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The timing of the onset of uterine contractions and their synchronicity are key to successful childbirth. Uterine contractions are initiated by rises in intracellular Ca?* concentration, which are
caused and controlled by myometrial action potentials. The precise mechanisms responsible for the initiation and coordination of human uterine contractions remain unclear. Confocal imaging of
slices of contracting uterine tissue loaded with Ca?*-sensitive dye allows the visualisation of Ca?* dynamics. Accurate measurements of the calcium signal in a particular part of the muscle as a
function of time would enable further investigation of the relationship between Ca?* concentration and muscle contraction. However, this is currently not possible because as the calcium signal
increases at a particular point in the muscle, the muscle moves significantly (Figure 1).
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Figure 1: False colour images of a slice of contracting uterine tissue loaded with Ca?*-
sensitive dye. Left: Pre-contraction. Right: During contraction

3.Theidea}

Initial examinations of the images
revealed that there are many
isolated spots of high intensity in
each image frame.

The idea is to first accurately track
the movement of any of these
landmarks.

If we can accurately track the
movement of enough landmarks, we
can then characterise the movement
of any point within the image by
interpolating between the known
trajectories.
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Figure 2: A single frame of an image of a uterine tissue
slice, loaded with Ca?*-sensitive dye, imported into
MATLAB. An example of a landmark is indicated

4. Description of a landmark
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algorithm to fit a 2D Gaussian to the ROI:
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Figure 3: The image of a selected ROl around a landmark (/eft) and the
fitted Gaussian function, evaluated at integer values (right)
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5. Tracking a landmark \
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Here, F'is the fitted function in the 2 dimensions, x and y, and there are 5 parameters to fit:
f17(32,1222‘5y7(72
The function, F, is fitted to the data, D, such that the squared error, 7, is minimised:

r= Z Z(D(m,y) ~ F(z,y))°
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The fitted mean values, (¢-,1y), are used to
approximate the coordinates of the
centre of the landmark.

A new 7X7 pixel ROl in the following
frame is selected, centred about the
coordinates of the fitted mean
values, (4=, 1y), from the previous frame.
The algorithm is used to fit a new
Gaussian function to this ROI, to obtain
new values, (uz,uy)".

This process is iterated through a number
of frames, to obtain a series of
coordinates approximating the centre of
the landmark, (#<;1)" , wheret =1, 2, ...,
T indicates the number of the frame in
the sequence.

This sequence of coordinates describes the
position and therefore the trajectory of the
centre of the landmark throughout a series of
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Figure 4: A landmark is tracked through 6 frames. Red *:
fitted mean, (k= 1y). Black line: trajectory taken by (i, 1ty)
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Examination of a 7x7 pixel region of interest (ROI) about a landmark in a single frame revealed

that it was well described by a 2D Gaussian function. We used a nonlinear least-squares

To develop a computer program that will account for the transitory deformations in images of thin slices of contracting uterine tissue loaded with Ca%*-sensitive dye, so that the Ca?* intensity of
any point in the image may be tracked over the duration of the experiment.
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6. Tracking multiple landmarks
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Filtering and thresholding were used to automate the selection of multiple
landmarks in the first frame.

Tracks of selected points over 100 frames
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Figure 5: The trajectories of Iandmgrks over 100 frames (black lines),
end position shown by red *

/. Interpolating between trajectories

\

trajectory (dy,x.):

Xe = {(zc,9e),

The trajectories of landmarks described as

for each landmark, ¢, at each time frame, 7.

We infer the trajectories of the remaining pixels, X, as a weighted sum of the known
trajectories, according to the distance between the pixel of interest and each

d . . .
* We choose f(dxx.)=exp(=5 ), where ) is a spatial scaling constant.
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8. Measuring Ca’* signal \
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The intensity of any point in the first image takes the value of the pixel
described by its trajectory in each subsequent image.
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Figure 6: ROIs selected for intensity
profiles
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Figure 7: The intensity profiles of selected
ROIs (see Figure 6) of amended images
compared to original images
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9. Conclusion ]
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landmarks.

We have developed a program that can account for the movement in confoc
microscopy images of contracting uterine tissue, using the trajectories of selected

This can be used to obtain more accurate measurements of the Ca%* signal in a
particular part of the muscle as a function of time.

The method of motion tracking could have applications in other areas where
guantitative measures from images are hard to obtain due to movement within the
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