k

′)
]
=

[
1√
2π

∫
dx eηikxf(x), 1√

2π

∫
dy eτik

′yg(y)

]
=

1

2π

∫
dx dy eηikx+τik

′y[f(x), g(y)]

=
r

2π

∫
dx dy eηikx+τ

′k′yδ(x− y)

=
r

2π

∫
dx eτi(

η
τ k+k

′)x

= r δ
(η
τ
k + k′

)
=

{
r δ (k + k′) , η = τ
r δ (k − k′) , η ̸= τ

.

(c) ∫
dx s̃η(x)t̃τ (x) =

∫
dx 1√

2π

∫
dk eηikxs(k) 1√

2π

∫
dk′ eτik

′xt (k′)

=
1

2π

∫
dx dk dk′ eτi(

η
τ k+k

′)xs(k)t (k′)

=

∫
dk dk′ s(k)t (k′) δ

(η
τ
k + k′

)
=

∫
dk s(k)t

(
−η
τ
k
)

=

{ ∫
dk s(k)t(−k), η = τ∫
dk s(k)t(k), η ̸= τ

.

Exercise 2
1. Normal Ordering

(directly following the definitions)

2. The Vacuum—Part 1
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(a) 〈
0
∣∣∣aka†k′ ∣∣∣ 0〉

=
〈
0
∣∣∣a†k′ak + [ak, a†k′]∣∣∣ 0〉

=
[
ak, a

†
k′

]
⟨0 | 0⟩

=δ (k − k′) .

(b) (Ignore the Zk-dependence as Zk = 1.) The scaling between
[
ak, a

†
k′

]
and c1,2 is [

ak, a
†
k′

]
=
δ (k − k′)

2ωkc1c2
.

With

ϕ(x, t) =
1√
2π

∫
dk 1√

2ω

(
aeikx−iωt + a†e−ikx+iωt

)
,

π(x, t) =
1√
2π

∫
dk 1√

2ω

(
−iωaeikx−iωt + iωa†e−ikx+iωt

)
,

we had

⟨k|k′⟩ =
[
ak, a

†
k′

]
= δ (k − k′) .

Now with

ϕ(x, t) =

∫ dk
2π

1

2ω

(
aeikx−iωt + a†e−ikx+iωt

)
,

π(x, t) =

∫ dk
2π

1

2ω

(
−iωaeikx−iωt + iωa†e−ikx+iωt

)
,

we need to scale down c1,2 each by a factor of
√
2π2ω and therefore, now

we have

⟨k|k′⟩ =
[
ak, a

†
k′

]
= 2π2ωkδ (k − k′) .

3. Time Ordering

T [A (t1)B (t2)] = A (t1)B (t2) θ (t1 − t2) +B (t2)A (t1) θ (t2 − t1) ,

∂t1T [A (t1)B (t2)] = [∂1A (t1)]B (t2) θ (t1 − t2) +A (t1)B (t2) δ (t1 − t2)

+B (t2) [∂t1A (t1)] θ (t2 − t1)−B (t2)A (t1) δ (t2 − t1)

= T [∂t1A (t1)B (t2)] + [A (t1) , B (t2)] δ (t1 − t2) .

4. Feynman Propagator

(a)

⟨0 |ϕ | 0⟩ = K+ [c ⟨0 | a | 0⟩] +K−
[
c∗
〈
0
∣∣ a† ∣∣ 0〉] = 0,

as a |0⟩ = 0 and ⟨0| a† = 0.



51

(b) In calculating
〈
0
∣∣ a(†)a(†) ∣∣ 0〉, only the aa† term survives.

⟨0 |ϕ (x1, t1)ϕ (x2, t2) | 0⟩ =
〈
0
∣∣∣K+ [c1a1]K−

[
c†2a

†
2

] ∣∣∣ 0〉
=

1

2π

∫
dk1 dk2

1√
2ω1

1√
2ω2

eik1x1−iω1t1e−ik2x2+iω2t2
〈
0
∣∣∣ a1a†2 ∣∣∣ 0〉︸ ︷︷ ︸

=δ(k1−k2)

=

∫ dk
2π

1

2ωk
eik(x1−x2)−iωk(t1−t2).

(c)

⟨0 |ϕ1ϕ2 | 0⟩ θ(t) =
∫ dk

2π

1

2ωk
eikx−iωktθ(t)

=

∫ dk
2π

1

2ωk

i

2π

∫
dω e

ikx−i(ω+ωk)t

ω + iϵ

(ω0 ≡ ω + ωk)

=

∫ dk
2π

1

2ωk

i

2π

∫
dω0

eikx−iω0t

ω0 − ωk + iϵ
(*A)

(k′ ≡ −k, ω′ ≡ −ω0, ω
2
k′ = k′2 +m2 = ω2

k)

(the two flips of integral limits cancel each other)

=

∫
−dk ′

2π

1

2ωk

i

2π

∫
(−dω ′)

e−ik
′x+iω′t

−ω′ − ωk + iϵ

=

∫ dk ′

2π

1

2ωk

i

2π

∫
dω′

(
− 1

ω′ + ωk − iϵ

)
e−ik

′x+iω′t

(restoring dummy variables)

=

∫ dk
2π

1

2ωk

i

2π

∫
dω
(
− 1

ω + ωk − iϵ

)
e−ikx+iωt. (*B)

(d) Still using x = x1 − x2, t = t1 − t2, and following (*A) in the previous
question but now flip the signs of x and t,

⟨0 |ϕ2ϕ1 | 0⟩ θ (t2 − t1) =

∫ dk
2π

1

2ωk
e−ikx+iωktθ(−t),

=

∫ dk
2π

1

2ωk

i

2π

∫
dω 1

ω − ωk + iϵ
e−ikx+iωt. (*C)

Adding (*B) and (*C)

⟨0 |Tϕ1ϕ2 | 0⟩ =
∫ dk

2π

1

2ωk

i

2π

∫
dω 2 (ωk − iϵ)

ω2 − (ωk − iϵ)
2 e

−ikx+iωt

(ε ≡ 2ωkϵ)

= i

∫ dk dω
(2π)2

e−ikx+iωt

ω2 − ω2
k + iε

= i

∫ dk dω
(2π)2

eikx−iωt

ω2 − ω2
k + iε

,

where the last step has flip the signs of k and ω and therefore proved
∆F(x, t) = ∆F(−x,−t).
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5. The Vacuum—Part 2

:H: a†2a
†
1 |0⟩

=
(
a†2 :H: +ωk2a

†
2

)
a†1 |0⟩

=a†2 :H: a†1 |0⟩+ ω2a
†
2a

†
1 |0⟩

=a†2ω1a
†
1 |0⟩+ ω2a

†
2a

†
1 |0⟩

=(ω1 + ω2) a
†
2a

†
1 |0⟩ .

Exercise 3
1. Energy-Momentum Tensor

(a) (i = x, y, z is not Lorentz index.)

π∂iϕ = K+ [−iωca]K+ [ikica]

+K+ [−iωca]K−
[
−ikic∗a†

]
+K−

[
iωc∗a†

]
K+ [ikica]

+K−
[
iωc∗a†

]
K−

[
−ikic∗a†

]
,∫

d3x⃗ π∂iϕ =

∫
d3k⃗ [ − iωkckaki (−ki) c−ka−k

+(−i)ωkckak(−i)kic∗ka
†
k

+iωkc
∗
ka

†
kikickak

+iωkc
∗
ka

†
k(−i) (−ki) c

∗
−ka

†
−k ] ,

The first and fourth integrands are odd in ki and so the integrals go to
0 when integrating from −∞ to ∞. With the remaining terms, we have∫

d3x⃗ π∂iϕ = −
∫

d3k⃗ ωkicc∗
(
a†a+ aa†

)
= −

∫
d3k⃗ ki

2

(
a†a+ aa†

)
.

Finally, for µ = 1, 2, 3,

Pµ =

∫
d3x⃗ π∂µϕ

= −
∫

d3x⃗ π∂iϕ

=

∫
d3k⃗ ki

2

(
a†a+ aa†

)
,

=

∫
d3k⃗ k

µ

2

(
a†a+ aa†

)
.

(b) For µ = 0, [
P 0, ϕ(y)

]
= [H,ϕ(y)]

= −iϕ̇(y)
= −i∂0ϕ(y).
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For µ = 1, 2, 3,

[Pµ, ϕ(y)] =

∫
d3x⃗ [π∂µϕ, ϕ(y)]

([∂iϕ(x), ϕ(y)] ∼
∫

d3k⃗ ki = 0)

=

∫
d3x⃗ [π, ϕ(y)] ∂µϕ

= −
∫

d3x⃗ iδ(3)(x− y)∂µϕ

= −i∂µϕ(y).

2. Complex Scalar Fields

(a) Both parts are routine—just note that,

b

〈
k⃗
∣∣∣ k⃗〉

a
= 0,

a

〈
k⃗
∣∣∣ k⃗〉

a
=
b

〈
k⃗
∣∣∣ k⃗〉

b
.

a =
a1 − ia2√

2
, a† =

a†1 + ia†2√
2

, b =
a1 + ia2√

2
, b† =

a†1 − ia†2√
2

,

a†a =
a†1a1 + a†2a2 − ia†1a2 + ia†2a1

2
, bb† =

a1a
†
1 + a2a

†
2 − ia1a

†
2 + ia2a

†
1

2
,

∴ a†a+ bb†

(
[
a
(†)
1 , a

(†)
2

]
= 0)

=
a†1a1 + a1a

†
1

2
+
a†2a2 + a2a

†
2

2
.

(b) For complex scalars,

⟨0 |Tϕϕ | 0⟩ ∼ K
[〈
0
∣∣ (a+ b†

) (
a+ b†

) ∣∣ 0〉] ,〈
0
∣∣Tϕ†ϕ† ∣∣ 0〉 ∼ K

[〈
0
∣∣ (b+ a†

) (
b+ a†

) ∣∣ 0〉] ,〈
0
∣∣ϕ†ϕ ∣∣ 0〉 ∼ K

[〈
0
∣∣ (b+ a†

) (
a+ b†

) ∣∣ 0〉] ,〈
0
∣∣ϕϕ† ∣∣ 0〉 ∼ K

[〈
0
∣∣ (a+ b†

) (
b+ a†

) ∣∣ 0〉] ,
where only aa† and bb† survive, eacho contributing a δ just like the
case in real scalar field. So,

〈
0
∣∣Tϕϕ† ∣∣ 0〉 equals to the real scalar case

⟨0 |Tϕϕ | 0⟩ = ∆F.

(c) Field expansion:

ϕ = K3
+ [ca] +K3

−
[
c∗b†

]
,

π = ϕ̇† = K3
+ [−iωcb] +K3

−
[
iωc∗a†

]
.
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So, ∫
d3x⃗ πϕ =

∫
d3x⃗ (K3

+ [−iωcb]K3
+ [ca]

+K3
+ [−iωcb]K3

−
[
c∗b†

]
+K3

−
[
iωc∗a†

]
K3

+ [ca]

+ K3
−
[
iωc∗a†

]
K3

−
[
c∗b†

])
=

∫
d3k⃗ ( − iωccbk⃗a−k⃗

− iωcc∗bb†

+ iωcc∗a†a

+iωc∗c∗a†
k⃗
b†
−k⃗

)
.

h.c. =
∫

d3k⃗ ( iωc∗c∗a†
−k⃗
b†
k⃗

+iωcc∗bb†

−iωcc∗a†a

− iωccb−k⃗ak⃗

)
.

Because ∫
d3k⃗ ak⃗b−k⃗ =

∫
d3k⃗ a−k⃗bk⃗,

the first and fourth terms in the integral cancel when we evaluate∫
d3x⃗ πϕ− h.c. =

∫
d3k⃗

(
−2iωcc∗bb† + 2iωcc∗a†a

)
=

∫
d3k⃗ 2iωcc∗

(
a†a− bb†

)
= i

∫
d3k⃗

(
a†a− bb†

)
.

Finally,

Q = α

∫
d3k⃗

(
a†a− bb†

)
,

:Q: = α

∫
d3k⃗

(
a†a− b†b

)
.

3. Noether’s Theorem

(a)

[Q,ϕ] = −iα
∫

d3x⃗ [πϕ, ϕ] = −iα
∫

d3x⃗ [π, ϕ]ϕ = −αϕ,[
Q,ϕ†

]
= −iα

∫
d3x⃗

[
−ϕ†π†, ϕ†

]
= −iα

∫
d3x⃗ ϕ†

[
ϕ†, π†] = αϕ†.
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(b)

dψ1

dα = Q0ψ1 − ψ1Q0
dψ1

dα

∣∣∣
α=0

= [Q0, ϕ] = −ϕ;
= [Q0, ψ1] ,

d2ψ1

dα2 =
[
Q0,

dψ1

dα

]
d2ψ1

dα2

∣∣∣
α=0

= [Q0,−ϕ] = ϕ;

= [Q0, [Q0, ψ1]] ,
. . .

dψ2

dα = −ψ2,
dψ2

dα

∣∣∣
α=0

= −ϕ;
d2ψ2

dα2 = −dψ2

dα , d2ψ2

dα2

∣∣∣
α=0

= ϕ;

. . .

∴ ψ1 = ψ2.

Exercise 4
1. Spinor Fields

(a)

(iγ∂ −m)ψ = 0,

0 = [(iγ∂ −m)ψ]
†
= ψ†

(
−iγ† ⃗∂ −m

)
(γ0γ0 = 1, γ† = γ0γγ0)

= ψ†γ0γ0
(
−iγ0γγ0 ⃗∂ −m

)
= ψ̄

(
−iγγ0 ⃗∂ − γ0m

)
= ψ̄

(
−iγ ⃗∂ −m

)
γ0,

∴ ψ̄
(
iγ ⃗∂ +m

)
= 0.

(b) Swap indices and average, then use

γµγν + γνγµ = 2gµν .

(c) Use

γµγ0 = 2gµ0 − γ0γµ.

(d) i. ψ̄: 1×4
ii. γµ: 4×1
iii. the Lagrangian, L: 1×1
iv. the Hamiltonian density, H: 1×1
v. ūu: 1×1
vi. uū: 4×4
vii. the current Jµ = ψ̄γµψ: 1×1
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(e) i. ∑
s

us(0)u
†
s(0)

(
γ†p+m

)
γ0

=
∑
s

us(0)u
†
s(0)γ

0γ0
(
γ†p+m

)
γ0

(
∑
s

us(0)u
†
s(0) =

γ0 + 1

2
, γµ† = γ0γµγ0, γ0γ0 = 1)

=
γ0 + 1

2
(γp+m)

ii. Follow the examples in the footnotes:

v†s(p)vs′(p)

= v†s(0)
(
γ†p−m

)
N2(γp−m)vs′(0)

= v̄s(0)(γp−m)γ0(γp−m)vs′(0)N
2

= v̄s(0)(γp−m)vs′(0)N
22p0

= −v†s(0)(γp−m)vs′(0)N
22p0

= −δss′
(
−p0 −m

)
N22p0

= δss′
(
m+ p0

)
N22p0.

ūs(p)us′(p)

= u†s(0)
(
γ†p+m

)
γ0N2(γp+m)us′(0)

= ūs(0)(γp+m)(γp+m)us′(0)N
2

= ūs(0)(γp+m)us′(0)N
22m

= u†s(0)(γp+m)us′(0)N
22m

= δss′
(
m+ p0

)
N22m.

v̄s(p)vs′(p)

= v†s(0)
(
γ†p−m

)
γ0N2(γp−m)vs′(0)

= v̄s(0)(γp−m)(γp−m)vs′(0)N
2

= −v̄s(0)(γp−m)vs′(0)N
22m

= v†s(0)(γp−m)vs′(0)N
22m

= δss′(−p0 −m)N22m

= −δss′
(
m+ p0

)
N22m.

∑
s

vs(p)v̄s(p)

= N2(γp−m)
∑
s

vs(0)v
†
s(0)

(
γ†p−m

)
γ0

= N2(γp−m)
γ0 − 1

2
(γp−m)

= N2 2p
0 − (−2m0)

2
(γp−m)

= N2
(
m+ p0

)
(γp−m).
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(f)

Q = α

∫
d3x⃗ ψ†ψ

=α

∫
d3x⃗

(
K3

+

[
c
∑
s

bsv
†
s

]
K3

−

[
c∗
∑
s

b†svs

]

+K3
−

[
c∗
∑
s

a†su
†
s

]
K3

+

[
c
∑
s

asus

])

=α

∫
d3k⃗

(
1

2ω

∑
ss′

v†svs′bsb
†
s′ +

1

2ω

∑
ss′

u†sus′a
†
sas′

)

=α

∫
d3k⃗

∑
s

(
a†sas + bsb

†
s

)
.

2. Photons

(a)

∂L
∂ (∂αAβ)

= −Fαβ − 1

ξ
δαβ∂µA

µ,

0 = ∂α
∂L

∂ (∂αAβ)
= −∂αFαβ − 1

ξ
∂β∂µA

µ

= −∂α
(
∂αAβ − ∂βAα

)
− 1

ξ
∂β∂µA

µ

= −∂2Aβ + ∂β∂αA
α − 1

ξ
∂β∂µA

µ

= −∂2Aβ −
(
1

ξ
− 1

)
∂β∂αA

α

(Aβ = gβαA
α)

=

[
−∂2gβα −

(
1

ξ
− 1

)
∂β∂α

]
Aα.

(b)

Dµ
α ≡ −∂2gµα −

(
1

ξ
− 1

)
∂µ∂α,

Dµ
αe

−ik(x−y)

=

[
k2gµα +

(
1

ξ
− 1

)
kµkα

]
e−ik(x−y),

k2
[
gµα +

(
1

ξ
− 1

)
kµkα
k2

]
·
gαν − (1− ξ)k

αkν

k2

k2

= gµν +

(
1

ξ
− 1

)
kµkν

k2
− (1− ξ)

kµkv

k2
−
(
1

ξ
− 1

)
(1− ξ)

kµkν

k2

= gµν +

[
1

ξ
− 1− 1 + ξ −

(
1

ξ
− 1− 1 + ξ

)]
︸ ︷︷ ︸

=0

kµkν

k2

= gµν

Dµ
αΠ

αν
F = −igµνδ4(x− y)
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3. Local Gauge Principle

L = ψ̄(iγ∂ −m)ψ − eAψ̄γψ,

∂L
∂ψ̄

= (iγ∂ −m)ψ − eAγψ = 0,

E-L: (iγ∂ −m)ψ = eAγψ.
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