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1. Background & Objectives

*Since the advent of the microarray, gene expression
over the course of biological processes can be seen.
s*Experimental determination of transcription factors
is possible, but slow and expensive: computational
methods usually search motifs or gene profiles.(1, 2)
+*We aim to develop a new Matlab tool to search for
sites (including pairs) that explain co-regulation.
s*Search for. Arabidopsis leaf senescence motifs (3).

3. Statistical Sampling

5000 samples were
taken of the sizes of
the TMs generated, to

—— give bootstrap
. statistics for mean
sand variance of each
motif for each cluster
size.
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Fig. 1. Bootstrapping returns for six 5-mers
in 500 gene proposed TMs.
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2. Transcriptional Modules (TMs)

“*Groups of genes that are co-regulated in a biological
process, by a set of transcription factors.

*Determined by both their promoter sequence
information and time series expression profile.
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4. Elongation & Repetition

“*Determine the most significant motifs via normal
approximation (as per Fig. 1.) and extend these in
each direction. AACCTA ACCTAA

“*Use sparsity indicator
vectors to reduce the CACCTA ACCTAC
size of the search AcIA
when considering the EACCHA ACCL
longer motifs.
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Fig. 2. Aflow diagram of the steps taken by the algorithm, to
determine the putative transcription factor binding site motifs

Calculate the number of
each proposed motif

Generate new

for motifs via the

<

Remove all bar the N
motifs with greatest
specificity for certain
proposed TMs.

TERMINATE: Retain
putative motifs with
highest: relevance to the
latest proposed TMs.

5. Results

“Returned TMs were .
based upon many [

s
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“*Removing pair-repeat 5-mers did not
prevent this, but proposed AACCGGTTT
as a membrane transport related motif.

Fig. 3. Expression profiles of
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