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1. INTRODUCTION

Ordinary differential equations (ODEs) are often
used to model biological processes in Systems Bi-
ology.
Characteristically, ODEs have a number of un-
known parameters that need to be inferred from
the observed data.

2. PROBLEM

“Traditional” parameter estimation methods in-
volve

1. simulating from the model using a trial set
of parameters,

2. seeing how the simulated and real data
match up

3. repeating the steps above with adjustments
to the parameters, until a desirable fit is
achieved.

The main disadvantages are:

• The estimation process is slow and compu-
tationally costly.

• The optimisation method may fail to con-
verge to the global optimum in the presence
of local optima.

3. ALTERNATIVE APPROACH

A “faster” approach is provided by the so-called
“two-step” methods which avoid solving ODE’s
numerically, and involve two steps, i.e.;

1. use of non-parametric methods to estimate
solution of ODE; and

2. minimisation of a given distance function.

4. CONTRIBUTIONS

1. Investigating the efficiency of the two-step
approach employing a Bayesian non linear
regression method : Gaussian process re-
gression (GPR).

2. Speeding up ODE parameter estimation in
“fully observed” systems.

3. Estimating parameters of partially observed
systems.

5. METHOD

Given an ODE
dx
dt

= f (x;θ), for t = 1, . . . ,n

1. Observe data, x(t) 2. Fit GPR model to data 3. Fit GPR model to corresponding derivative process
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4. Sample from posterior distributions 5. Estimate θ by minimising objective function

Obtain x̂(t) and
d
dt
x̂(t) minimize

θ

n

∑
i=1

{

(

d
dt
x̂(ti)− f (x̂(ti);θ)

)2
}
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6. APPLICATIONS AND RESULTS

We present two examples of the applications of GPR to ODE parameter estimation.

A. GPR is employed to estimate the parameters of a “fully observed” Lotka-
Volterra model:

dx
dt

= ax− xy,
dy
dt

= bxy− y.

Results
GPR obtains estimates within fractions of a second and is more accurate than
the traditional simulation method,

1. with standard deviation (σ = 0.1)

2. with varying levels of noise (σ )

Method â (1) b̂ (1) Time (seconds)
Simulation 0.9888 1.0083 0.6318

GPR 1.0038±0.0558 0.9730±0.0557 0.0091

Table 1: Parameter estimates obtained using the simulation and GPR methods. The “true” parameter values are shown in parentheses. The mean GPR estimates are shown

with their corresponding standard deviations.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Noise standard deviation, (σ) 

E
st

im
at

ed
 v

al
ue

a

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

Noise standard deviation, (σ) 

E
st

im
at

io
n 

tim
e 

(s
ec

on
ds

)

a

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

Noise standard deviation, σ 

E
st

im
at

ed
 v

al
ue

b

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

Noise standard deviation, (σ) 

E
st

im
at

io
n 

tim
e 

(s
ec

on
ds

)

b

Figure 1: Comparison of the two methods at different noise (σ) values. The plots on the left show the estimated parameter values for the simulation (red stars) and GPR

(blue error bars) methods. The blue stars indicate the mean GPR estimates, while the dotted horizontal lines indicate the true values. The plots on the right show the average

estimation times for the simulation (red stars), and GPR (blue circles) methods.

B. GPR is also employed in estimating the parameters, α,γ,ρ and ν, of a
“partially observed” SIR model using “real” data:

dS
dt

= α − γSI−ρS,
dI
dt

= γSI−νI−ρI,
dR
dt

= νI −ρR

Data
day 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
I(t) 1 1 3 7 6 10 13 13 14 14 17 10 6 6 4 3 1 1 1 1 0
R(t) 0 0 0 0 5 7 8 13 13 16 16 24 30 31 33 34 36 36 36 36 37

Table 2: Data on the cases of common-cold within a small community in Tristan da Cunha.The data were recorded in October 1967 (Hammond and Tyrrell, 1971)

Assumptions:
• There were no births during the 21 days, α = 0.
• There were no deaths during the 21 days, ρ = 0.

Results
Both methods estimated the parameters closely, as shown by the trajectories in
Figure 2.

Method Ŝ γ̂ ν̂ Time (seconds)
Simulation 37.0059 0.024 0.2413 4.7998
“GPR+simulation” (mean) 41.4129 0.0213 0.27616 0.4282
Original study (1971) 44 0.016 . . . . . .

Table 3: Parameter estimates obtained using the simulation and “GPR+simulation” methods.
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Figure 2: Trajectories of the model predicted data using the simulation method (left), and the hybrid method (right).The observed data are represented by circles while the

estimated data are represented by lines.

7. CONCLUSIONS

• Without any prior knowledge of the initial
conditions of the system, we may employ
GPR to estimate the parameters of a model.

• The GPR approach works well for models
that are linear in their parameters.

• The GPR approach works well in combina-
tion with simulation in order to infer un-
known initial states.

• Further applications of this method need to
be explored.
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